
1.3 Basic functions used in biology

Reading: Otto and Day (2007), Primer 1.

Here we go through some of the single variable functions which regularly arise in all

areas of biology.

1.3.1 Constants

y = f (x) = c

This function implies that x and y are independent.
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1.3.2 Linear functions

y = f (x) = mx + c (4)

There are a wide range of situations where we would like to describe how one vari-

able increases as a function of another. For example, disease increases probability

of dying, temperature increases number of offspring, smoking increases incidences

of cancer etc. A positive slope m > 0 allows us to represent such relationships. A

negative slope m < 0 describes a situation where one variable decreases as a function

of another. For example, a treatment suppresses a disease, the expression of one gene

can repress the expression of another etc.
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Linear regression, one of the most commonly used operations in statistics, is based

on the assumption that there are linear relationships between variables. As such,

linear regression does not in itself test the hypothesis that a particular data set has

a linear relationship.

We should be careful with linear relationships, because most biological variables can

only take positive values. In which case, the function does not apply when we cross

over the zero line.
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1.3.3 Reciprocal functions

Another way of defining a negative relationship between two variables is using the

reciprocal function:

y = f (x) =
1

ax + k
(5)

This has the advantage over using a negative slope that as x tends to 0, y remains

positive. Below we give different examples of equation 5.

A classic example in behavioural ecology of a reciprocal relationship is predator

dilution. Your probability of being eaten by an attacking predator in a group of size

n is equal to 1/n.
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1.3.4 Rational functions

Equations 4 and 5 can be combined to give

y = f (x) =
mx + c

ax + k
(6)

To understand this function we should think about how it behaves for x = 0 and as

x→∞. This allows us to plot equation 6.

This fractional function is well motivated on biological grounds. It can be set up

to avoid strange negative values. This increased realism comes at a cost of adding

complication. If m or respectively a are small then the reciprocal respectively linear

function are more appropriate.
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1.3.5 Quadratic function

Probably the simplest non-linear function is the quadratic function

y = f (x) = ax2 + bx + c (7)

These functions have (at most) a single maximum or minimum. By differentiating

we see how this function behaves. The two examples for a > 0 and a < 0 are

illustrated below.

A quadratic function behaves the ”same” as x→∞ and x→ −∞ .

18



The points at which x = 0, known as the roots of f (x), are given be the famous

quadratic equation:
−b±

√
b2 − 4ac

2a
(8)

The quadratic equation has a wide variety of important uses in biology. This is

because it is the simplest model with a single maximum or minimum. In the form of

the logistic growth model it describes the rate of growth of a population with limited

resources (section 3.2). It is often used in problems of optimisation through natural

selction (”climbing mount impossible”). For modelling gene frequencies in sexual

populations it arises in describing allele frequencies.
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1.3.6 Polynomial functions

The quadratic function can be generalised to higher order polynomials.

y = f (x) = anx
n + an−1x

n−1 + .... + a2x
2 + a1x + a0

=
n∑
i=0
aix

i

(x0 = 1). We can take the derivative of f by the usual rule of moving the power

down.

1.3.7 Exponential functions

Lets define the following polynomial function with infinite powers

y = f (x) = 1 + x +
1

2
x2 +

1

2.3
x3 +

1

2.3.4
x4 + ... +

1

(n− 1)!
xn−1 +

1

n!
xn + .....(9)

=
∞∑
i=0

xi

i!
(10)
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This function is quite interesting because it is its own derivative,

f ′(x) = f (x)

The value of the derivative at any point is the function itself.

It turns out that this function, which at first sight is just a mathematical oddity, is

probably the most impost important function in dynamic models of biology. It is

known as the exponential function

y = f (x) = exp(αx) = eαx =
n∑
i=1

(αx)n

n!
(11)

Its most important application is in describing growth. It will be central in many of

the differential equation models of growth presented in this course.

Below we show exponential growth (for α > 0) and exponential decay (for α < 0).
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The inverse of the exponential is the natural logarithm.

x =
ln(y)

α

Appendix A1.1 and A1.2 in the text book give basic rules for dealing with powers

and logs. The basic idea is that in the logarithmic world multiplication becomes

addition.
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1.3.8 Power law functions

The function

y = f (x) = bxa

describes a scaling law or power law between two variables. We can use logarithms

to make this relationship clearer.

Power law scaling is observed in for example, metabolic rate which scales as approx-

imately 3/4-power of mass of organism (Kleiber’s law). Similarly, breathing and

heart rates typically increase with mass raised to the power of 1/4

23



1.3.9 Sigmoidal functions

An important function in everything from biochemistry to ecology is the Hill function

y = f (x) = b
xn

xn + kn
(12)

where b is a saturation level or maximum possible value of y, k is the level of x at

which y is half saturated and n describes the degree of ’co-operativity’. We plot this

function below.

This function describes the rate at which one substance is taken up by another. In

biochemistry x is a ligand and y is the rate at which it binds to a macromolecule.

In ecology x can be a prey and y is the rate at which it is eaten by predators. In

section 9.1 we will derive these responses and show how they are used in modelling.
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Another sigmoidal function is the logistic function

y = f (x) = b
eαx

eαx + eαk
(13)

As for the Hill function, b is a saturation level or maximum possible value of y and

k is the level of x at which y is half saturated. The parameter α plays a similar role

to n in the Hill function in determining the steepness of the sigmoidal shape.

When x is time, the logistic function describes the growth of a population. We will

return to this in section 3.2.
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The logistic function is commonly used in statistics in the form of ’logistic regression’.

When b = 1, y is always between 0 and 1 and can therefore be interpreted as a

probability. Re-arranging (inverting) equation 13 gives

log

1− y
y

 = αk + αx (14)

Thus by transforming the observed probabilities it is possible to fit a straight line

to them in terms of x. This function is widely used in medical studies, e.g. how

the frequency of getting cancer y is related to the number of cigarettes smoked x.

Like in linear regression, there is a strong assumption about how the probabilities

are related to the factor said to cause them.
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1.3.10 Bell-shaped functions

The most famous bell-shaped function is the Normal distribution

y = f (x) = c exp

−(x− µ)2

2σ2

 (15)

where µ is the mean of the distribution (i.e. the central point of the bell) and σ is the

standard deviation. c determines the height of the bell.For the normal distribution

c =
1√

2πσ2

Roughly speaking, y can be interpreted as being proportional to the probability of

seeing an observation of size x.
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These last two examples should illustrate an important point: mathematics and

statistics do not lie in two separate worlds. Statistics is the process of fitting to an

(idealised) mathematical model.
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1.4 A ’real’ example

The extract from Harder et al. (2008) given on the next page gives an example of

the problem of determining the degree of self-pollination needed to maximise fitness.

We will leave the biological details to one side just now and look at the question the

question of how the fitness function W (p′s) is maximised in terms of p′s, the degree

of self-pollination (Case I).

What you should recognise is that hidden in all the parameters is a rational func-

tion (equation 6). We will use this to obtain the same result as Harder without

differentiating.

1.5 Exercises

Brush up on your algebraic manipulations. Try exercise A1.1.
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