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A simple argument based on the distribution of individuals amongst discrete resource sites is used to show

how the form of single species population models depends on the type of competition between, and the

spatial clustering of, the individuals. For scramble competition between individuals, we confirm earlier

demonstrations that the Ricker model is a direct consequence of a uniform random distribution of

individuals across resources. By introducing spatial clustering of individuals according to a negative

binomial distribution, we are able to derive the Hassell model. Furthermore, the tent map model is seen to

be a consequence of scramble competition and an ideal-free distribution of individuals. To model contest

competition under different degrees of spatial clustering we derive a new three-parameter model, of which

the Beverton–Holt and Skellam models are special cases, where one of the parameters relates directly to the

clustering distribution. Other population models, such as the quadratic model and the theta-Ricker

models, cannot be derived in our framework. Taken together our derivations of population models allows

us to make a more rigorous prescription for model choice when fitting to particular datasets.

Keywords: first-principles derivation; negative-binomial distribution; Beverton–Holt model;

Skellam model; Hassell model; Ricker model
1. INTRODUCTION
The population dynamics of single species with seasonal

reproduction and first-order feedback are often modelled

using a single difference equation, atC1Zf(at) (May 1976;

Berryman 1999; Turchin 2003), with the natural

interpretation that atC1 is the expected population in

generation tC1 if at is the population in generation t.

While there are a large number of these models, most of

which are presented in table 1, each of them can be

broadly classified as capturing either scramble or contest

competition (Nicholson 1954; Hassell 1975). For scram-

ble competition f increases to a maximum and then

decreases, reflecting an over-compensation in the density-

dependence at large populations. For contest competition

f is non-decreasing, reflecting an increasing utilisation of

available resources. Both types of model are illustrated in

figure 3. Utida (1967), Maynard-Smith & Slatkin (1973)

and Hassell (1975) have all proposed different models

incorporating both scramble and contest competition,

each with an extra parameter that determines whether the

model is scramble or contest. Apart from this scramble/

contest classification of models, little is known about

how—when faced with a single-species population time

series—to choose the appropriate functional form for f.

In order to determine the mechanistic underpinnings

and thus the applicability, of a mathematical model, one

can investigate how the model is derived from first

principles. In his influential textbook, Royama (1992)

presented a derivation of the Ricker model from first
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principles. He assumed that in discrete generations at
identical individuals are distributed completely at random

over a uniform resource environment with area A. He

further assumed that the reproductive success of each

individual is given by a function r(k) of the number of

other individuals within a disc of area s centred on

the individual. Since individuals are assumed identical, the

expected growth of the population atC1/at equals the

expected reproductive success of an individual. Thus,

atC1

at
Z

XN
kZ0

�pkrðkÞ; ð1:1Þ

where �pk is the probability of an individual having exactly k

neighbours in a disc with area s. Under these assumptions,

as A/N with the population density at/A fixed, the

number of individuals in a disc of area s is Poisson

distributed with expectation sat/A and we can take
�pkZ ðsat=AÞ

kexpðKsat=AÞ=k!. By assuming that r(k)Zbck,

equation (1.1) becomes

atC1 Z bat expðKsat=AÞ
XN
kZ0

ðcsat=AÞ
k

k!

Z bat expðKsð1KcÞat=AÞ; ð1:2Þ

which is the Ricker model from table 1.

Such a ‘first principles’ derivation of a well studied

population model gives the model biological grounding.

