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Abstract. This work introduces a stochastic model for the spread
of a virus in a cell population where the virus has two ways of
spreading: either by allowing its host cell to live on and duplicate,
or else by multiplying in large numbers within the host cell, causing
the host cell to burst thereby letting the viruses enter new unin-
fected cells. The model is a kind of interacting Markov branching
process. We focus in particular on the probability that the virus
population survives and how this depends on a certain parameter
λ which quantifies the ‘aggressiveness’ of the virus.

Our main goal is to determine the optimal balance between ag-
gressive growth and long-term success. Our analysis shows that
the optimal strategy of the virus (in terms of survival) is obtained
when the virus has no effect on the host cell’s life-cycle, corre-
sponding to λ = 0. This is in agreement with experimental data
about real viruses.
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1. Introduction

A virus is a simple parasitic organism consisting of compacted genetic
material in a protein or lipid vessel. Viruses prey on living cells, such as
bacterial or human cells, by penetrating the membrane of the cell and
transferring their genetic material into the host. In order to multiply,
the virus has two basic possibilities. The first option is for the virus to
temporarily incorporate its genetic material in the host genome, and
thereby be passively replicated along with the latter. The other option
is to seize the host’s replication machinery and aggressively replicate,
thereafter releasing its progeny in the surrounding medium. The ‘free
virions’ must then attach to new host cells within a short time in order
to survive. For many viruses, this process necessarily involves bursting
the host cell, thereby killing it.
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The technical term for the event that a virus bursts its host cell is
lysis, and one says that the virus lyses the host cell. A virus which is
incorporated into, and passively replicated along with, the host genome
is said to be in the lysogenic state, or to employ the lysogenic strategy.
Sometimes one speaks loosely of ‘the lytic strategy’ to denote that a
virus ‘becomes lytic’, that is to say actively lyses the host cell. A lyso-
genic virus will eventually become lytic; in fact, it is well-established
experimentally [13] that viruses in the lysogenic state will revert to the
lytic strategy if the host cell is under stress and in danger of dying,
enabling the virus to find a ‘safer’ host.

We introduce a stochastic model to investigate this behavior. The
model is a two-dimensional Markov process (X(t), Y (t))t≥0, whereX(t)
is the number of ‘healthy cells’ at time t, and Y (t) is the number
of ‘infected cells’ (i.e. cells having virus in them). Both components
(X(t))t≥0 and (Y (t))t≥0 behave in many ways like branching processes,
although there are dependencies between them. A healthy cell is re-
placed by a random number of new healthy cells at rate 1. This random
number is independent of other events and drawn from a distribution
(pk)k≥0. Infected cells behave similarly, although they are replaced by k
new cells at rate pk if k ≥ 1, while they are replaced by 0 new cells (die)
at the higher rate p0 + λ. Here λ ≥ 0 is a parameter that reflects the
negative impact of the virus on the hosts life-length. When an infected
cell dies (i.e. is replaced by 0 new cells), it bursts (lyses) and releases
‘free virions’. These free virions immediately enter a random number
of healthy cells, thus converting them into infected cells. The number
of new infections is independent of all other events, and is drawn from
a distribution (γk)k≥0. The model is defined in detail in Section 2.1.

We are concerned with a fundamental question about the virus’ re-
productive strategy, namely: what is the optimal level of ‘aggressive-
ness’ (balance of lysis to lysogeny) from the point of view of the virus?
Here we interpret ‘optimality’ as maximizing the chance of the virus
establishing itself in the cell population and, ultimately, surviving in
the long-term. We therefore study the extinction probability η of the
infected process (Y (t))t≥0 (see Definition 2.1). We are interested in η,
or rather 1 − η, as an indicator of the ‘fitness’ of the virus, and are
mainly concerned with how it depends on λ. This is because λ governs
the relative rate of lysis events, and is thus a measure of the ‘level of
aggressiveness’ of the virus.

For the experimentally well-studied virus Lambda, the lysogenic
state appears overwhelmingly stable. Once in the lysogenic (dormant)
state, it has been found very unlikely to spontaneously switch to the
lytic state [4, 12]: a spontaneous transition to the lytic state occurs
about once in 107 generations [4]. This is lower than the mutation rate
of the incorporated viral genome, which is once in 106 to 107 genera-
tions [12]. It is natural to ask if this lysogenic stability is an advantage
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for the success of the virus infection? For the virus Lambda, a choice
between lytic and lysogenic also occurs at the moment of infection. We
focus mainly on the virus’ decision after it has been incorporated in
the host genome, but in Section 5.3 briefly deal also with the decision
at the moment of infection.

Our model is of course a simplification of real virus populations. For
example, we make the following basic simplifications: life-lengths of
cells are assumed to be independent and exponentially distributed and
spatial separation and locations of cells are not taken into account. The
advantage of making such simplifications is that a detailed and rigorous
analysis can be performed, hopefully highlighting general principles
that can then form the basis for more realistic modeling.

