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Abstract

A central problem in ecology is relating the interactions of individuals—described in terms of competition, predation,

interference, etc.—to the dynamics of the populations of these individuals—in terms of change in numbers of individuals over time.

Here, we address this problem for a class of site-based ecological models, where local interactions between individuals take place at a

finite number of discrete resource sites over non-overlapping generations and, between generations, individuals move randomly

between sites over the entire system. Such site-based models have previously been applied to a wide range of ecological systems: from

those involving contest or scramble competition for resources to host–parasite interactions and meta-populations. We show how the

population dynamics of site-based models can be accurately approximated by and understood through deterministic and stochastic

difference equations. Conversely, we use the inverse of this approximation to show what implicit assumptions are made about

individual interactions by modelling of population dynamics in terms of difference equations. To this end, we prove a useful and

general theorem: that any model in our class of site-based models has a corresponding stochastic difference equation population

model, by which it can be approximated. This theorem allows us to calculate long-term population dynamics, evolutionary stable

strategies and, by extending our theory to account for large deviations, extinction probabilities for a wide range of site-based

systems. Our methodology is then illustrated to various examples of between species competition, predator–prey interactions and

co-operation.

r 2003 Elsevier Inc. All rights reserved.

Keywords: Site-based; Individual-based; Stochastic difference equations; Population dynamics

1. Introduction

In the past 10 years, a shift has occurred in theoretical
ecology away from ‘top-down’, phenomenological
models—aimed at capturing general properties of an
ecological system—toward ‘bottom-up’, individual-
based models—built on the behavioural algorithms
employed by interacting and reproducing individuals
in a spatial environment (Diekmann et al., 2000).
Although individual-based thinking has undoubtedly
been facilitated by increased computer power and
accessibility of the techniques involved, the main reason
for the shift is that the individual-based approach
accounts much more fully for the intricacies and details

considered key in determining how an ecological system
functions. In accounting for these details, the number of
predictions made about the behaviour and evolution of
ecological systems has rapidly increased (Ermentrout
and Edelstein-Keshet, 1992; Nowak and May, 1992;
Boerlijst et al., 1993; Bolker and Grenfell, 1995; Pacala
and Tilman, 1996; Iwasa et al., 1998; Keeling et al.,
2000). More recently, the individual-based approach has
been brought to bear on making specific predictions
about systems—in particular to epidemiology and
micro-bacterial ecology—where data can be collected
at fine enough individual and spatial resolution to
validate models (Keeling and Gilligan, 2000; Keeling
et al., 2001; Kerr et al., 2002). As the theoretical basis of
individual-based modelling has matured it has become a
very popular paradigm for understanding and predict-
ing the behaviour of ecological systems (see the text
books of, for example, DeAngelis and Gross, 1992;
Czaran, 1998).
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An early criticism of the individual-based approach
was that models do not have the analytic tractability of
top-down dynamical system models. This led to the
development of numerous methods, ranging from
simple mean-field approximations to moment closure
techniques, for simplifying and analysing individual-
based models (Durrett and Levin, 1994a; Rand, 1999;
Keeling et al., 2002). In the simplest of individual-based
models—where although there are discrete, separate
interaction sites there is no spatial structure and
interactions are simple births and deaths—a relationship
can be shown between the individual-based model and
an appropriately chosen deterministic dynamical sys-
tem. For example, Levins (1969, 1970) meta-population
model is at first described in terms of n individual patches
of which a proportion p are occupied. Each individual
patch is independent, going extinct stochastically at a rate
e and produces offspring at rate c: These offspring
occupy an empty patch with probability 1 � p: As n-N;
the dynamics of the proportion of occupied patches is

dp

dt
¼ cpð1 � pÞ � ep

which is identical to the ‘top-down’ logistic model for
continuous population growth. This approximation
holds even when n is reasonably small, i.e. over 50,
and has been shown to apply, at least in terms of its
predicted relationship between number of occupied
patches and rate of extinction, even when more detailed
within-patch population dynamics are taken into
account (Keeling, 2002). Levins’ meta-population model
provides one, of possibly many, ‘first principles’
justifications of the continuous time logistic equation
in terms of interactions between individuals. Instead of
stating a particular carrying capacity, K ; to which the
population grows—as is the case when the logistic
equation is used as a ‘top-down’ phenomenological
model—Levins’ model gives the carrying capacity, K ¼
1 � e=c; in terms of local births and deaths.