The Ricker model is seen to be a consequence of animals

distributed uniformly at random and having reproductive

success rapidly reduced by competition with neighbours,

i.e. scramble competition. The derivation also relates the

parameters that govern individual behaviour to those

governing population dynamics. Rewriting equation (1.2) in

the more familiar form atC1Zat exp(g(1Kat/K)) we see that

the populations’ carrying capacity KZA log(b)/(s(1Kc)),
q 2005 The Royal Society



Table 1. The major single species population models studied in this paper.
(S, scramble competition; C, contest competition.)

model type name references
see
equation

at(1Cr(1Kat/k)) S quadratic May (1976) (3.6)
at exp(r(1Kat/k)) S Ricker, discrete logistic Ricker (1954) (1.2), (3.2)
at exp(r(1K(at/k)q )) S theta-Ricker Bellows (1981) and Berryman (1999) (3.5)
see equation (3.9) S tent Devaney (1989) (3.9)
k(1Kexp(Krat)) C Skellam Skellam (1951) (3.11)
k1at/(1Ck2at) C Beverton–Holt Beverton & Holt (1981) (3.13)
see equation (3.12) C ‘ramp’ this paper (3.12)
bn(1Kll(lCat/n)Kl) C this paper (3.14)
k1 exp(Kk2at)(exp(ck2at)K1)/h S,C this paper (3.15)
k1at/(1Ck2at)

c S,C Hassell Hassell (1975) (3.16)
k1at =ð1Ck2a

c
t Þ S,C Maynard-Smith–Slatkin Maynard-Smith (1974) and Maynard-

Smith & Slatkin (1973)
(3.17)
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Figure 1. An illustration of the individual based model for
contest competition. Here, atZ6 individuals are distributed
randomly among nZ5 discrete resource sites giving the site-
count (2, 0, 1, 0, 3). They interact according to the contest
interaction function, equation (3.10), giving an intermediate
site-count (f(2), 0, f(1), 0, f(3))Z(2, 0, 2, 0, 2), giving
atC1Z6 individuals in the next generation. These are then
distributed randomly and the process is repeated.
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is a function of both total resources (i.e. the area), intensity

of competition and rate of reproduction.

Although the Ricker model is far from a unique model

of discrete generation, single species population dynamics,

Royama did not apply his derivation to any other models.

In particular, he was ‘not able to formulate a model of

contest competition in discrete time from basic principles’

(Royama 1992, p. 152). This is surprising, since other

choices of r(k) produce contest models. For example, if

r(k)Zb/(kC1) the above derivation will give the Skellam

model (Skellam 1951).

Until now, first principles derivations of models other

than the Ricker model have mostly been made by

integrating a corresponding continuous time model

(Gurney 1998; Thieme 2003; Geritz & Kisdi 2004). In

the most comprehensive work of this type, Geritz & Kisdi

(2004) assume that the dynamics within years are given by

a continuous-time resource–consumer system. The

Ricker, truncated quadratic, Hassell and Beverton–Holt

models are then obtained as the between-year dynamics.

An important point to come out of the study is that without

influx of resources the system is always over-compensa-

tory, i.e. the discrete-time model is one of scramble

competition. Thieme (2003) extends the classic derivation

of the Ricker model from a spawner–recruitment context

with cannibalism at birth, by considering other distri-

butions of waiting time in the larval stage. The functional

response of predators has also been derived from the

principle of mass action under various assumptions about

the spatial distribution of predators (Cosner et al. 1999).

While the continuous approach is appropriate in

modelling, for example, fish populations, it does not

capture the types of local interactions explicit in Royama’s

approach. In particular, the continuous model approach

does not reveal how the spatial distribution or competitive

interactions give rise to particular functional forms. This is

important in modelling insect populations with seasonal

reproduction and local resource competition (Berryman

1999). In this paper we extend a site-based framework

proposed by Sumpter & Broomhead (2001) and Johans-

son & Sumpter (2003) and use it to derive most of the

models in table 1, including the Beverton–Holt and

Hassell models, from basic assumptions on the inter-

actions between, and distribution of, individuals.
Proc. R. Soc. B (2005)
2. THE SITE-BASED FRAMEWORK
Consider a habitat consisting of n discrete resource sites

over which the at individuals in a population are

distributed and then reproduce. We define pk to be the

expected proportion of sites containing k individuals after

the distribution, which is then a function of both at and n.