It is well-known [3, 6] that a branching process either dies out, or
grows exponentially fast for all time. Thus a branching process is not
a realistic long-term model for population size, in light of the limited
resources in the real world. Instead, we see the survival probability 1−η
as an indicator of the probability that a virus population establishes
itself in a population of healthy cells in the first place. In this sense our
model is primarily relevant for the early stages of a virus infection and
the competition between two growing populations. Since our model
is concerned with qualitative properties of reproductive strategies, not
with numerical estimates of population size, we do not see the use of
branching processes as a limitation. In what follows we will refer to
1 − η as the ‘survival probability’ as this is the appropriate term in
the context of branching process theory, bearing in mind that when
interpreting our results in terms of real viruses one should rather think
of 1 − η as an indicator of the relative success in establishment and
proliferation.

Recall the concept of stochastic ordering of probability vectors: if
π = (πk)k≥0 and π′ = (π′

k)k≥0 are probability vectors then we say that
π′ is stochastically larger than π if∑

j≥k

π′
j ≥

∑
j≥k

πj

for all k ≥ 0. We denote this by π � π′. The following is the main
result of this paper.

Theorem 1.1. For λ ≥ 0, γ0 = 0 and any starting conditions X(0) ≥
1, Y (0) ≥ 1, we have that η = η(λ, (γk)k≥0) is monotonically increasing
in λ and (γk)k≥0.

Thus, loosely speaking, the virus maximizes its survival probability
by being as passive as possible (i.e. when λ = 0). This is in agreement
with the observed stability of the lysogenic state for real viruses, see
Section 5. However, the full details of how the ‘fitness’ 1− η depends
on λ are complex, and depend on the other parameters of the process.
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Furthermore, simulations and heuristic arguments suggest that mono-
tonicity in λ may hold under weaker assumptions (Example 3.4 and
Section 5.2) than in Theorem 1.1, but interestingly η is not monotone
in λ for all choices of the other parameters (Proposition 3.3). We have
not been able to find a counterexample to optimally of λ = 0.

Thus this paper highlights the principle that in order to achieve long-
term survival it may be better to ‘be kind’ to your host environment,
even if this hampers your short-term expansion. We do not aim to give
a complete and final picture, however, and there are many interesting
questions and research directions that fall outside the scope of the cur-
rent paper. For instance, in [5], the rigorous mathematical treatment
of the model will be continued as will be explained in more detailed in
later sections. Other possible directions include studying real life data,
and in the cases when a rigorous mathematical treatment is unfeasible,
use simulation studies to connect the proposed model to these data.

Most previous models studying the spread of viruses are non-stochastic
and formulated in terms of differential equations. A notable example
is that of [15]. We prefer to formulate our model in microscopic terms,
deducing macroscopic properties explicitly from our assumptions about
the interactions of the particles involved. To our knowledge the cur-
rent model has not been studied before but stochastic models of similar
‘nature’ appear for example in predator-prey models [18] and epidemic
models, in particular models for competing epidemics [10].

2. The model

2.1. Definition. Let (pk)k≥0 and (γk)k≥0 be probability distributions
on the nonnegative integers, and let λ ≥ 0. We assume throughout
that the means

∑
k≥0 kpk and

∑
k≥0 kγk are finite. We exclude the

(degenerate) case when p1 = 1; in fact the reader may for convenience
assume that p1 = 0, since this only amounts to a time-change.

The continuous–time Markov chain (X(t), Y (t))t≥0, taking values in
Z2

+, was informally described in Section 1. To recapitulate the main
points, each healthy cell is replaced by k ≥ 0 new healthy cells at rate
pk. Being replaced by k = 0 new cells corresponds to dying. Each
infected cell is replaced by k ≥ 1 new infected cells at rate pk. When
an infected cell dies, which occurs at rate p0 + λ, a random number of
healthy cells are converted into infected cells. If t is the time of such
an event, we draw a random variable Γt from the distribution (γk)k≥0

independently of other events. If Γt ≤ X(t) we simply declare Γt of
previously healthy cells to be infected, while if Γt > X(t) we declare all
previously healthy cells to be infected. To define this process formally,
we list the different possible jumps in Table 1.

Note that, for certain combinations of x, y and k, the same transition
occurs multiple times in Table 1. The correct interpretation is to add
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Transition Rate
(i) For k ≥ 0:

(x, y) → (x+ k − 1, y) xpk
(ii) For k ≥ 1:

(x, y) → (x, y + k − 1) ypk
(iii) For k ≥ 0:

(x, y) → (x− (x ∧ k)), y − 1 + (x ∧ k)) y(p0 + λ)γk
Table 1. Transition rates for the process
(X(t), Y (t))t≥0, valid for x, y ≥ 0.

the corresponding rates. For example, the transition (0, y) 7→ (0, y−1)
occurs at rate y(p0 + λ) =

∑
k≥0 y(p0 + λ)γk.

To avoid trivial cases, we assume throughout that X(0), Y (0) ≥ 1.
Biologically it might be most relevant to consider the case when pk = 0
for k ≥ 3, but none of our results depend on any special assumptions
about (pk)k≥0 so we will consider general distributions.