Through a similar mode of reasoning, Royama (1992)
considered an individual-based model where reprodu-
cing individuals are distributed on discrete generations
completely at random over a uniform resource environ-
ment. Each of these individuals produce offspring as a
function of the number of the neighbours, a; within
some radius, r; such that the number of offspring B ¼
B0ca; where 0pco1 and B040 are constants. Because
the individuals are randomly distributed, a follows a
Poisson distribution. Using this observation, Royama
showed that, when the global population density is Pt;
the total number of offspring produced by the popula-
tion to go on to the next generation is

Ptþ1 ¼ B0Pte
�rð1�cÞPt

which is the exponential logistic equation or Ricker
map. Again the parameters in the individual-based

model are linked to a ‘top-down’ model. In this case, the
carrying capacity for the population is lnðB0Þ=ðrð1 � cÞÞ:
Such a ‘first principles’ justification of the Ricker map
can also be argued in terms of local competition between
individuals distributed amongst a finite number of
discrete resource sites (Sumpter and Broomhead (2001)
and see later in this article). The method employed by
Royama was also employed independently and greatly
extended in a series of papers by Pacala on local plant
interactions (Pacala and Silander, 1985), who added
complexities such as more than one plant species
(Pacala, 1986a), different seed dormancy times (Pacala,
1986b) and age and size structure. Each of these
individual-based models had its own approximating
dynamical system of equations.

In the above examples, a relationship has been
established between an individual-based model and a
dynamical system. In both cases, the approximation
which established the relationship relied on the lack of
spatial structure of the system: although at some stage,
individuals interacted locally there was also a stage at
which they moved at random across the entire system.
In Royama’s (1992) model, competition occurs between
a small number of individuals within radius r of each
other, but migrating offspring chose a position at
random over a uniform resource environment. Deriving
such approximations is not trivial, in particular when
local interactions are complicated and non-linear. The
discreteness of individuals and small finite populations
at the stage of local interactions produces fluctuations
that cause deviations from models where all inter-
actions are described simply in terms of whole popula-
tions (Durrett and Levin, 1994b; Diekmann and Law,
2000). Furthermore, individual-based models with finite
populations are subject to stochastic effects, such as
extinction or flipping between alternate stable states,
which population approximations do not account for.

The aim of this article is to give a complete and
general treatment of individual-based models where,
although there is no spatial structure in the population,
local interactions between individuals determine the
population dynamics. Specifically, we consider a class of
individual-based models, which, following Czaran
(1998), we call well-mixed site-based models: where on
each discrete generation, individuals of one or more
different species or phenotype are distributed uniformly
at random across some finite number of discrete
resource sites. The individuals then interact locally—
compete, co-operate, prey upon each other, reproduce,
etc.—at these sites. A specific model is defined by its
interaction rules. These interaction rules determine
which individuals survive and reproduce and which
die. The offspring produced through the interaction pass
to the next generation and are again distributed at
random amongst resource sites, and the process repeats.
The class of site-based models we propose are general in
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the sense that any type of interaction, stochastic or
deterministic, between individuals is permitted.

A large class of systems in ecology fall into a category
that can be modelled using well-mixed site-based
models. There are many examples of organisms, often
parasitoids, competing for multiple discrete resource
sites or hosts. Tachinid fly larvae developing inside
butterflies (Iwao and Ohsaki, 1996), Varroa mites
feeding on honey bee brood (Rath, 1999), bruchid
beetles on beans (Toquenaga, 1993), blow-flies on
carcasses (Prinkkila and Hanski, 1995) and caterpillars
in ants nests (Thomas et al., 1993) all involve individual
organisms occupying a resource site then competing
with other individuals which have also occupied it. In
other systems, competition is complicated by the
existence of two or more species each with a different
form of interaction. For example, different species of
bruchid beetles show scramble—where a resource is
partitioned dependent on the number of competing
individuals—and contest—where a single individual
takes the entire resource—competition (Toquenaga
and Fujii, 1990a; Takano et al., 2001). The outcome in
terms of offspring at each resource site depends on the
number of each species occupying each site (Toquenaga
and Fujii, 1990b, 1991). In other cases, the competing
species is itself parasitised. For example, Tuda (1998)
studied another bruchid species, the cow-pea weevil,
which are themselves host to braconid wasps. This
system is thought to be subject to evolution in terms of
the types of interactions exhibited by the host weevils on
the cow-pea resources, as well as effected by the
parasitic actions of the wasps (Tuda and Iwasa, 1998).
For the above examples, and for many more, the
relationship between number of individuals per resource
site and the survivorship and fecundity of individuals
produced at a site has been, or could be, established
empirically.

Despite the range and complexity of interaction rules
which occur in nature, it is possible to prove general
and useful results about systems where interactions
take place at discrete sites. In this paper, we prove a
number of results which are directly applicable to
any natural system that can be described through
site-based interactions. We show that any site-based
model with s interacting species can be accurately
approximated by a unique set of s coupled stochastic
difference equations. Furthermore, the variance in the
approximation, and thus a stochastic term for these
difference equations, can be calculated from the inter-
action rules and the number of sites. In cases when
population extinction probabilities are required we show
how these can be calculated, as can the probability that
a population shifts between two alternative stable
regimes.

