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Abstract

Partially motivated by the desire to better understand the con-
nectivity phase transition in fractal percolation, we introduce and
study a class of continuum fractal percolation models in dimension
d ≥ 2. These include a scale invariant version of the classical (Poisson)
Boolean model of stochastic geometry and (for d = 2) the Brownian
loop soup introduced by Lawler and Werner.

The models lead to random fractal sets whose connectivity prop-
erties depend on a parameter ¸. In this paper we mainly study the
transition between a phase where the random fractal sets are totally
disconnected and a phase where they contain connected components
larger than one point. In particular, we show that there are con-
nected components larger than one point at the unique value of ¸ that
separates the two phases (called the critical point). We prove that
such a behavior occurs also in Mandelbrot’s fractal percolation in all
dimensions d ≥ 2. Our results show that it is a generic feature, inde-
pendent of the dimension or the precise definition of the model, and
is essentially a consequence of scale invariance alone.

Furthermore, for d = 2 we prove that the presence of connected
components larger than one point implies the presence of a unique,
unbounded, connected component.
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1 Introduction

Many deterministic constructions generating fractal sets have random ana-
logues that produce random fractals which do not have the self-similarity of
their non-random counterpart, but are statistically self-similar in the sense
that enlargements of small parts have the same statistical distribution as the
whole set.

Random fractals can have complex topological structure, for example
they can be highly multiply connected, and can exhibit connectivity phase
transitions, corresponding to sudden changes of topological structure as a
continuously varying parameter goes through a critical value.

In this paper, we introduce and study a natural class of random fractals
that exhibit, in dimension d ≥ 2, such a connectivity phase transition: when
a parameter increases continuously through a critical value, the connectivity
suddenly breaks down and the random fractals become totally disconnected
with probability one. (We remind the reader that a set is called totally
disconnected if it contains no connected component larger than one point.)
The fractals we study are defined as the complement of the union of sets
generated by a Poisson point process of intensity ¸ times a scale invariant
measure on a space of subsets of ℝd (see Section 2).

Examples of such random fractals include a scale invariant version of the
classical (Poisson) Boolean model of stochastic geometry (see [29, 32] and [24]
for a multiscale version of the model), the Brownian loop soup [18] (both will
be discussed in some more detail in the next section), and the models studied
in [27]. The scale invariant (Poisson) Boolean model is a natural model for
a porous medium with cavities on many different scales (but it has also been
used as a simplified model in cosmology — see [14]). It is obtained via a Pois-
son point process in (d+1)-dimensional space, where the first d coordinates of
the points give the locations of the centers of d-dimensional balls whose radii
are given by the last coordinate. The distribution of the radii r has density
(1/r)d+1, which ensures scale invariance. There is no reason, except simplic-
ity, for using balls, and the model can be naturally generalized by associating
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random shapes to the points of the Poisson process. Another natural way
to generalize the model is obtained by considering a Poisson point process
directly in the space of “shapes,” i.e., subsets of ℝd. In dimension d = 2,
this is how the Brownian loop soup is defined, with the distribution of the
random shapes given by the distribution of Brownian loops. In this paper
we consider this type of models with general scale invariant distributions on
shapes (see Definition 2.1). The reason is that we want to study what fea-
tures in the behavior of fractal percolation models are a consequence of scale
invariance alone.

Our main result consists in showing that, when the intensity ¸ of the Pois-
son process is at its critical value, the random fractals are in the connected
phase in the sense that they contain connected components larger than one
point with probability one (see Theorem 2.4). This is reminiscent of the
nature of the phase transition in Mandelbrot’s fractal percolation [21, 22],
which is discussed in more detail in Section 4.

Our proof of Theorem 2.4 is interesting in that it shows that the nature
of the connectivity phase transition described in the theorem is essentially a
consequence of scale invariance alone, and in particular does not depend on
the dimension d. The same proof applies to other models as well, including
Mandelbrot’s fractal percolation. (We note that the proofs of Theorems 5.3
and 5.4 of [10] also show the importance of scale invariance, but are very
two-dimensional). Along the way, we prove a discontinuity result for the
probability that a random fractal contains a connected component crossing a
“shell-like domain,” which is interesting in its own right (see Corollary 2.6).

The main result is stated in Section 2 while Sections 3 and 4 contain ad-
ditional two-dimensional results and results concerning Mandelbrot’s fractal
percolation model respectively.

1.1 Two Motivating Examples

Two prototypical examples of the type of models that we consider in this
paper are a fully scale invariant version of the multiscale Poisson Boolean
model studied in Chapter 8 of [24] and in [25, 26] (see [2] for recent results on
that model, whose precise definition is given below) and, in two dimensions,
the Brownian loop soup of Lawler and Werner [18].

The Brownian loop soup with density ¸ > 0 is a realization of a Poisson
point process with intensity ¸ times the Brownian loop measure, where the
latter is essentially the only measure on loops that is conformally invariant
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(see [18] and [17] for precise definitions). A sample of the Brownian loop
soup is a countable family of unrooted Brownian loops in ℝ2 (there is no non-
intersection condition or other interaction between the loops). The Brownian
loop measure can also be considered as a measure on hulls (i.e., compact
connected sets K ⊂ ℝ2 such that ℝ2 ∖ K is connected) by filling in the
bounded loops.

The scale invariant Boolean model in d dimensions is a Poisson point
process on ℝd × (0,∞) with intensity ¸ r−(d+1) dr dx, where ¸ ∈ (0,∞), dr
is Lebesgue measure on ℝ+ and dx is the d-dimensional Lebesgue measure.
Each realization P of the point process gives rise to a collection of balls in
ℝd in the following way. For each point » ∈ P there is a corresponding ball
b(»). The projection on ℝd of » gives the position of the center of the ball
and the radius of the ball is given by the value of the last coordinate of ».

Since we want to show the analogy between the two models, and later
generalize them, we give an alternative description of the scale invariant
Boolean model. One can obtain the random collection of balls described
above as a realization of a Poisson point process with intensity ¸¹Bool, where
¹Bool is the measure defined by ¹Bool(Ẽ) =

∫
D

∫ b

a
r−(d+1)drdx, for all sets Ẽ

that are collections of balls of radius r ∈ (a, b) with center in an open subset
D of ℝd. (Denoting by ℰ̃ the collection of sets Ẽ used in the definition of
¹Bool, it is easy to see that ℰ̃ is closed under pairwise intersections. Therefore,
the probabilities of events in ℰ̃ determine ¹Bool uniquely as a measure on the
¾-algebra ¾(ℰ̃). This choice of ¾-algebra is only an example, later we will
work with different measurable sets.) Here, ¹Bool plays the same role as the
Brownian loop measure in the definition of the Brownian loop soup. Note
that ¹Bool is scale invariant in the following sense. Let Ẽ ′ denote the collection
of balls with center in sD and radius r ∈ (sa, sb), for some scale factor s.