We now state some immediate properties of the model. If it were
the case that Y (t) = 0, then healthy cells would evolve as a Markov
branching process, with intensity 1 and offspring distribution (pk)k≥0.
Similarly, if X(t) = 0 for some t, then (Y (t + s))s≥0 would behave
like a Markov branching process with the higher intensity (1 + λ) and
an offspring distribution (p′k)k≥0 derived from (pk)k≥0 by placing more
mass on k = 0 (see (1) below). When both components are positive, as
transition rate (iii) tells us, then healthy cells may turn into infected
cells. This scenario hence ‘helps’ the process (Y (t))t≥0 and ‘hurts’ the
process (X(t))t≥0.

Note that the virus is assumed not to change the offspring distri-
bution of surviving cells. This, together with the increased mortality
rate of infected cells, determines the form of the transition rates above,
see (2). Also note that the random number drawn from the distribution
(γk)k≥0 is the number of new infections due to a lysis event, rather than
the number of ‘free virions’. In the present work we consider only this
simplified formulation, leaving more realistic modifications for future
work.

2.2. The extinction probability. As explained in Section 1, we view
the extinction probability of the process (Y (t))t≥0 as an indicator of the
fitness of the virus:

Definition 2.1. Let η = limt→∞ P (Y (t) = 0) = P (Y (t) → 0) denote
the extinction probability of the process (Y (t))t≥0.

Thus ‘small’ η corresponds to ‘high fitness’. Note that η is a function
of the parameters (pk)k≥0, (γk)k≥0, λ, X(0) and Y (0). For the reasons
given in Section 1 we are mainly interested in how η depends on λ and
the distribution (γk)k≥0.
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Remark 2.2. From a purely mathematical point of view the allowed
range of values of λ is λ ≥ −p0. It is not hard to see that η(−p0) = 0
and η(λ) → 1 as λ → ∞. However, viruses being parasites, from
a biological point of view it seems unlikely that infected cells should
have longer life-length than healthy cells. Throughout the rest of the
paper we will therefore assume that λ ≥ 0.

3. Preliminary results, an example and discussions

Let ξ be a random variable with distribution (pk)k≥0. As mentioned
above, if X(t) = 0 for some t, then from that time onwards, the process
(Y (t+s))s≥0 is a standard branching process. Its intensity is then 1+λ
and its offspring distribution (p′k)k≥0 is given by:

(1) p′0 = (p0 + λ)/(1 + λ) and p′k = pk/(1 + λ) for k ≥ 1.

Let ξ′ be a random variable with distribution (p′k)k≥0, and note that
for λ > 0, p′0 = P (ξ′ = 0) > P (ξ = 0) = p0, whereas

(2) P (ξ′ = k | ξ′ 6= 0) = P (ξ = k | ξ 6= 0) for all k ≥ 1.

This choice of (p′k)k≥0 is the only one, given λ, such that the intensity
at which a cell gives birth to k ≥ 1 new cells is the same for both
(X(t))t≥0 and (Y (t))t≥0.

Let Γ be a random variable independent of ξ′, with distribution
(γk)k≥0. Write

(3) ψ = ξ′ + Γ · 1I{ξ′ = 0}.

Then ψ has distribution (qk)k≥0, where

(4) q0 =
γ0(p0 + λ)

1 + λ
, and qk =

pk + γk(p0 + λ)

1 + λ
for k ≥ 1.

Write

(5) TX := inf{t ≥ 0 : X(t) = 0}

for the (possibly infinite) time when the healthy population becomes
extinct. The following summarizes some of the previous discussion:

Proposition 3.1.

(1) If Y (t) = 0 for some t ≥ 0, then (X(t + s))s≥0 is a Markov
branching process with intensity 1 and offspring distribution
(pk)k≥0;

(2) If X(t) = 0 for some t ≥ 0, then (Y (t + s))s≥0 is a Markov
branching process with intensity 1+λ and offspring distribution
(p′k)k≥0;

(3) The process (Y (t))0≤t<TX
is a (stopped) Markov branching pro-

cess with intensity 1 + λ and offspring distribution (qk)k≥0.
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For proofs of the following basic facts about branching processes,
see [3, 6, 7]. Consider an arbitrary Markov branching process (W (t))t≥0

with life-length intensity a, and offspring distribution (zk)k≥0 such that
the mean

∑
k≥0 kzk is finite. Let Z be a random variable with distri-

bution (zk)k≥0. The number

µ = a · (E(Z)− 1),

is called the Malthusian parameter of the process (W (t))t≥0. Let A ={
W (t) = 0 for some t ≥ 0

}
be the event of extinction. It is well-known

that P (A) = 1 if µ ≤ 0. If µ > 0 then

lim
t→∞

logW (t)

t
= µ, almost surely on the complement Ac.

Write α and β for the Malthusian parameters of branching processes
with respective intensities 1 and 1 + λ, and offspring distributions
(pk)k≥0 and (qk)k≥0, as in parts (1) and (3) of Proposition 3.1. Thus
α is the parameter for the uninfected population in the absence of in-
fected cells, and β for the infected population in the presence of a very
large uninfected population. We have that

(6) α = E(ξ)− 1, β = (1 + λ)(E(ψ)− 1),

where ξ and ψ are as above. Using (3), we find that

(7) β = α+ p0E(Γ) + λ(E(Γ)− 1).