Once the individuals are distributed, they reproduce with

the success of reproduction dependent only on the

number of individuals k at the site or more precisely

with reproductive success assumed independent and

identically distributed when conditioned on k. We let

f(k), henceforth referred to as the interaction function, be

the expected number of individuals emerging from a site

with k individuals at it. All emerging individuals are

assumed to be identical and form the next generation.

Figure 1 illustrates this process for the specific case of

contest competition, to be discussed in depth later.

We can now write the expected population atC1 in

generation tC1 given that there are at individuals in

generation t as

atC1 Z f ðatÞdn
XN
kZ0

pkfðkÞ: ð2:1Þ
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Here, we use the assumption that the number of

individuals emerging from sites are independent and

identically distributed. Note that in contrast with equation

(1.1), this formulation is made in terms of reproduction

per site, not reproduction per individual. Equation (2.1)

relates a ‘first principles’ model of site-based reproduc-

tion, in terms of distribution and reproduction of

individuals at resource sites, to a population model, f(at),

of how a population changes through time. From a

mathematical perspective, our aim now is to relate the

probabilities pk and the interaction function f(k) to spe-

cific population models such as the Ricker or Beverton–

Holt models. From a biological perspective, these choices

should realistically reflect both the distribution of

individuals across their environment and the way in

which individuals interact and in particular compete, for

resources. Choosing pk and f(k) will hopefully give us

insight into the implicit assumptions that underlie

population models.

Although individuals of most species are typically

spatially aggregated (McArdle et al. 1976; Taylor et al.

1978; Greig-Smith 1983; He & Gaston 2000), it often

suffices to assume a uniform random distribution, where

each individual is equally likely to be found any of the

resource sites. In this case, as n/N with the density at /n

fixed, the number of individuals at a given site is Poisson

distributed with expectation at /n, so that pkZ(at/n)kexp

(Kat /n)/k!. Taking these as our probabilities pk we get

f ðatÞZ neKat =n
XN
kZ0

ðat=nÞ
k

k!
fðkÞ: ð2:2Þ

See Johansson & Sumpter (2003) for a more detailed

discussion.

If individuals cannot be assumed to be uniformly

distributed among sites, the negative binomial distribution

is often appropriate for describing spatial aggregation

(Boswell & Patil 1970; Perry & Taylor 1985; Krebs 1989).

Specific examples include the distribution of red mites on

apple leaves (Bliss & Fisher 1953) and parasites on hosts

(Anderson & May 1978). By assuming that occupation of

a site depends in some way on ‘accessibility’ we can derive,

in Appendix A, the negative binomial distribution from

first principles, giving

pk Z
ll

GðlÞ

GðkClÞ

GðkC1Þ

ðat=nÞ
k

ðlCat=nÞ
kCl

; ð2:3Þ

where l is a positive parameter. The Poisson distribution is

now the special case when l/N and for lZ1 we obtain

the geometric distribution given by

pk Z ðat=nÞ
kð1Cat=nÞ

Kð1CkÞ: ð2:4Þ

Indeed, as illustrated in figure 2, l determines the degree

of clustering among individuals, in the sense that p0

decreases with l, so that when l is small there will be more

empty sites.

Before we continue, in §3, by deriving the various

models in table 1, we note that Royama’s continuous-

space framework, equation (1.1) and our site-based

framework, equation (2.1), are equivalent under certain

plausible assumptions. This is shown in Appendix B.

When individuals are Poisson distributed, the result

follows immediately. Assume f(0)Z0 and define
Proc. R. Soc. B (2005)
r(k)Zf(kC1)/(kC1). Equation (1.1) then gives

atC1

at
Z expðKsat=AÞ

XN
kZ0

fðkC1Þ

kC1

ðsat=AÞ
k

k!
:

Thus,

atC1 Z
A

s
expðKsat=AÞ

XN
kZ1

fðkÞ
ðsat=AÞ

k

k!
:

If we further substitute nZA/s, observing that f(0)Z0, we

derive equation (2.2). The reverse derivation follows from

the equivalence at each step.
3. DERIVATION OF COMPETITION MODELS
We now consider how specific population models of the

three types shown in figure 3 relate to the individual-based

framework given by equations (2.1) and (2.2).