Then ¹Bool(Ẽ ′) =
∫
sD

∫ sb

sa
r−(d+1)drdx =

∫
D

∫ b

a
(sr)−(d+1)sdrsddx = ¹(Ẽ).

We are interested in fractal sets obtained by considering the complement
of the union of random sets like those produced by the scale invariant Boolean
model or the Brownian loop soup, possibly with a cutoff on the maximal
diameter of the random sets. Fractals have frequently been used to model
physical systems, such as porous media, and in that context the presence
of a cutoff is a very natural assumption. Furthermore, it will be easy to
see from the definitions that without a cutoff or some other restriction, the
complement of the union of the random sets is a.s. empty. An alternative
possibility is to consider the restriction of the scale invariant Boolean model
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or the Brownian loop soup to a bounded domain D. By this we mean that
one keeps only those balls or Brownian loops that are contained in D, which
automatically provides a cutoff on the size of the retained sets. This approach
is particularly natural in the Brownian loop soup context, since then, when
¸ is below a critical value, the boundaries of clusters of filled Brownian loops
form a realization of a Conformal Loop Ensemble (see [33, 34, 30] and [31]
for the definition and properties of Conformal Loop Ensembles).

All proofs are contained in Section 5.

2 Definitions and Main Results

We first remind the reader of the definition of Poisson point process. Let
(M,ℳ, ¹) be a measure space, with M a topological space, ℳ the Borel
¾-algebra, and ¹ a ¾-finite measure. A Poisson point process with intensity
measure ¹ is a collection of random variables {N(E) : E ∈ ℳ, ¹(E) < ∞}
satisfying the following properties:

∙ With probability 1, E 7→ N(E) is a counting measure (i.e., it takes
only nonegative integer values).

∙ For fixed E, N(E) is a Poisson random variable with mean ¹(E).

∙ If E1, E2, . . . , En are mutually disjoint, then N(E1), N(E2), . . . , N(En)
are independent.

The random set of points P = {» ∈ M : N({»}) = 1} is called a Poisson
realization of the measure ¹.

In the rest of the paper, d ≥ 2, and D will always denote a bounded, open
subset of ℝd, which will be called a domain, and D will denote the closure
of D. If K is a subset of ℝd, we let sK = {x ∈ ℝd : x/s ∈ K}. Here M
will be the set of connected, compact subsets of ℝd with nonempty interior.
For our purposes, we need not specify the topology, but we require that the
Borel ¾-algebra contains all sets of the form E(B; a, b) = {K ∈ M : a <
diam(K) ≤ b,K ⊂ B} for all 0 ≤ a < b and all Borel sets B ⊂ ℝd. If we
denote the collection of sets E(B; a, b) by ℰ , the latter is a ¼-system (i.e.,
closed under finite intersections), and one may set ℳ = ¾(ℰ).

We now give a precise definition of scale invariance, followed by the main
definitions of the paper.
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Definition 2.1 We say that an infinite measure ¹ on (M,ℳ) is scale invari-
ant if, for any E ∈ ℳ with ¹(E) < ∞ and any 0 < s < ∞, ¹(E ′) = ¹(E),
where E ′ = {K : K/s ∈ E}.
Definition 2.2 A scale invariant (Poissonian) soup in D with intensity ¸¹
is the collection of sets from a Poisson realization of ¸¹ that are contained
in D, where ¹ is a translation and scale invariant measure.

Note that the soup inherits the scale invariance of the measure ¹, so that
soup realizations in domains related by uniform scaling are statistically self-
similar. For instance, if 0 < s < 1 and D are such that sD = {x ∈ ℝd : x/s ∈
D} ⊂ D, and KD denotes a realization of a scale invariant soup inD, then the
collection of sets from KD contained in sD is distributed like a scaled version
sKD of KD (where the elements of sKD are the sets sK = {x ∈ ℝd : x/s ∈ K}
with K ∈ KD).

Definition 2.3 A full space (Poissonian) soup with intensity ¸¹ and cutoff
± > 0 is a Poisson realization from a measure ¸¹±, where ¹± is the measure
induced by ¹ on sets of diameter at most ±, and ¹ is a translation and scale
invariant measure.

The scale invariance of the soup can now be expressed in the following way.
Let 0 < s < 1, and let D and D′ be two disjoint domains such that
s−1diam(D) = diam(D′) ≤ ± (where diam(⋅) denotes Euclidean diameter)
and with D′ obtained by translating sD. Then, as before, the sets that are
contained in D′ are distributed like a copy scaled by s of the sets contained
in D. In other words, the soup is statistically self-similar at all scales smaller
than the cutoff. Note that the full space soup is also stationary due to the
translation invariance of ¹.

Clearly, the value ± of the cutoff is not important, since one can always
scale space to make it become 1. In the rest of the paper, when we talk about
the full space soup without specifying the cutoff ±, we implicitly assume that
± = 1.

We will consider translation and scale invariant measures ¹ that satisfy
the following condition.

(★) Given a domain D and two positive real numbers d1 < d2, let F =
F (D; d1, d2) be the collection of compact connected sets with nonempty
interior that intersect D and have diameters > d1 and ≤ d2; then
¹(F ) < ∞.
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Remarks Condition (★) is very natural and is clearly satisfied by ¹Bool

and by the Brownian loop measure (which are also translation and scale in-
variant). Its purpose is to ensure that ¸c > 0 in Theorem 2.4 below and
to ensure the left-continuity of certain crossing probabilities (see the be-
ginning of Section 5). Note that the set F can be written as F (D; d1, d2) =
E(D′; d1, d2)∩E(D′∖D; d1, d2)

c, whereD′ is the (Euclidean) d2-neighborhood
of D and the superscript c denotes the complement. Therefore, F is measur-
able by our assumptions on ℳ.

We are now ready to state the main results of the paper.

Theorem 2.4 For every translation and scale invariant measure ¹ satisfying
(★), there exists ¸c = ¸c(¹), with 0 < ¸c < ∞, such that, with probability one,
the complement of the scale invariant soup with density ¸¹ contains connected
components larger than one point if ¸ ≤ ¸c, and is totally disconnected if
¸ > ¸c. The result holds for the full space soup and for the soup in any
domain D with the same ¸c.

We say that a random fractal percolates if it contains connected compo-
nents larger than one point. (This is not the definition typically used for
Mandelbrot’s fractal percolation, which involves a certain crossing event —
see Section 4 below — but we think it is more natural and “canonical,” at
least in the present context, precisely because it does not involve an arbi-
trary crossing event.) Theorem 2.4 therefore says that for the class of models
included in the statement, with probability one the system percolates at crit-
icality. We will show that this is equivalent to having positive probability for
certain crossing events involving “shell-like” (deterministic) domains.