Proposition 3.2. Suppose p0 > 0 or λ > 0. Then P (TX < ∞) = 1 if
and only if either α ≤ 0 or γ0 = 0.

We do not prove this result in detail here, but note that the suf-
ficiency of the condition α ≤ 0 is immediate from the properties of
branching processes described above. If α > 0, the necessity of the
condition γ0 = 0 is immediate, since if γ0 > 0 there is positive chance
that Y (t) = 0 at the time of the first transition, while the healthy
process survives. Intuitively, the sufficiency of the condition γ0 = 0
follows from the fact that Y (t) is ’immortal’ as long as X(t) 6= 0 and
(from (7), since E(Γ) > 1) grows much faster than (X(t))t≥0, meaning
that there will be very many infection events for large t. It is not dif-
ficult to make this intuition rigorous, in fact this will be proved in the
upcoming paper [5].

Recall the main result Theorem 1.1. In words, the assumption γ0 = 0
says that a lysis event always leads to new infections; thus the failure
rate of infections is zero. The following proposition shows that we
cannot remove the condition γ0 = 0 from Theorem 1.1, and still come
to the same conclusion. We will address this further in Section 5.

Proposition 3.3.

(1) There exist (pk)k≥0, λ and probability vectors γ(1) � γ(2) so that
η(λ, γ(1)) > η(λ, γ(2)).
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(2) Furthermore, there exist (pk)k≥0, (γk)k≥0 and λ1 < λ2 so that
η(λ1) > η(λ2).
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Figure 1. Illustration of Example 3.4.

Proposition 3.3 is proved in Section 4. Our proof of the second part
requires taking E(Γ) < 1. It is natural to guess that the condition
γ0 = 0 in Theorem 1.1 can be replaced by the condition E(Γ) ≥ 1:
infections are successful ‘on average’. This is still an open problem,
but the following simulation supports this guess.

Example 3.4. Figure 1 shows estimated values for η(λ) when p0 =
1/4, p2 = 3/4, γ0 = 9/20 and γ2 = 11/20. Note that E(Γ) > 1;
the simulation suggests that η is increasing in λ. The estimates were
obtained by running, for each value of λ, the process 105 times, for
2 ·104 transitions each. The estimate for η is the fraction of runs where
Y did not die out. (Usually Y was either 0 or very large at the end
of a run.) For reasons similar to the second part of Proposition 3.3,
the true value of η(λ) for λ ≥ 0.5 is 1. However for λ = 0.5 the
process (Y (TX + s))s≥0 is a critical branching process so the time until
extinction is large, accounting for the small deviation from 1 in the
graph.

3.1. Initial conditions and connection to ODE. Here is a brief
informal discussion about how η depends on the starting condition
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(X(0), Y (0)) when λ and (γk)k≥0 are fixed. We focus on two start-
ing conditions of potential interest, namely (X(0), Y (0)) = (n, 1) and
(X(0), Y (0)) = (n,m) where we think of n and m as large, but n� m.
The first situation is where one cell, surrounded by healthy cells, is in-
fected. The second situation would correspond to the case where a large
number of healthy cells are encountered by a large number of infected
cells. Formal results would be stated asymptotically as m,n→ ∞.

The ‘take-home message’ of Proposition 3.1 is that (Y (t))t≥0 essen-
tially behaves like a branching process, with a Malthusian parameter
that depends on whether X(t) = 0 or X(t) > 0. If X(t) > 0 the
Malthusian parameter is β = α + p0E(Γ) + λ(E(Γ) − 1) as already
stated in (7); if X(t) = 0 the Malthusian parameter is β′ = α − λ,
as is easily deduced from the second part of Proposition 3.1. Here
α = E(ξ)− 1 is as given in (6). Note that β′ < β.

The most interesting behaviour occurs if α, β > 0, which we assume
henceforth. We also assume that γ0 > 0, since the case γ0 = 0 is easily
analyzed using Proposition 3.2 and Theorem 1.1. The main qualitative
differences in behavior occur according as β > α or β < α; in the former
case there are two interesting sub-cases, namely β′ ≤ 0 and β′ > 0.

Let us start by considering the initial conditionX(0) = n, Y (0) = m.
Since Y (0) = m is large and β > 0, most likely the infected population
starts growing. Roughly speaking, Y (t) ≈ meβt. Suppose first β > α.
The healthy population X(t) will then at most be of order neαt �
meβt, and eventually Y (t) will so far exceed X(t) that infections will
overwhelm the healthy population, so that we get X(t0) = 0 for some
time t0. From then on the infected population will have Malthusian
parameter β′. If β′ ≤ 0 this means that η will equal 1, whereas if β′ > 0
then η will be close to 0, since Y (t0) is large. On the other hand, if
α > β then typically X(t) will be so much larger than Y (t) that the
healthy population does not ‘feel’ the presence of the infection. Since
β > 0 and Y (0) = m is large it follows that η is close to 0.

Now consider the case (X(0), Y (0)) = (n, 1). This is similar to the
case (X(0), Y (0)) = (n,m), except that there is a considerable chance
(probability at least γ0(p0 + λ)/(1 + λ), this being the probability of a
lysis leading to no infections) that the infected process dies out in short
time. However, if Y (t) does start growing then its size will eventually
be in the order of eβt. From then on the same intuition as for the
starting condition (n,m) is valid.