(a) Scramble competition

Hassell (1975) writes ‘Ideally, scramble [competition]

involves the exactly equal partitioning of the resource such

that there is an abrupt change from complete survival to

100% mortality’. Assuming that each of the n resource

sites in our model can maintain exactly one single

individual then, by this definition,

fðkÞZ
b if kZ 1;

0 otherwise;

(
ð3:1Þ

so that b offspring are produced at a site containing exactly

one individual, while if two or more individuals share a site

they fail to reproduce due to interference. Substituting

equation (3.1) into equation (2.2) gives,

f ðatÞZ bate
Kat =n; ð3:2Þ

the Ricker model. The Ricker model is thus a direct

consequence of the uniform random distribution of

individuals amongst resource sites and ‘ideal’ scramble

competition. This derivation is identical to that in

Sumpter & Broomhead (2001).

As in Royama’s derivation of the Ricker model,

equation (1.2), the carrying capacity KZn ln(b) is seen

to be a function of both the number of available sites and

the maximum number of offspring per individual.

Recalling how Royama’s reproduction function and the

interaction function are related, r(k)Zf(kC1)/(kC1),

Royama’s scramble reproduction function r(k)Zbck has as

corresponding interaction function

fðkÞZ
kbckK1 if kR1;

0 otherwise:

(
ð3:3Þ

Thus, equation (3.1) is actually a special case of equation

(3.3), used by Royama, when cZ0.

The interaction function, equation (3.1), also gives a

scramble competition model when {pk} is distributed

negative binomially. We substitute equations (3.1) and

(2.3) into equation (2.1) to get

atC1 Z bl1Cl at

ðlCat=nÞ
1Cl

; ð3:4Þ

which is the Hassell model for scramble competition.

Equating parameters with Hassell’s original model (given

in table 1) we see that cZlC1. Thus, in agreement with
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Figure 3. The three types of population model studied in this
paper. Models of scramble competition increase to a global
maximum and then decrease to 0, while models of contest
competition are either increasing and bounded or strictly
increasing and unbounded. We denote the latter ‘unbounded
contest’. Also shown is the line atC1Zat. Note that any
biologically realistic unbounded contest model will eventually
stay below this line, as it would otherwise be capable of
unchecked population growth.
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Figure 2. Three special cases of the negative binomial distribution. (a) The Poisson distribution obtained when l/N. (b) A
spatially aggregated distribution obtained for lZ3. (c) The geometric distribution, lZ1. The positive parameter l determines
the degree of clustering among individuals, in the sense that p0 decreases with l, so that when l is small there will be more empty
sites.
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Hassell’s (1975) original derivation, we have found that

cO1 captures scramble dynamics. More interestingly, we

have also shown that the degree of spatial clustering,

measured by l in the negative binomial distribution, is

determined by the value of the parameter c. A value of c

only slightly larger than 1, thus indicates significant levels

of spatial aggregation of individuals.

When trying to fit data which is thought to arise from

scramble competition, the flexible theta-Ricker is com-

monly used

f ðatÞZ rate
Kcaqt ; ð3:5Þ

where q is a positive constant (Bellows 1981; Berryman

1999). Royama (1992) argues that the case of qO1

corresponds to an intensification of competition as the

number of competing neighbours increases while q!1

corresponds to a habituation to competition. However,

under the assumption that individuals are uniformly

distributed there is no interaction function independent

of at that can reproduce equation (3.5) for non-integer

values of q, since higher order derivatives of xq are

undefined for xZ0. The theta-Ricker model may even-

tually be derived from a distribution having q as a para-

meter, with qZ1 as the Poisson distribution. However, the

interaction function cannot be equation (3.1) since p1
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would then be proportional to (at/n)exp(K(at/n)q), which

for sufficiently large at and small qwould make p1 exceed 1,

thus making the distribution inadmissible. As yet we

cannot determine a natural distribution that reproduces

the theta-Ricker model.