Remark As pointed out to us by an anonymous referee, a standard example
of percolation at criticality is the appearance of a k-ary subtree inside a
Galton-Watson tree (e.g., in Bernoulli percolation on a b-ary tree), with
k ≥ 2. This example has in fact played a role in fractal percolation (e.g., it is
used in the proof of Theorem 1 of [6]). It would be interesting to determine
whether there is a connection between that example and the class of models
treated in this paper.

Corollary 2.5 Consider a full space soup in ℝd with density ¸¹, where ¹
is a translation and scale invariant measure satisfying (★). If ¸ ≤ ¸c(¹),
with probability one, the complement of the soup contains arbitrarily large
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connected components. Moreover, if ¹ is invariant under rotations, any two
open subsets of ℝd are intersected by the same connected component of the
complement of the soup with positive probability.

Corollary 2.5 leaves open the question of existence, and possibly unique-
ness, of an unbounded connected component. We are able to address this
question only for d = 2 (see Theorem 3.2).

Remark The measure ¹ does not need to be completely scale invariant for
our results above to hold. As it will be clear from the proofs, it suffices that
there is an infinite sequence of scale factors sj ↓ 0 such that ¹ is invariant
under scaling by sj, in the sense described above. This is the case, for
instance, for the multiscale Boolean model studied in Chapter 8 of [24] and
in [25, 26].

Indeed, our definition of self-similar soups is aimed at identifying a natural
class of models that is easy to define and contains interesting examples; we
did not try to define the most general class of models to which our methods
apply. In Section 4 we will use Mandelbrot’s fractal percolation to illustrate
how our techniques can be easily applied to an even larger class of models.

The main technical tool in proving Theorem 2.4 and Corollary 2.5 is
Lemma 5.3, presented in Section 5. The lemma implies that the probability
that the complement in a “shell-like” domain A of a full space soup con-
tains a connected component that touches both the “inner” and the “outer”
boundary of the domain has a discontinuity at some 0 < ¸A

c < ∞, jump-
ing from a positive value at ¸A

c to zero for ¸ > ¸A
c . It is then easy to see

that the complement of the soup must be totally disconnected for ¸ > ¸A
c

(Lemma 5.2), which implies that ¸A
c is the same for all “shell-like” domains

and coincides with the ¸c of Theorem 2.4.
For future reference we define what we mean by a shell and a simple

shell. We call a set A a shell if it can be written as A = D ∖ D′, where D
and D′ are two non-empty, bounded, d-dimensional open sets with D′ ⊂ D.
A shell A is simple if D and D′ are open, concentric (d-dimensional) cubes.
We will denote by ΦA the probability that the complement of a full space
soup contains a connected component that touches both the “inner” and the
“outer” boundary of A.

We note that the proof of Lemma 5.3 makes essential use of the shell
geometry and would not work in the case, for instance, of crossings of cubes.
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Throughout the proof of Theorem 2.4, we choose to use simple shells because
they are easier to work with. However, all our results can be readily gener-
alized to any shell. In particular, we have the following discontinuity result,
which is interesting in its own right.

Corollary 2.6 For all d ≥ 2, all shells A, and all translation and scale
invariant measures ¹ satisfying (★), the following holds:

∙ ΦA(¸) > 0 if ¸ ≤ ¸c(¹),

∙ ΦA(¸) = 0 if ¸ > ¸c(¹).

3 Two-Dimensional Soups

In two dimensions one can obtain additional information and show that, like
in Mandelbrot’s fractal percolation, a unique infinite connected component
appears as soon as there is positive probability of having connected compo-
nents larger than one point (that is, at and below the critical point ¸c).

To prepare for our main result of this section, Theorem 3.2 below, consider
a self-similar soup in the unit square (0, 1)2, and let g(¸) be the probability
that the complement of the soup contains a connected component that crosses
the square in the first coordinate direction, connecting the two opposite sides
of the square. We then have the following result.

Theorem 3.1 For every translation and scale invariant ¹ in two dimensions
which satisfies condition (★) and is invariant under reflections through the
coordinate axes and rotations by 90 degrees, g(¸c(¹)) > 0.

The invariance under reflections through the coordinate axes is required
because g(¸) is defined using crossings of the unit square (0, 1)2.

In the case of the Brownian loop soup, Werner states a version of Theo-
rem 3.1 in [33, 34]. The choice of the unit square in Theorem 3.1 is made only
for convenience, and similar results can be proved in the same way for more
general domains. The reflection invariance is a technical condition needed in
the proof in order to apply a technique from [10] (see the proof of Lemma 5.1
there). The same technique, combined with Theorem 3.1, can be used to
prove the next theorem, which is our main result of this section.
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Theorem 3.2 For every translation and scale invariant ¹ in two dimensions
which satisfies condition (★) and is invariant under reflections through the
coordinate axes and rotations by 90 degrees, if ¸ ≤ ¸c(¹), the complement of
the full plane soup with density ¸¹ has a unique unbounded component with
probability one.

The informed reader might believe that the uniqueness result would follow
from a version of the classical Burton-Keane argument (see [4]). However,
in the Burton-Keane argument it is crucial, for instance, that a path from
the inside to the outside of a cube of side length n uses at least (roughly) a
portion 1/nd−1 of the “surface” of the cube (e.g., the number of sites of ℤd

on the boundary, for a lattice model defined on ℤd), so that there is enough
space for at most O(nd−1) disjoint paths. There is clearly no analogue of this
for the continuous models in this paper (nor for Mandelbrot percolation),
since the relevant paths have no “thickness.”

4 Applications to Mandelbrot’s Fractal Per-

colation

The method of proof of Theorem 2.4 works in greater generality than the
class of scale invariant soup models introduced in this paper. In order for the
method to work, it suffices to have some form of scale invariance. To illustrate
this fact, we will consider a well-known model, called fractal percolation,
that was introduced by Mandelbrot [21, 22] and is defined by the following
iterative procedure.

For any integers d ≥ 2 and N ≥ 2, and real number 0 < p < 1, one starts
by partitioning the unit cube [0, 1]d ⊂ ℝd into Nd subcubes of equal size.
Each subcube is independently retained with probability p and discarded
otherwise. This produces a random set C1

N = C1
N(d, p) ⊂ [0, 1]d. The same

procedure is then repeated inside each retained subcube, generating the ran-
dom set C2

N ⊂ C1
N . Iterating the procedure ad infinitum yields an infinite

sequence of random sets [0, 1]d ⊃ . . . ⊃ Ck
N ⊃ Ck+1

N ⊃ . . . . It is easy to see
that the limiting retained set CN := ∩∞

k=1Ck
N is well defined.