Another way to understand the behavior described above, in par-
ticular the starting condition (n,m), is to look at the ODE model
corresponding to our model. Letting δ = (p0+λ)E(Γ), this is given by

ẋ(t) = αx(t)− δy(t), ẏ(t) = βy(t),
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as long as x(t) > 0. If α 6= β the solution is

y(t) = y(0)eβt, x(t) =
(
x(0) + y(0)

δ

β − α

)
eαt − y(0)

δ

β − α
eβt.

It is not hard to see that x(t) eventually reaches the absorbing state
0 if β > α, whereas x(t) → +∞ if α > β and x(0)/y(0) = n/m is
sufficiently large, corresponding to whether the infection takes over or
not. We will not study the ODE model further since it cannot give
information about survival probabilities.

4. Proofs

In this section we prove Theorem 1.1 and Proposition 3.3. In what
follows we will work with two processes (Zi(t))t≥0 = (Xi(t), Yi(t))t≥0,
with parameters (pk)k≥0, λi and (γ(i))k≥0, i = 1, 2, respectively. We
write Ti = inf{t ≥ 0 : Xi(t) = 0}.

Theorem 4.1. Let 0 ≤ λ1 ≤ λ2, γ
(1) � γ(2), and γ

(1)
0 = γ

(2)
0 = 0. Then

there is a coupling of the processes (Zi(t))t≥0 (i = 1, 2) such that the
following hold almost surely:

(1) T2 ≤ T1,
(2) Y2(t) ≥ Y1(t) for all t < T2,
(3) X2(t) ≤ X1(t) for all t ≤ T2, and
(4) X1(t) + Y1(t) ≥ X2(t) + Y2(t) for all t ≥ 0.

Before we prove Theorem 4.1, we show how Theorem 1.1 follows,
almost immediately, from Theorem 4.1 and Proposition 3.2.

Proof of Theorem 1.1. By Proposition 3.2 we have T1 < ∞ almost
surely. For t > T1 it follows from parts (1) and (4) of Theorem 4.1
that Y1(t) ≥ Y2(t), so that P (Y1(t) → 0) ≤ P (Y2(t) → 0). �
Proof of Theorem 4.1. The basic strategy is to ‘twin’ cells in the pro-
cess (Z1(t))t≥0 with cells in the process (Z2(t))t≥0 so that ‘events’ in
one process correspond with ‘events’ in the other process. Intuitively,
the reason we can achieve a coupling as the one claimed is that only
‘lysis events’ occur at a higher rate in the second process: these events
always increase the infected population, but decrease both the healthy
and total populations. Here are the details.

It will be convenient to think of Zi(t), Xi(t), and Yi(t) (i = 1, 2) as
sets of individual cells. Formally, we could label the elements in the set
Zi(t) by (x1, i), . . . (x|Xi(t)|, i), (y1, i), . . . , (y|Yi(t)|, i). However, this nota-
tion would quickly become cumbersome, and so we will use a somewhat
less formal, although still rigorous, approach. We will describe the tran-
sitions of the coupled process (Z1(t), Z2(t))t≥0 at the level of pairs (a, b)
of individual cells, where a ∈ Z1(t) and b ∈ Z2(t). For each t ≥ 0, each
element of Z1(t)∪Z2(t) is required to belong to a unique such pair, and
we say that a and b are twinned if they belong to the same pair. We
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allow the possibility b = ∅, in which case we say that a is untwinned
(the possibility a = ∅ will not occur). We will say that a cell is of type 1
(respectively, type 2 ) if it belongs to Z1(t) (respectively, Z2(t)).

It is a standard consequence of the ordering γ(1) � γ(2) that we may
couple two random variables Γ(1) and Γ(2) such that Γ(1) has law γ(1)

and Γ(2) has law γ(2) and P (Γ(1) ≤ Γ(2)) = 1. We assume henceforth
that {(Γ1,i,Γ2,i)}i≥1 is an i.i.d. sequence such that Γ1,i ≤ Γ2,i for every
i, and that Γ1,i has law γ(1) and Γ2,i has law γ(2). In the construction
that follows below, if there is a lysis event at some time τ, we let I(τ)
be the smallest i such that (Γ1,i,Γ2,i) has not previously been used in
the construction.

We start by describing the coupling (Z1(t), Z2(t))t≥0 up to time T1∧
T2 (it will transpire that T1 ∧ T2 = T2). It will be convenient to think
of healthy cells as colored blue and infected cells as colored red. The
allowed color combinations before time T1 ∧ T2 are the following (the
right column introduces notation for the number of pairs of each color
combination):

Color Number
(B,B) b2
(R,R) r
(B,R) b1
(B, ∅) b0

Now we turn to describing the transitions.

(i) Any pair (a, b) is replaced by k ≥ 1 new pairs at rate pk; all the
new pairs have the same color combination as the original pair
(a, b) (also in the case b = ∅).