Another well known scramble competition model is the

quadratic (logistic) model,

f ðatÞZ atð1C rð1Kat=KÞÞ; ð3:6Þ

where K is the carrying-capacity (fixed point). This model

predicts that the population eventually becomes negative

when rO4, but is sometimes used to model population

dynamics by assuming r!4 and an initial population

below the carrying capacity. Under the assumption of a

Poisson distribution of individuals, we can work back-

wards to find the corresponding interaction function. First

observe that K would have to be proportional to the

number of sites n as the quadratic model can be written in

the form Kg(at /K). Assuming nZgK sites we calculate the

interaction function by first writing

f ðatÞZgKeKat =gKeat =gK
at
gK

ð1C rð1Kat=K ÞÞ

ZgKeKat =gK
XN
kZ0

ðkð1C rÞKðkK1ÞkgrÞ
1

k!

at
gK

� �k

;

then equating coefficients of equation (2.2) we get

fðkÞZ kð1C rKgrðkK1ÞÞ: ð3:7Þ

This interaction function is negative when kO1C(rC1)/

(gr). Since a negative number of offspring can occur when

more than two individuals share the same resource site

even if r!4, the quadratic model does not allow an

obvious interpretation in terms of Poisson distributed

individuals interacting at discrete sites even in this range.

A closely related model that does not predict negative

populations is the truncated quadratic model (Geritz &

Kisdi 2004),

atC1 Z
atð1C rð1Kat=K ÞÞ when at%K ð1C rÞ=r

0 otherwise:
:

(

The certain extinction predicted by this model is not

possible in the site-based framework under a uniform

distribution of individuals. To see this it suffices to note

that if a Taylor-series vanishes on an interval, then all

coefficients (in this case the corresponding interaction

function) must be identical zero. Intuitively, in a Poisson

distribution all interactions occur with some positive

probability and since at least one interaction must produce

in expectation a positive number of offspring, it follows

that the expected population is also positive. Thus, we

expect that any derivation of the truncated quadratic

model in a site-based framework would be based on a

more even distribution of individuals than the Poisson.

An example of a distribution, where we may have

certain extinction for large populations is the ‘ideal-free’

distribution (Sutherland 1983), where every individual

receives an equal share of the available resources. Writing

at /nZ[at /n]C(at /nK[at /n]), where [at /n] is the integer
Proc. R. Soc. B (2005)
part of at/n, this gives the following distribution

pk Z

1Kat=nC ½at=n� if kZ ½at=n�;

at=nK½at=n� if kZ ½at=n�C1;

0 otherwise:

8><
>: ð3:8Þ

With the scramble interaction function, equation (3.1), we

get a scaled tent model,

f ðatÞZ

bat if 0%at!n;

bnð2Kat=nÞ if n%at%2n;

0 otherwise:

8><
>: ð3:9Þ

It should be noted that since an animal population can at

best only approximate the ideal-free distribution, we can

only expect to find smooth approximations of the tent

model in nature.

(b) Contest competition

Varley et al. (1973) write ‘In contest [competition] each

successful animal gets all it requires, the unsuccessful

animals get insufficient for survival or reproduction’. In

this spirit we let the interaction function

fðkÞZ
b if kR1;

0 otherwise;

(
ð3:10Þ

so that b offspring are produced at a site containing one or

more individuals. Substituting equation (3.10) into

equation (2.2) gives

f ðatÞZ bnð1KeKat =nÞ: ð3:11Þ

This is the Skellam model (Skellam 1951). Provided bO1,

the model has a single stable equilibrium bn at which the

population will quickly settle. It is a model of contest

competition, since f is non-decreasing. The derivation

presented here is essentially equivalent to Skellam’s

original derivation and has also appeared in other works,

e.g. Johansson & Sumpter (2003).