Several authors studied various aspects of Mandelbrot’s fractal percola-
tion, including the Hausdorff dimension of CN , as detailed in [9], and the pos-
sible existence of paths [6, 10, 23, 7, 35, 5, 12, 13, 3] and (d− 1)-dimensional
“sheets” [7, 28, 3] traversing the unit cube between opposite faces. Dekking

10



and Meester [10] proposed a “morphology” of more general “random Cantor
sets,” obtained by generalizing the successive “deletion of middle thirds” con-
struction using random substitutions, and showed that there can be several
critical points at which the connectivity properties of a set change. Accounts
of fractal percolation can be found in [8] and Chapter 15 of [11].

In this section we define three potentially different critical points. The-
orem 4.1 shows that two of them are in fact the same. Furthermore, we
prove that the third one is equal to the other two for N large enough, and
conjecture that they are in fact the same for all N .

The first critical point is

p̃c = p̃c(N, d) := sup{p : CN is totally disconnected with probability one}.

To define the second critical point we focus on a specific shell. This choice is
convenient but arbitrary and unnecessarily restrictive. Indeed, the proof of
the next theorem shows that we could have chosen any other shell, so that
p̂c defined below is independent of the choice of shell. Let A ⊂ [0, 1]d be
the domain obtained by removing from the open unit cube (0, 1)d the cube
(1/2, . . . , 1/2)+[0, 1/3]d of side length 1/3, centered at (1/2, . . . , 1/2). Denote
by ÁA(p) the probability that the limiting retained set contains a connected
component that intersects both the “inner” and the “outer” boundary of A.
The second critical point is p̂c = p̂c(N, d) := inf{p : ÁA(p) > 0}. Our first
result of this section concerns p̂c(N, d) and p̃c(N, d).

Theorem 4.1 For all d ≥ 2 and N ≥ 2, p̂c = p̂c(N, d) satisfies 0 < p̂c < 1.
Moreover ÁA(p̂c) > 0, while CN is a.s. totally disconnected when p < p̂c.
Hence, p̂c(N, d) = p̃c(N, d) for every N and d.

Mandelbrot’s fractal percolation can be extended to a full space model by
tiling ℝd with independent copies of the system in the natural way. We call
this model full space fractal percolation. As a consequence of the previous
theorem we have the following result.

Corollary 4.2 Consider full space fractal percolation with d ≥ 2 and N ≥
2. With probability one, the limiting retained set contains arbitrarily large
connected components for p ≥ p̂c, and is totally disconnected for p < p̂c.

We say that there is a (left to right) crossing of the unit cube if CN contains
a connected component that intersects both {0}×[0, 1]d−1 and {1}×[0, 1]d−1.
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Let pc(N, d) be the infimum over all p such that there is a crossing of the
unit cube with positive probability. Sometimes the system is said to percolate
when such a crossing occurs. For d = 2 and all N ≥ 2, Chayes, Chayes and
Durrett [6] discovered that, at the critical point pc(N, 2), the probability of
a crossing is strictly positive (see [10] for a simple proof). A slightly weaker
result in three dimensions was obtained in [7]. Broman and Camia [3] were
able to extend the result of Chayes, Chayes and Durrett to all d ≥ 2, but
only for sufficiently large N . However, the same is conjectured to hold for
all N .

It is interesting to notice that in two dimensions one can prove that, for
p = pc(N, 2), CN contains an infinite connected component with probability
one [6]. This is in sharp contrast with lattice percolation, where it has been
proved that, with probability one, the system does not have an infinite cluster
at the critical point in dimensions 2 and ≥ 19. (The same is believed to hold
in all dimensions — see [15] for a general account of percolation theory.)

By Theorem 4.1, CN is totally disconnected with probability one when
p < p̂c, so that p̂c(N, d) ≤ pc(N, d) for all N and d. Furthermore we have the
following result.

Theorem 4.3 For d = 2 we have that p̂c(N, 2) = pc(N, 2) for all N ≥ 2.
Furthermore, for every d ≥ 3, there exists N0 = N0(d) such that, for all
N ≥ N0, p̂c(N, d) = pc(N, d).

Remark We conjecture that p̂c(N, d) = pc(N, d) for all N ≥ 2 and all d ≥ 2.

5 Proofs

5.1 Proofs of the Main Results

Before we can give the actual proofs, we need some definitions. Let A = D∖D′

be a shell. Given a set K, if A ∖ K contains a connected component that
connects the boundary of D with that of D′ (in other words, if K does
not disconnect ∂D′ from ∂D), we say that the complement of K crosses
A, or that there is a crossing of A in A ∖ K. We let ΦA(¸) denote the
probability that the complement of a full space soup crosses A. If ¹ satisfies
condition (★), the function ΦA(¸) is left-continuous in ¸. To see this, consider
Φ"

A(¸), the analogous crossing probability obtained by disregarding sets in
the soup of diameter smaller than ". A standard coupling of Poisson processes
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(between different values of ¸) shows that, if condition (★) is satisfied, Φ"
A(¸)

is continuous in ¸ for any " > 0. Furthermore, ΦA(¸) corresponds to the
" → 0 limit of Φ"

A(¸), and is therefore left-continuous in ¸, since Φ"
A(¸) is

nonincreasing in ¸.
We now start with the proof of our main theorem, leaving out some

lemmas that will be proved later.

Proof of Theorem 2.4

Full Space Soup We will first prove the result for the full space soup.
Define ¸c = ¸c(¹) to be the infimum of all ¸ such that with probability
one the complement of the full space soup contains at most isolated points.
Clearly, ΦA(¸) = 0 for ¸ > ¸c. The following lemma, whose proof is standard
and deferred till later on, holds.

Lemma 5.1 For any translation and scale invariant measure ¹ satisfying
condition (★), we have 0 < ¸c(¹) < ∞.

In order to conclude the proof for the full space soup, it suffices to show
that ΦA(¸c) > 0 for some simple shell A, since that would imply that the
complement of the soup cannot be totally disconnected with probability one
at ¸ = ¸c. In order to achieve that, we combine the left-continuity of ΦA(¸)
with the two following lemmas.

Lemma 5.2 If ¸ is such that ΦA(¸) = 0 for some simple shell A, then the
complement of the full space soup with density ¸¹ is totally disconnected with
probability one.

Lemma 5.3 For any simple shell A, there exists an " > 0 such that, if
ΦA(¸) ≤ ", then ΦA(¸) = 0.