(ii) A pair of color (B,B) or (B, ∅) is deleted at rate p0.
(iii) A pair (a, b) = (R,R) can give rise to the following additional

transitions.
Firstly, at rate p0 + λ1 it has a type-1-lysis. If τ is the time of

such an event, we first delete (a, b), and then one of the following
cases occur.
Case 1: Γ2,I(τ) ≤ b2. Then we take Γ1,I(τ) pairs of color (B,B)

and change their color to (R,R), and we take Γ2,I(τ) − Γ1,I(τ) of
the remaining (B,B)-pairs and change their color to (B,R).
Case 2: Γ1,I(τ) > b2. Then we start by changing all the b2

pairs of color (B,B) to (R,R). Let Γ′
1,I(τ) := Γ1,I(τ) − b2 > 0,

and proceed by changing Γ′
1,I(τ) ∧ b1 pairs of color (B,R) to color

(R,R). Proceed by letting Γ
′′

1,I(τ) := (Γ′
1,I(τ)−b1)∨0 and changing

Γ
′′

1,I(τ) ∧ b0 pairs of color (B, ∅) to (R, ∅). Note that in this case
we arrive at time T2 ≤ T1, and that this inequality is strict if
and only if there remain pairs of color (B,R) or (B, ∅) after the
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changes are made. In particular, we only create any (R, ∅)-pairs
if we arrive at time T2.
Case 3: Γ2,I(τ) > b2 ≥ Γ1,I(τ). Then we first take Γ1,I(τ) pairs of

color (B,B) and change their color to (R,R), and then take the
remaining (b2 − Γ1,I(τ)) pairs of color (B,B) and change them to
(B,R). In this case we arrive at time T2 < T1.
Secondly, at rate λ2 − λ1 the pair (a, b) has a type-2-lysis. If τ

is the time of such an event:

(8)

• the original pair (a, b) stays unaltered;
• one pair of color (B,B) gets replaced by (B, ∅);
• (Γ2,I(τ) − 1) ∧ (b2 − 1) of the remaining (b2 − 1) pairs

of color (B,B) have their color changed to (B,R).

Note that we arrive at time T2 < T1 if Γ2,I(τ) ≥ b2.
(iv) Finally, a pair (a, b) of color (B,R) can give rise to the following

additional transitions,
Firstly, at rate p0 a type-1-death occurs. If τ is the time of such

an event, then (a, b) is deleted and Γ2,I(τ)∧b2 pairs of color (B,B)
are changed to (B,R). Note that if Γ2,I(τ) ≥ b2 then we arrive at
time T2 < T1.
Secondly, at rate λ2 a type-2-lysis. This yields the exact same

transition as described in ( 8). Again, if Γ2,I(τ) ≥ b2 then we arrive
at time T2 < T1.

It is straightforward to check that the described coupling produces
the right marginal dynamics. It might be helpful however to explain
why we replace a pair (B,B) by (B, ∅) in (8). Here, the cell that lyses
is destroyed and one might expect a transition from (R,R) to (R, ∅).
However, since the type 2 cell that lyses infects cells of X2(t), we pick
one of the newly infected type 2 cells (belonging to a (B,B) pair), and
twin it with the previous type 1 twin that did not undergo a lysis.
The effect is the same as replacing a pair (B,B) by (B, ∅) and leaving
(R,R) unchanged.

The description above applies until time T2; the construction implies
that T2 ≤ T1, proving the first part of the theorem. Since a type 1
cell is of color R only if it is twinned with a type 2 cell of color R (for
t < T2), the second part of the theorem also follows. Similarly, a type
2 cell is colored B only if it is paired with a type 1 cell of color B (for
t ≤ T2), proving the third part of the theorem.

The construction so far also implies the final part of the theorem for
the range 0 ≤ t ≤ T2 since every type 2 cell has a twin; the construction
for t > T2, which we will describe now, will preserve this property.

For t ≥ T2 the process (Z2(t))t≥T2 consists only of infected cells. It
will be convenient now to think of the cells of type 2 as green. The
reason is that in the absence of healthy cells, the process (Y2(t))t≥T2

evolves differently compared to when t < T2, as described above and in
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Proposition 3.1. Therefore, we keep the colors blue and red for healthy
and infected cells of type 1, respectively. At a time t ≥ T2 we then have
the following possible color combinations (the right column introduces
notation for the number of pairs of each color combination, note that
we are redefining b0 and b1):

color Number
(B, ∅) b0
(B,G) b1
(R,G) r1
(R, ∅) r0

The following transitions may occur.

(i) As before, any pair (a, b) is replaced by k ≥ 2 identical pairs at
rate pk.

(ii) A pair of color (B, ∅) or (B,G) is deleted at rate p0.
(iii) A pair of color (B,G) is, additionally, changed to (B, ∅) at rate

λ2.
(iv) A pair (a, b) of color (R, ∅) or (R,G) lyses at rate p0 + λ1. If τ is

the time of such an event, then we delete (a, b), change the color
of Γ′

1,I(τ) = Γ1,I(τ) ∧ b0 pairs of color (B, ∅) to (R, ∅), and finally

change the color of (Γ1,I(τ) − Γ′
1,I(τ)) ∧ b1 pairs of color (B,G) to

(R,G).
(v) Additionally, a pair of color (R,G) is replaced by a pair (R, ∅) at

rate λ2 − λ1.