With the ideal-free distribution given by equation (3.8),

the contest interaction function, equation (3.10), gives

linear growth up to a saturating population,

f ðatÞZ
bat if 0%at!n;

nb otherwise;

(
ð3:12Þ

which we call the ‘ramp model’.

The standard model of contest competition is the

Beverton–Holt model,

f ðatÞZ
bat

1Cat=n
; ð3:13Þ

shown in figure 4 together with the Skellam and ramp

model. A comparison between these models shows that

they are similar in many ways. They are bounded

functions with no inflection points. When at is small

eat/nz1Cat /nz1 so that growth at small populations is

identical in the models. Furthermore, as at/N, both

n(1KeKat/n)/n and at /(1Cat /n)/n so the populations

are bounded by a population bn. However, when at and n

are of a similar order of magnitude the three models give

different numerical predictions. In particular, the Skellam

model, equation (3.11), predicts that the population will

grow faster than predicted by the Beverton–Holt model,

equation (3.13).
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Figure 4. The Beverton–Holt, Skellam and ramp model for
bZ4 and nZ100. The Beverton–Holt is the case lZ1 of
equation (3.14) while the Skellam model is obtained in the
limit as l/N. The ramp model is a consequence if contest
competition, equation (3.10), under the ideal-free distri-
bution, equation (3.8).
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The Beverton–Holt model can be derived from

equation (2.1) if we assume that the probabilities { pk}

are distributed negative binomially. Substituting equation

(3.10) into equation (2.1) with {pk} given by equation

(2.3) we get

atC1 Z bn 1K
ll

ðlCat=nÞ
l

� �
: ð3:14Þ

The direct inclusion of the parameter l from the

underlying distribution offer some interesting insights.

For lZ1 this is the Beverton–Holt model. Thus, the

Beverton–Holt model is a consequence of clustering and

contest competition. As l increases, the underlying

distribution is more uniform and in the limit as l/N
the model converges pointwise to the Skellam model.

(c) Generalized competition models

We can derive a competition model encompassing both

scramble and contest competition from the interaction

function,

fðkÞZ
bhkK1 if kR1

0 otherwise
;

(

where 0!h!1. Equation (2.2) then gives

f ðatÞZ bn expðKat=nÞ
expðcat=nÞK1

h
: ð3:15Þ

In the limit, as c/0C or c/1K we recover the Ricker

model, equation (3.2) and the Skellam model, equation

(3.11), respectively. The main disadvantage of the model

is that it does not interpolate between scramble and

contest competition in a natural way. Indeed, for any c!1

both equation (3.15) and its interaction function are of

scramble competition with exponential decline.

Models that interpolate naturally between scramble

and contest can be constructed by taking linear combi-

nations of either scramble or contest models or of their

respective interaction functions. However, the algebraic

complexity of these models may make them less useful.
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Two well known population models that incorporate

both scramble and contest competition are the Hassell

(Hassell 1975) and the Maynard-Smith–Slatkin

(Maynard-Smith & Slatkin 1973) model given by

atC1 Z k1at=ð1Ck2atÞ
c ð3:16Þ

and

atC1 Z k1at=ð1Ck2a
c
t Þ; ð3:17Þ

respectively. The structural similarity of the models is

reflected in the identical growth rate of small and large

populations, k1 and k1=k2a
Kc
t , respectively. The parameter

cO0 determines the competition type. For cO1 both are

models of scramble competition and for cZ1 both reduce

to the Beverton–Holt model of contest competition. For

0!c!1 both are models of unbounded contest compe-

tition. This is in contrast with the contest models studied

so far, which have all been bounded so that there is a fixed

limit on next year’s population size independent of the

current population.