Lemma 5.2 implies that for all simple shells A, ΦA(¸) > 0 for ¸ < ¸c.
Together with with the left-continuity of ΦA(¸) and Lemma 5.3, this implies
that ΦA(¸c) > 0, which concludes this part of the proof.

Soup in a Bounded Domain We now prove the result for the soup in a
domain D. Let ¸D

c be the infimum of the set of ¸’s such that the complement
of the soup with intensity ¸¹ in D is totally disconnected with probability
one. Coupling the soup in D with a full space soup with cutoff larger than
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the maximum radius allowed in D by using the same Poisson realization for
both before applying the cutoff or the condition that sets be contained in D,
one can easily see that ¸D

c ≥ ¸c. Indeed, more sets are “discarded” in the case
of the soup in D, meaning that the intersection with D of the complement of
the full space soup is contained in the complement of the soup in D. For any
¸ < ¸c, the complement of the full space soup intersected with D contains a
connected component larger than one point with positive probability. This
is because we can cover ℝd with a countable number of copies of D and
use translation invariance. It follows that the complement of the soup in D,
must also contain a connected component larger than one point with positive
probability showing that ¸ ≤ ¸D

c so that ¸D
c ≥ ¸c.

On the other hand, for any closed set G ⊂ D, when ¸ > ¸c, the intersec-
tion with G of the complement of the soup in D is easily seen to be totally
disconnected by comparing it with the intersection of G with the comple-
ment of a full space soup with cutoff smaller than 1

2
dist(G, ∂D), coupled to

the soup inD in the same way as before. Therefore ¸D
c ≤ ¸c, and we conclude

that ¸D
c = ¸c for all domains D.

It remains to check that at the critical point ¸c, the complement of the
soup in D contains connected components larger than one point. This can
be done by coupling the soup in D, as before, to a full space soup with cutoff
larger than the maximum radius allowed in D. The intersection with D of
the complement of such a soup is contained in the complement of the soup in
D. For ¸ = ¸c, the complement of the full space soup intersected with D con-
tains a connected component larger than one point with positive probability,
and so does the complement of the soup in D. The proof of Theorem 2.4 is
therefore complete.

We now turn to the proofs of Lemmas 5.1, 5.2 and 5.3. Lemma 5.1 can
be proved in various, rather standard, ways. A detailed proof in the context
of the multiscale Boolean model can be found in Chapter 8 of [24], while a
different proof in the context of the Brownian loop soup is sketched in [34].
Both proofs are given in two dimensions, but the dimensionality of the space
is irrelevant and the same arguments work in all dimensions. Since the same
ideas work for all scale invariant soups, we only sketch the proof of the lemma,
and refer the interested reader to [24] or [34] for more details.

Proof of Lemma 5.1 Since the whole space can be partitioned in a count-
able number of cubes, in order to prove that ¸c < ∞, it suffices to show that,
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for some ¸ sufficiently large, the unit cube [0, 1]d is completely covered with
probability one.

Let n be a positive integer. Given ¹, choose ® small enough so that,
with strictly positive probability, the cube (−®, ®)d is covered by a set from
the soup of intensity ¹ contained inside the cube (−1, 1)d. Note that, if
the probability of the event described above is strictly positive for a soup of
intensity ¹, and if we denote by a(¸) the probability of the same event for a
soup of intensity ¸¹, we have a(¸) → 1 as ¸ → ∞.

We can cover the unit cube with order 2n cubes of side length ®2−n+1.
Each such cube is contained inside order n nested simple shells with diameter
≤ 2

√
2 and constant ratio ® between the side length of the outer cube and

that of the inner cube. Therefore, by scale invariance the probability that
the unit cube is not covered by sets from a soup with intensity ¸¹ is bounded
above by some constant times

2n(1− a(¸))n = 2(1−∣ log2(1−a(¸))∣)n.

For ¸ so large that ∣ log2(1−a(¸))∣ > 1, the exponent in the bound is negative
and so the bound tends to zero as n → ∞, which concludes the proof of the
first part of the lemma.

Now let K denote the collection of sets (from a soup) that intersect the
unit cube [0, 1]d. For each set K ∈ K, define q(K) ∈ ℕ in such a way that
diam(K) ∈ (2−q(K)−1, 2−q(K)]. Partition the unit cube in cubes of side length
2−n, and for each cube C of the partition Πn define

X̃(C) = 1{∕∃K:q(K)=n and K∩C ∕=∅}.

The random variables {X̃(C)}C∈Πn are not independent, since two adjacent
elements of ΠN can intersect the same set K. It is in fact easy to see that
they are positively correlated. However, it is possible to couple the collection
of random variables {X̃(C)}C∈Πn with a collection of independent Bernoulli
random variables {X(C)}C∈Πn such that, for each C, X̃(C) ≥ X(C) almost
surely (see, e.g., [20]). Moreover, for any ± > 0 we can take P (X(C) = 1) ≥
1− ±, if P (X̃(C) = 1) is close enough to 1.

Let Fn(C) denote the collection of compact sets with nonempty interior
that intersect C and have diameters in (2−n−1, 2−n]. Then, for all C ∈ Πn,

P (X̃(C) = 1) = e−b¸,
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where b = ¹(Fn(C)) < ∞ by scale (and translation) invariance and condition
(★). Therefore, by taking ¸ small enough, we can make P (X̃(C) = 1), and
thus also P (X(C) = 1), arbitrarily close to 1. Since the collection of random
variables {X(C) : C ∈ Πn, n ∈ ℕ} defines a Mandelbrot percolation pro-
cess in [0, 1]d with retention probability equal to P (X(C) = 1), and whose
retained set is contained in [0, 1]d ∖K, for sufficiently small ¸, [0, 1]d ∖K con-
tains connected components larger than one point with positive probability.

Proof of Lemma 5.2 Let ¸ > 0 and the simple shell A = Bout ∖ Bin be
such that ΦA(¸) = 0. Because of scale and translation invariance, ΦA′(¸) = 0
for any A′ obtained by translating a scaled shell sA with s ≤ 1.

Given " > 0, take s = s(") such that 0 < s < 1 and diam(sBout) =
s diam(Bout) < ", and consider the simple shell sA. Consider a tiling of ℝd

with non-overlapping (except along the boundaries) translates of sBin such
that the centers of the cubes form a regular lattice isomorphic to ℤd. If the
full space soup contains a connected component of diameter larger than ",
such a component must intersect some of the cubes from the tiling.

For any cube from the tiling, the probability that it is intersected by a
connected component of the complement of the soup of diameter larger than
" is bounded above by the probability that a translate of sA is crossed by the
complement of the soup. This follows from the fact that the diameter of the
connected component is strictly larger than the diameter of sA. Since the
probability of crossing sA is zero, and the number of cubes in the tiling is
countable, we conclude that the full space soup cannot contain a connected
component of diameter larger than ", for any " > 0.