Since a green cell is always twinned with a type 1 cell, this establishes
the result.

As before, it is elementary to check that the described coupling pro-
duces the right marginal dynamics. �
Proof of Proposition 3.3. For the first part, consider the models where

p2 = 1, 0 < λ < 1 is arbitrary, and where γ
(1)
0 = 1 and γ

(2)
1 = 1. Clearly

γ(1) � γ(2). Write (X1(t), Y1(t))t≥0 and (X2(t), Y2(t))t≥0 for the pro-
cesses with parameters (pk)k≥0, λ, γ

(1) and (pk)k≥0, λ, γ
(2), respectively.

Let X1(0) = X2(0) and Y1(0) = Y2(0). There is no interaction between
(X1(t))t≥0 and (Y1(t))t≥0, and (Y1(t))t≥0 simply forms a supercritical
branching process (this uses λ < 1).

It is straightforward to couple (Y1(t))t≥0 with (X2(t), Y2(t))t≥0 so
that the following hold. Firstly, each transition Y1(t) → Y1(t) + 1 is
accompanied by (X2(t), Y2(t)) → (X2(t), Y2(t) + 1). This simply cor-
responds to the event that an infected cell is replaced by two identical
ones; recall that p2 = 1. Secondly, if X2(t) 6= 0 then each transition
Y1(t) → Y1(t)−1 is accompanied by (X2(t), Y2(t)) → (X2(t)−1, Y2(t)).

This corresponds to the death of an infected cell: since γ
(1)
0 = 1 such

an event simply reduces Y1(t) by 1, and since γ
(2)
1 = 1 one healthy cell

becomes infected in the second process. Thirdly, if X2(t) = 0 then
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each transition Y1(t) → Y1(t) − 1 is accompanied by (X2(t), Y2(t)) →
(X2(t), Y2(t)− 1). This corresponds to the death of an infected cell in
the absence of healthy cells to infect. In such a coupling, Y1(t) ≤ Y2(t)
for all t ≥ 0, almost surely, so η(γ(2)) ≤ η(γ(1)). It is easy to see that
the inequality is in fact strict.

For the second part, we use the result in the forthcoming article [5]
that the coexistence probability

ζ(λ) = P (X(t)Y (t) 6= 0 ∀t ≥ 0)

satisfies: ζ = 0 if β ≥ α > 0, and ζ > 0 if α > β > 0. Note that η < 1
if ζ > 0. If ζ(λ) = 0 and, in addition, λ ≥ α, then it follows from part
(2) of Proposition 3.1 that η(λ) = 1: either (Y (t))t≥0 becomes extinct
before (X(t))t≥0, or (X(t))t≥0 becomes extinct before (Y (t))t≥0, and in
the latter case (Y (t))t≥0 subsequently forms a branching process which
has Malthusian parameter β′ = α − λ ≤ 0 and therefore becomes
extinct almost surely. It is easy to check that if p0 = 3/8, p2 = 5/8,
E(Γ) = 4/5, λ1 = 7/8 and λ2 = 17/8, then β(λ1) = 3/8 > 2/8 = α
and λ1 > α, whereas β(λ2) = 1/8 < α. Thus ζ(λ1) = 0 and η(λ1) = 1,
but ζ(λ2) > 0 so η(λ2) < 1. �

5. Discussion

5.1. Bacteriophage Lambda. The virus Lambda, which preys on
the bacterium e-coli, has been the subject of intensive research, mainly
to understand the fascinating lysis–lysogeny behavior [9, 16]. For this
virus, a decision between lysis and lysogeny occurs both at the time of
infecting a new host, as well as after having been incorporated in the
host’s DNA [11]. The switch to lytic behavior in response to stress to
the host seems inevitable [16]. In recent years, some exciting single-cell
studies have investigated the factors determining the decision at the
time of infection. The results showed strong dependence on environ-
mental signals as well as the volume of the infecting cell and the number
of infecting virions per cell (or multiplicity of infection, [8, 21, 22].

A number of mathematical models have been proposed to study the
balance between the lytic and lysogenic states [1, 2, 14, 17, 19, 20].
With time the models simulated more and more accurately by includ-
ing newly discovered genetic components, describing a strict bias to-
wards the lysogenic state as exhibited by ‘wet’ experiments. Both the
experimental and theoretical works revealed the molecular mechanism
of the decision, but did not study the motivation behind such a strict
bias in the decision system, as we do here.

5.2. General conclusion. In this work we have tried to reveal the
reason for the observed stability of the lysogenic state. Our results
suggest that, regardless of the details of the molecular mechanism be-
hind the decision, the stability of the dormant state is a fundamental
part of a long-term survival strategy.
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To be specific, in Theorem 1.1 we showed, in the context of our
model, not only that λ = 0 maximizes the survival chance 1− η(λ) of
the virus, but that η(λ) is in fact monotonically increasing in λ ≥ 0;
this was done under the assumption γ0 = 0. Heuristically, monotonic-
ity in λ holds for the following reason. As long asX(t) 6= 0, the infected
process (Y (t))t≥0 behaves as a branching process with a higher expo-
nential growth rate than (X(t))t≥0; this follows from Proposition 3.1,
equation (7), and the fact that γ0 = 0 implies E(Γ) ≥ 1. Typically,
therefore, X(t) = 0 for some t, after which point (Y (t+s))s≥0 by Propo-
sition 3.1 is a branching process with Malthusian parameter β′ = α−λ
which is decreasing in λ. The smaller λ is, the larger should be the
chance that (Y (t+ s))s≥0 survives.