Although we derived the Hassell model for cR1 from

first principles in §3a, we have not yet seen any example of

unbounded contest competition. However, by taking the

interaction function to be

fðkÞZ
bGðkC1Þ=GðkClÞ if kR1;

0 otherwise;

(
ð3:18Þ

and the probabilities pk as in equation (2.3) we can derive

the Hassell model. Note that for lZ1 this is the contest

interaction function, equation (3.10). No corresponding

first principles derivation of the Maynard-Smith–Slatkin

model has yet been discovered and this remains an open

problem.
4. DISCUSSION
The growing interest in the first principles derivations of

population models is effecting a change in how population

models are viewed. Traditionally, models have been

treated phenomenologically, whereas first principles

derivations demonstrate that these models are conse-

quences of simple underlying mechanistic principles, most

of which can be understood intuitively. Taking a first

principles approach leads to new insights, such as relations

between disparate models, as well as how individual

actions effect population dynamics.

We have extended Royama’s (1992) site-based frame-

work to incorporate spatial distributions of aggregated

individuals. In particular, we have shown that the degree

of spatial aggregation can be related to parameters in a

corresponding population dynamic model. This is most

clearly illustrated by our three-parameter generalization of

the Beverton–Holt model, equation (3.14). The par-

ameter l in this model can be interpreted as an index of

spatial aggregation, with high values corresponding to a

more random distribution. Fitting equation (3.14) to

ecological time-series of species exhibiting local contest

competition may help to determine the level of clustering

of the population, without detailed knowledge of how the

population is actually structured.

The ideal-free distribution of individuals also produces

its own associated population dynamics under different

types of competition. Figure 4 shows how we would expect
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a population under an ideal-free distribution and contest

competition to grow in comparison to a population with

random or spatially aggregated distribution of individuals.

For scramble competition the ideal-free distribution gives

rise to the tent model. Of course, the ideal-free

distribution is idealized and we would expect the actual

dynamics of a naturally ideal-free distributed population

to follow something between a tent and a Ricker model.

For scramble competition with individuals distributed

according to a negative binomial distribution we derived

the Hassell model for scramble competition. Again the

parameters of the Hassell model could be related to spatial

clustering. In particular, the parameter c was shown not

only to relate to competition type, but also to the degree of

spatial clustering. The Maynard-Smith–Slatkin model,

renowned for its ability to fit data, evaded a derivation

altogether and there is no known mechanistic interpret-

ation of this model, even in the continuous time frame-

works of Thieme (2003) or Geritz & Kisdi (2004). The

theta-Ricker model also evaded derivation and it is

difficult to see how a derivation of the type presented

here might proceed.

The current paper has limited itself to single gener-

ation, single species models with contest and scramble

competition. Allee effects can be added to these models in

a straightforward manner by, for example, requiring that

two or more individuals are needed per resource site for

offspring to be produced ( Johansson & Sumpter 2003).

Such a model would be appropriate in modelling

reproduction involving two sexes. The ideas presented

here could also be extended to more complex scenarios

such as predator–prey or age-structured interactions.

Several attempts have been made to derive the functional

response of predators in predator–prey models, the mating

function and the contact function in sexually transmitted

diseases from underlying spatial distribution (Castillo-

Chavez et al. 1994; Cosner et al. 1999; Thieme & Yang

2000, see also the references therein).

The primary aim of this paper has been to heighten

awareness of the implicit assumptions about competition and

clustering that underlie single species population models.

The results presented are at their most useful when a

particular model has been proved good in fitting population

time-series data and we would like to infer something about

the ecology of the studied species. Knowledge of the different

assumptions that underlie population models should also

simplify model choice. By deriving the functional form of a

model through a ‘first principles’ description of interactions

between, and distribution of, individuals, the assumptions

that underlie the model can be better understood. Such a

procedure reveals not only facts about the mathematical

structure of models but also biological insight into when a

particular model is appropriate.