Proof of Lemma 5.3 Let Bin and Bout be the two d-dimensional, concen-
tric, open cubes such that A = Bout ∖ Bin. For 0 < s < 1, consider a tiling
of ℝd with non-overlapping (except along the boundaries) translates of sBin

such that the centers of the cubes form a regular lattice isomorphic to ℤd.
We can use this isomorphism to put the translates of sBin in a one-to-one
correspondence with the vertices of ℤd, and thus index them via the vertices
of ℤd.

For each translate Bin
x,s, x ∈ ℤd, of sBin, consider the translate Bout

x,s of

sBout concentric to Bin
x,s. The two define the simple shell Ax,s = Bout

x,s ∖ Bin
x,s.

We then have a collection {Ax,s}x∈ℤd of (overlapping) simple shells indexed
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by ℤd.
Let Ks denote the collection of sets from the full space soup with diameter

at most s. Obviously, Ks is distributed like a full space soup with cutoff
± = s. Let Ks =

∪
K∈Ks

K, and denote by Ψx(¸, s) the probability that
there is a crossing of Ax,s in the complement of Ks. It immediately follows
from scale and translation invariance and the way Ax,s has been defined that
Ψx(¸, s) = Φs−1Ax,s

(¸) = ΦA(¸).
We now introduce the graph Md whose set of vertices is ℤd and whose set

of edges is given by the adjacency relation: x ∼ y if and only if ∣∣x− y∣∣ = 1,
where ∣∣x∣∣ = ∣∣(x1, . . . , xd)∣∣ := max1≤i≤d ∣xi∣ and ∣ ⋅ ∣ denotes absolute value.
Next, for each 0 < s < 1, we define the random variables {Xs(x)}x∈ℤd by
letting Xs(x) = 1 if there is a crossing of Ax,s in the complement of Ks, and
Xs(x) = 0 otherwise. By construction, the probability that Xs(x) = 1 equals
Ψx(¸, s) = Φs−1Ax,s

(¸) = ΦA(¸) < 1.
Note that, if ∣∣x− y∣∣ > [diam(Bout) + 2]/l, where l is the Euclidean side

length of Bin, then Xs(x) and Xs(y) are independent of each other. This
implies that we can apply Theorem B26 of [19] (see p. 14 there; the result
first appeared in [20]) to conclude that there exist i.i.d. random variables
{Ys(x)}x∈ℤd such that Ys(x) = 1 with probability p < 1 and Ys(x) = 0
otherwise, and Ys(x) ≥ Xs(x) for every x ∈ ℤd. Moreover, one can let p → 0
as ΦA(¸) → 0.

For each 0 < s < 1, using the random variables {Ys(x)}x∈ℤd , we can
define a Bernoulli site percolation model on Md by declaring x ∈ ℤd open
if Ys(x) = 1 and closed if Ys(x) = 0. We denote by pc(d) the critical value
for Bernoulli site percolation on Md. (See [15] for a general account on
percolation theory.)

Let Gs := {x ∈ ℤd : Ax,s ⊂ A}, i.e., the set of vertices of ℤd corresponding
to simple shells Ax,s contained in A. Note that, if s is sufficiently small, ℤd∖Gs

contains two components, of which one is unbounded. These components
are connected in terms of the adjacency relation ∼ used to define Md when
considered as subsets of the vertex set of Md.

When this is the case, if there is a crossing of A in the complement of the
full space soup, then the percolation process onMd defined above has an open
cluster that connects the bounded component to the unbounded component
of ℤd ∖Gs, “crossing” Gs. The reason is that if the crossing of A intersects a
box Bin

x,s, then Ax,s must be also be crossed and so Ys(x) = 1. The diameter of
such an open cluster is at least of order dist(∂Bout, ∂Bin)/sl, and the cluster
is contained in Gs, whose diameter is of the order of diam(Bout)/sl. (Here,
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for K1, K2 ⊂ ℝd, dist(K1, K2) := inf{∣x− y∣ : x ∈ K1, y ∈ K2}.)
We are now ready to conclude the proof. Assume that ΦA(¸) < " with

0 < " < 1 so small that one can choose p = P (Ys(x) = 1) so that p < pc(d).
Take s so small that Gs contains two connected components, as explained
above. Then, for every s sufficiently small, ΦA(¸) is bounded above by the
probability that the Bernoulli percolation process defined via the random
variables {Ys(x)}x∈ℤd contains an open cluster of diameter at least L/s in-
side a region of linear size at most L′/s, for some L,L′ < ∞. Since p < pc(d),
it follows from standard percolation results (see, e.g., [15]) that the proba-
bility of such an event goes to zero as s → 0, proving the lemma.

Proof of Corollary 2.6 Let A be a shell and let A′ be a simple shell such
that A ⊂ A′. Using Theorem 2.4 we conclude that ΦA(¸) = 0 if ¸ > ¸c(¹).
Furthermore, we have that

0 < ΦA′(¸c(¹)) ≤ ΦA(¸c(¹)),

since a crossing of A′ implies a crossing of A.

Remark It is possible to define the notion of (d− 1)-dimensional crossings
of general shells. For example, a crossing could be, informally, a connected
subset of the complement of the soup which divides the shell into two disjoint
parts, both touching the “inner” and “outer” boundary of the shell. Using
this definition of crossing it is possible to show results analogous to Theorem
2.4 and Corollary 2.6. Note that, for d = 2 this is not the definition that
we use, but it is easy to see that our results would still be true with this
definition of crossing.

The proof of our second main result is now easy.

Proof of Corollary 2.5 The first claim can be proved using Theorem 2.4
and a simple scaling argument, but it is also an immediate consequence of
Corollary 2.6 combined with translation invariance.

The proof of the second claim uses rotation invariance. Let us consider,
without loss of generality, two disjoint open balls, B1 and B2, of radii r1 and
r2 and centered at x1 and x2, respectively. (If the balls are not disjoint, the
complement of the soup intersects B1∩B2 with a connected component larger
than one point with positive probability.) Let d12 = ∣x1 − x2∣, and consider
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the shell A = {x : ∣x− x1∣ < d12} ∖ {x : ∣x− x1∣ ≤ r1/2}. From Corollary 2.6
we know that ΦA(¸) > 0 for ¸ ≤ ¸c. It then follows from rotation invariance
that there is positive probability that the complement of the soup contains
a connected component that connects the sphere {x : ∣x− x1∣ = r1/2} with
the surface {x : ∣x − x1∣ = d12} ∩ B2. Such a connected component must
intersect both B1 and B2.