The intuition above is valid whenever E(Γ) ≥ 1, supporting the guess
that the conclusion of Theorem 1.1 should hold whenever E(Γ) ≥ 1.
We have only been able to make the intuition rigorous when γ0 = 0,
essentially because then X(t) → 0 almost surely (by Proposition 3.2),
which does not hold if γ0 > 0. Interestingly, η(λ) need not be monotone
in λ if E(Γ) < 1, as shown in Proposition 3.3; this does not, however,
rule out the possibility that η(λ) still always attains its minimum at
λ = 0.

5.3. Decision at the time of infection. The results above concern
only the decision between lysis and lysogeny after the virus has been
incorporated in the host’s DNA, and not decisions at the time of infec-
tion. A simple version of a decision at the time of infection can easily
be incorporated into our model as follows.

We modify transition rate (iii) in Section 2.1 so that, with a fixed
probability κ > 0, each newly infected cell is immediately replaced
by a random (independent) number Γ of infected cells, taken from
the healthy population X(t). This proceeds recursively for all thereby
newly infected cells, until there are either no healthy cells left, or the
recursion terminates by itself. Note that the life-length of an infected
cell is now a convex combination of an exponential distribution and a
Dirac mass at 0, but that the process (X(t), Y (t))t≥0 is still Markovian.
As mentioned, the recursion terminates at the latest when the healthy
population X(t) is exhausted. Therefore, there are no transitions of
‘infinite size’.

The total number of new infections due to the original lysis event
may be described using a random variable Γ′, whose distribution is
easily described in terms of κ,Γ and X(t). The process thus described
is not simply the same as our main model with Γ replaced by Γ′ (one
easy way to see this is to note that the new process can have transitions
decreasing X(t) + Y (t) by more than one at a time). However, it is
possible to modify the proofs of Theorems 4.1 and 1.1 to obtain the
following:
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Theorem 5.1. In the process with decision at the time of infection
described above, with γ0 = 0, the extinction probability of (Y (t))t≥0 is
monotonically increasing in λ, (γk)k≥0 and κ.

Briefly, the required modifications to Theorem 4.1 are the following;
for notation and terminology, see Section 4. In addition to the param-
eters λ1 ≤ λ2 and γ(1) � γ(2) we also have 0 ≤ κ1 ≤ κ2 ≤ 1. In the
proof of Theorem 4.1 there were several points where pairs of color
(R,R), (B,R), (R, ∅) or (R,G) were created. These transitions are
still valid, but now, in addition, each newly created (R,R) will itself
immediately undergo a type-1-lysis with probability κ1, or a type-2-
lysis with probability κ2 − κ1. Similarly, each new (B,R) immediately
undergoes a type-2-lysis with probability κ2, and each new (R, ∅) or
(R,G) immediately undergoes a lysis with probability κ1. The same is
then done recursively for all thereby newly created pairs (R,R), (B,R),
(R, ∅) or (R,G). The order in which these ‘immediate’ transitions are
carried out is not important. It is easy to see that the conclusions of
Theorem 4.1 still hold under these modifications.

Theorem 5.1 says that, when γ0 = 0, the optimal ‘choice’ of λ and
κ for the virus is λ = κ = 0. Returning to the bacteriophage Lambda,
which frequently lyses its host cell immediately after infection, we con-
clude that the model just described is inadequate as a description of
this virus. The main confounding assumptions are presumably: firstly,
that γ0 = 0; secondly, that there is absolutely no delay between the
lytic phase and new infections; and thirdly, that factors such as moi,
which experiments have shown to be important, are not included. Fur-
thermore, it is not hard to imagine other factors which could make
a more rapid increase in numbers beneficial to the virus in the early
stages of an epidemic, such as competition from other viruses or an
immune response. It is hoped that relevant modifications of the model
can be studied in future work.

5.4. Future directions. The main questions left open by this work
are: is Theorem 1.1 true whenever E(Γ) ≥ 1? and, what choices of λ
and (γk)k≥0 minimize η when E(Γ) < 1?

There are many natural ways to modify the model to make it more
realistic as a model for viruses. One direction would be to let Γ depend
on X(t) and Y (t). Another direction would be to study the model with
decision at the moment of infection also when γ0 > 0; this requires some
new arguments.

It is natural to consider the possibility of two competing viruses,
alternatively a virus competing with an immune system. Finally, it
would be natural to look at a version of the process which is based not
on branching process dynamics, but on the dynamics of population
models having some type of equilibrium like the logistic process [18].
Indeed it is reasonable to expect that the cell population will be in
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equilibrium at the time of infection, possibly making such a formulation
closer to reality.

Acknowledgement: The authors would like to thank Leonid Hanin
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