The authors would like to thank Éva Kisdi and Anders
Johansson for useful comments and discussion and Paul
Glendinning for carefully reviewing and correcting an earlier
version of the manuscript. We also thank the two anonymous
referees for many helpful suggestions.
APPENDIX A. DERIVATION OF THE NEGATIVE
BINOMIAL DISTRIBUTION
By revoking the assumption that sites are in all respects

identical, we are able to derive the negative binomial
Proc. R. Soc. B (2005)
distribution from first principles. Assume that an individ-

ual chooses a given site with a probability proportional to

the site’s accessibility, as determined by a number drawn

from a continuous probability distribution f with an

expectation of unity. As the number of sites n tends to

infinity with the density x constant, the number at

individuals at a site with value t will be Poisson-distributed

with expectation tx. The expected number of individuals

at a site for which the value t is not known will be

distributed as fx(t)Z(1/x)f(t/x). Assuming that accessi-

bility of the sites are distributed as

f ðtÞZ
ll

GðlÞ
tlK1expðKltÞ;

then the expected number of individuals at a site is

Gamma distributed,

fxðtÞZ
1

GðlÞ

ll

xl
tlK1expðKlt=xÞ: ðA 1Þ

Since sites are chosen randomly, albeit with different

probabilities, the probability of finding k individuals at a

site is given by

pk Z

ðN
0
fxðtÞ

tk

k!
expðKtÞdt:

This is known as mixing with the Poisson distribution

(Kendall & Stuart 1977). We then get

pk Z
ll

GðlÞ

GðkClÞ

GðkC1Þ

xk

ðlCxÞkCl
;

which is the negative binomial distribution formulated in

terms of the expectation x, i.e. equation (2.3).
APPENDIX B. EQUIVALENCE OF THE
SITE-BASED AND ROYAMA’S
CONTINUOUS-SPACE FRAMEWORK
The site-based framework

atC1 Z n
XN
kZ0

pkðat ; nÞfðkÞ ðB 1Þ

and Royama’s continuous-space framework

atC1

at
Z

XN
kZ0

�pkðat ;A; sÞrðkÞ; ðB 2Þ

are equivalent in the sense that (i) for any positive solution

{at} of the dynamical system (B 1) with f(0)Z0 we can

find an admissible distribution �pk and a reproduction

function r(k) such that {at} is also a solution of the

dynamical system (B 2) and (ii) for any positive bounded

solution {at} of the dynamical system (B 2) we can find an

admissible distribution pk and a constant n such that {at} is

also a solution of the dynamical system (B 1). We consider

a distribution pk admissible if it is non-negative and pk and

kpk sums to 1 and at/n, respectively. We consider a

distribution �pk admissible if it can be realized by

distributing individuals for some value of A and s or if it

can be realized in the limit as A/N with the density at /A

constant.

Given any way of distributing individuals among sites

in the discrete setting, we can mimic this in Royama’s

continuous setting by considering n points in a region of

total area A. Choose s sufficiently small such that discs of
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area s centred at these points do not intersect. These

points are then interpreted as the sites in the discrete

setting. If we distribute at individuals among these ‘sites’

such that the expected fraction of sites with exactly k

individuals is pk, then

�pk Z

Expected number of individuals with
exactly k neighbours

total number of individuals
:

Thus,

�pk Z
nðkC1ÞpkC1

at
:

Substituting into equation (B 2) gives

atC1 Z n
XN
kZ0

pkC1ðkC1ÞrðkÞ:

If we let r(k)Zf(kC1)/(kC1), change summation indices

and observe that f(0)Z0, then

atC1 Z n
XN
kZ0

pkfðkÞ;

which equals equation (B 1).

Assume now that {at} is a solution of the dynamical

system (B 2), bounded by some n. Let pkZ �pkK1at=ðknÞ for

kR1 and p0Z1K
P

pk, where the sum is taken over the

positive integers. This is an admissible distribution, since

XN
kZ1

�pkK1

1

k

at
n
%

XN
kZ1

�pkK1 Z1:

Let f(0)Z0 and f(k)Zkr(kK1) for kR1. Then, after

substituting into equation (B 2) we get equation (B 1).
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