5.2 Proofs of the Additional Two-Dimensional Results

Proof of Theorem 3.1 Let f̃(¸) denote the probability that the com-
plement of the full plane soup with density ¸¹ and cutoff ± = 2 contains
a connected component that crosses the rectangle [0, 1] × [0, 2] horizontally,
and g̃(¸) the probability that it contains a connected component that crosses
the square [0, 1]2 horizontally. Consider the annulus A = [−3/2, 3/2]2 ∖
[−1/2, 1/2]2. By Corollary 2.6, ΦA(¸) > 0 if ¸ ≤ ¸c(¹). It is easy to see
(Figure 4) that any crossing of A must cross either a square of side length 1
or a rectangle of side lengths 1 and 2 in the “easy” direction. Using transla-
tion and rotation invariance, this implies f̃(¸c) > 0.

Let us now couple the full plane soup with cutoff ± = 2 with full plane
fractal percolation with N = 3 in such a way that at level k = 0, 1, . . . of
the fractal percolation construction, a square of side length 3−k is discarded
if and only if it is covered by sets of the soup of diameter between 2/3k and
2/3k+1, which happens with positive probability q. It is immediate that the
limiting retained set of the full plane fractal percolation process contains the
complement of the full plane soup. Therefore, f̃(¸c) > 0 implies that there is
positive probability that the limiting retained set of the fractal percolation
process contains a connected component that crosses the rectangle [0, 1] ×
[0, 2] horizontally.

Note that in the fractal percolation process defined above, squares are
not discarded independently, due to the presence of sets that can intersect
two or more squares (up to four). However, two level-k squares of side length
3−k at distance larger than 2/3k are retained or discarded independently. In
particular, if one marks every third square in a line of level-k squares, all
marked squares are discarded with probability q > 0, independently of each
other. This observation implies that we can apply the proof of Lemma 5.1
of [10] to the fractal percolation process defined above (as the reader can
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easily check).
The proof of the lemma shows that horizontal crossings of the rectangle

[0, 1]×[0, 2] cannot be “too straight,” they must possess a certain “wavyness”
so that, using invariance under reflections through the y-axis and transla-
tions, and the fact that crossing events are positively correlated, the hori-
zontal crossings in five partially overlapping 1× 2 rectangles “hook up” with
positive probability to form a horizontal crossing of the rectangle [0, 3]× [0, 2]
(see Figure 5 of [10] and the discussion in the proof of Lemma 5.1 there).

Since the horizontal crossings of the rectangle [0, 1]× [0, 2] in the comple-
ment of the soup form a subset of the fractal percolation crossings, they must
possess the same “wavyness” property. In our setting, positive correlation
of crossing events follows, for instance, from [16] and the fact that crossing
events for the complement of the soup are decreasing. (Let K ⊂ K′ denote
two soup realizations; an event A is decreasing if K /∈ A implies K′ /∈ A.)
Therefore, using the same “hook up” technique as in the proof of Lemma 5.1
of [10], but with crossings in the complement of the soup, we can conclude
that there is positive probability that the complement of the full plane soup
contains a horizontal crossing of the rectangle [0, 3]× [0, 2], and thus also of
the square [0, 3]× [0, 3]. By scaling, this implies that g̃(¸c) > 0.

To conclude the proof, we couple the soup in the unit square (0, 1)2 with
density ¸c(¹)¹ with the full space soup with the same density and cutoff
± = 2 by using the same Poisson realization for both before applying the
cutoff or the condition that discs be contained in (0, 1)2. Clearly, the inter-
section with (0, 1)2 of the complement of the full space soup is contained in
the complement of the soup in (0, 1)2. Therefore, g̃(¸c) > 0 implies g(¸c) > 0,
as required.

Proof of Theorem 3.2 The proof of Theorem 3.1 shows that, for all
¸ ≤ ¸c(¹), there is positive probability that the complement of the full
plane soup with density ¸¹ and cutoff ± = 1 contains a horizontal crossing
of the rectangle [0, 3] × [0, 2]. Crossing events like the one just mentioned
are decreasing and are therefore positively correlated (see, e.g., Lemma 2.2
of [16]).

Let us call a(¸) the probability that the complement of the full plane
soup with density ¸¹ and cutoff ± = 1 contains a horizontal crossing of the
rectangle [0, 3] × [0, 2], and b(¸) the probability that it contains a vertical
crossing of the square [0, 2] × [0, 2]. Positive correlation of crossing events,
combined with a standard “pasting” argument (see Fig. 1), implies that the
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probability that the complement of the full plane soup with intensity ¸¹ and
cutoff ± = 1 contains a horizontal crossing of the rectangle [0, 6] × [0, 2] is
bounded below by a(¸)4b(¸)3. We denote by ℎ0 this probability, and by ℎn

the probability of the event ℬn that the complement of the soup contains a
horizontal crossing of [0, 2 ⋅ 3n+1]× [0, 2 ⋅ 3n].

Figure 1: Pasting horizontal crossings of 3 by 2 rectangles and vertical cross-
ings of 2 by 2 squares, a crossing of a 6 by 2 rectangle is obtained. (The
different colors for the crossings serve only to enhance the visibility of the
figure.)

Consider the full plane soup with cutoff ±n = 3−n obtained by a “thinning”
of the soup with cutoff ± = 1 that consists in removing from it all the sets with
diameter larger than 3−n. By scaling, the probability that the complement
of the soup with cutoff ±n contains a horizontal crossing of the rectangle
[0, 3] × [0, 2] is equal to ℎn. The complements of the soups with cutoffs
{±n}n∈ℕ form an increasing (in the sense of inclusion of sets) sequence of
nested sets. Therefore, the limit of ℎn as n → ∞ is the probability of∪

n≥0 ℬn. By Kolmogorov’s zero-one law, the latter probability is either 0 or
1. However, since it cannot be smaller than ℎ0 > 0, it must necessarily be 1.

Having established that limn→∞ ℎn = 1, both the existence and the
uniqueness of an unbounded component with probability one follow from
standard pasting arguments. To prove existence one can use the event de-
picted in Fig. 2 (and its rotation by 90 degrees) to couple the complement
of the soup to a one-dependent bond percolation process on a square grid
with parameter pn → 1 as n → ∞ (see Fig. 2). Thus, choosing n sufficiently
large implies percolation in the bond percolation process and, by the cou-
pling, existence of an unbounded component in the complement of the soup.
Now note that the event An that the complement of the soup contains a cir-
cuit inside [−3n+1, 3n+1]2 ∖ [−3n, 3n]2 surrounding [−3n, 3n]2 has probability

21



Figure 2: The event depicted above and its rotation by 90 degrees can be
used to couple the complement of the soup to a one-dependent percolation
process on a square grid whose open edges correspond to rectangles where
the event occurs. We denote by pn the probability of the event when the
elementary squares in the figure have side length 3n, i.e., the probability that
an edge is open in the corresponding bond percolation process.(As in Fig. 1,
the different colors for the crossings serve only to enhance the visibility of
the figure.)

bounded below by ℎ4
n (see Fig. 3). Hence, An occurs for infinitely many n,

which implies the uniqueness of the unbounded component.
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Figure 3: Four crossings of rectangles forming a circuit inside an annulus.

5.3 Proofs Concerning Mandelbrot’s Fractal Percola-
tion Model

Sketch of the Proof of Theorem 4.1 The fact that 0 < p̂c(N, d) < 1
follows from the same arguments that show that 0 < pc(N, d) < 1, where
pc(N, d) is the critical probability defined in terms of crossings of a cube (see
Section 4).

Showing that ÁA(p̂c) > 0 follows the strategy of the proof of Lemma 5.3.
In fact, the proof is even easier in this case, since the strategy is particularly
well-suited for Mandelbrot’s fractal percolation model. The reason for this
lies in the geometry of the fractal construction.

Using the fact that ÁA(p) = 0 for p < p̂c, the proof that the limiting
retained set CN is totally disconnected if p < p̂c is essentially the same as
the proof of Lemma 5.2, to which we refer the reader. This also shows that
p̂c(N, d) = p̃c(N, d).

Proof of Corollary 4.2 Since full space fractal percolation is obtained by
tiling ℝd with independent copies of fractal percolation in [0, 1]d, it immedi-
ately follows from Theorem 4.1 that the system is totally disconnected when
p < p̂c = p̂c(N, d).

Let us now show that, when p ≥ p̂c, for any M > 0, the system contains
a connected component with diameter larger than M with probability one.
Consider the event that the unit cube [0, 1]d contains a connected component
of diameter larger than ", and let ¼(p, ") denote its probability. Fix an
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0 < "0 < 1 and observe that by Theorem 4.1 ¼(p, "0) > 0. Let k0 be the
smallest integer such that "0N

k0 > M .
Consider the full space fractal percolation process obtained by condition-

ing on total retention in the unit cube [0, 1]d of the first k0 iterations. Since
the limiting retained set of this process is clearly stochastically larger than the
limiting retained set of the original one, the probability that the conditioned
process contains a connected component of diameter larger than "0 in the
unit cube [0, 1]d is at least ¼(p, "0) > 0. However, by scaling, this probability
is the same as the probability that the original process contains a connected
component of diameter larger than Nk0"0 > M in the cube Nk0 [0, 1]d. We
can now use translation invariance to conclude that a connected component
with diameter larger than M is present in the original full space fractal per-
colation system with probability one.

The next proof relies on ideas developed in [3], and is similar to the proof
of Theorem 1.1 there. For this reason, we present here only a sketch of the
proof, referring the interested reader to [3] for more details.

Sketch of the Proof of Theorem 4.3 To prove the first statement, it
suffices to show that if the shell A in the definition of p̂c is crossed with
positive probability, then the unit square [0, 1]2 is also crossed with positive
probability. It is easy to see (Fig. 4) that any crossing of A must cross either
a square of side length 1/3 or a rectangle of side lengths 1/3 and 2/3 in the
“easy” direction. Using Theorem 4.1, this implies that when p ≥ p̂c, there
is positive probability of having a crossing of the rectangle [0, 1/3]× [0, 2/3]
in the horizontal direction. According to results from [10] (see Lemma 5.1
there) this implies that there is a crossing of [0, 1] × [0, 2/3] with positive
probability, which implies the first statement of the theorem.

Since the limiting retained set CN is totally disconnected with probability
one when p < p̂c(N, d), it is immediate that p̂c(N, d) ≤ pc(N, d) for all N .
Assume that pc(N, d) > p̂c(N, d) for all N . Then, for each N , we can choose
p0 = p0(N, d) such that p̂c(N, d) < p0(N, d) < pc(N, d). We will show that
this leads to a contradiction for N large enough.

Consider Mandelbrot’s fractal percolation process in [0, 1]d with retention
probability p0, and denote by Ak the event that there is complete retention
up to the k-th iteration, i.e., Ck

N = [0, 1]d. Let Ld be the d-dimensional
lattice with vertex set ℤd and with edge set given by the adjacency relation:
(x1, . . . , xd) = x ∼ y = (y1, . . . , yd) if and only if x ∕= y, ∣xi − yi∣ ≤ 1 for all i
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Figure 4: The shaded rectangle is crossed in the “easy” direction.

and xi = yi for at least one value of i.
Conditioned on Ak−1, we can couple level k of the fractal percolation

process to a diminishment percolation process (see [1, 15]) on Ld with the
following diminishment rule: for a vertex x ∈ ℤd, if all Ld-neighbors of x
are closed, except possibly two nearest neighbors in ℤd, we make x closed,
regardless of its state before the diminishment. Note that this has the effect
of “diminishing” the percolation configuration by changing the state of some
vertices from open to closed. The diminishment is essential in the language
of [1] (see also [3]). The coupling is exactly the same as in the proof of
Theorem 1.1 of [3] (although the diminishment rule is different), therefore
the interested reader can check the details in [3].

Let Ãk(p0) denote the probability that there is an open crossing between
the inner and outer boundaries of NkA in the diminishment percolation pro-
cess with initial density p0 of open vertices. A feature of the coupling is
that the diminishment percolation process dominates the fractal percolation
process in the sense that ÁA(p0) ≤ Ãk(p0) (see [3]).

From [12, 13] we know that, for all d ≥ 2, pc(N, d) → p′c(d) as N →
∞, where p′c(d) is the critical value for Bernoulli site percolation on Ld.
Furthermore, for the diminished percolation model, the critical value p′′c (d)
satisfies p′′c (d) > p′c(d) (which follows from the diminishment being essential,
see [1, 15] for more details on enhancement and diminishment percolation).

This implies that, for fixed d and N sufficiently large, the diminishment
percolation process with initial density p0 = p0(N, d) < pc(N, d) < p′′c (d).
Observe that it is not subcritical in the sense that p0 < p′c(d), rather it is
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the diminished percolation process that is subcritical. Therefore, for N suf-
ficiently large, limk→∞ Ãk(p0) = 0, which implies that ÁA(p0) = 0. However,
since p0 > p̂c(N, d), ÁA(p̂c(N, d)) > 0 by Theorem 4.1, and crossing proba-
bilities are increasing in p, this leads to a contradiction.

Remark The result from [10] that is used for the above proof when d = 2
uses planar arguments and therefore cannot be readily generalized to d ≥ 3.
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