Our approach links together, in a single coherent
framework, two approaches to modelling population

dynamics of animals with non-overlapping generations:
site-based modelling of individual interactions and
difference equations with a stochastic term. As the
above examples of meta-populations and Royama’s
derivation of the Ricker map illustrate, our approach is
not completely new. Our aim is rather to give a
thorough and general treatment of well-mixed site-based
models, focusing on topics such as: large system size
approximations by difference equations; first principles
derivations of difference equation models; estimating
variance in the population density in particular when the
number of resource sites is small; calculating extinction
probabilities for individual interaction models and
structural stability of site-based models. In the next
section, we outline the basic theoretical ideas, which
are then illustrated in further sections by particular
examples.

2. Site-based models

The term individual-based models is used to describe
a wide range of approaches, from cellular automata
(Ermentrout and Edelstein-Keshet, 1992), interacting
particle systems (Durrett and Levin, 1994a) to struc-
tured meta-population models (Hanski, 1999). As we
stated in the introduction, we are concerned here with a
particular class of individual-based models where
interactions between individuals happen at a finite
number of resource sites on discrete generations. We
use the term well-mixed site-based models to refer to this
class of models, because between generations there is
mixing of individuals across the entire system. It is
important to note then, that the results discussed here
are not directly applicable to all individual-based
models, in particular not to those where individuals
disperse only locally. However, many individual-based
models which are not explicitly spatial or in which
individuals disperse over large distances relative to the
size of the entire system will have an analogue as a well-
mixed site-based model.

We now define mathematically the type of models we
will consider and state the results we have proved about
these models: the examples in the next section will
further illuminate the usefulness of these results in
specific cases. On first reading it may be helpful to skip
straight to these examples, and in particular Fig. 1 and
the accompanying description of contest competition,
before reading the more general model definition given
here.

2.1. Model definition

Consider a fixed number n of resource sites and s

species, which correspond to different animal species or
different phenotypes, and which will interact at the sites.
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On generation t the total community population across
all sites of species i is denoted as Mi;t: The s-dimensional
vector

Mt ¼ ðM1;t;y;Ms;tÞAZs

thus denotes the state of the total population at time t:
The dynamics of Mt are determined by the distribu-

tion of the populations amongst resource sites. The Mt

individuals are first distributed uniformly at random
between the n sites, giving C ¼ ðC1;y;CnÞ; where
Ci ¼ ðCi;1;y;Ci;sÞT describes the content of site i: The
content of each site is then modified according to an
interaction. For specific models, the interaction is
defined according to how the individuals of different
species at site i might breed, compete or prey on each
other, etc. The interactions at each site are independent
of those at all other sites and are determined by an
interaction function, f : Zs � Zr-Zs: The interaction
function acts on the site content along with a vector of r

mutually independent, but identically distributed for
each site, random variables to give a new site popula-
tion, fðCi; xiÞ: The purpose or xi is to allow between-site
variability, giving a stochastic outcome for each site
independent of other sites. For example, we may want to
specify that, for the same fixed value of kAZs; fðk; xiÞ
gives two or more different outcomes with the prob-
ability of each outcome dependent upon one of the
values in xi:

After interaction, the population at site i is fðCi; xiÞ
and

Mtþ1 ¼
Xn

i¼1

fðCi; xiÞ ð1Þ

gives the total population on the next generation. As the
state space of the population process we take the vector
Xt :¼ Mt=nARs giving the population densities relative
to the number of sites. The population density at time
t þ 1 is thus

Xtþ1 ¼
1

n

Xn

i¼1

fðCi; xiÞ: ð2Þ

We now present some results concerning the stochastic
dynamical systems defined by Eqs. (1) and (2).

2.2. Density approximation

When n is large, Eq. (2) can be approximated by a
deterministic dynamical system. The density approxima-
tion is based on the expected population of Xtþ1 which is
determined by the following proposition.

Proposition 1. As n-N if the population density is Xt ¼
x ¼ Mt=n at time t; on generation t þ 1 the expected

population density is

E½Xtþ1jXt ¼ x
 :¼ FðxÞ ¼ e�x
X
kAZs

xk

k!
E½fðk; xiÞ
; ð3Þ

where we use the notational convention where, for
example, k! ¼ k1!k2!yks! and xk ¼ xk1

1 xk2

2 yxks
s : The

proof of Proposition 1 is based on the fact that the
distribution of the population at each site, Ci; is ‘similar’
to a that of a vector of Poisson random variables, Ui

each with mean nx: In particular, as n becomes large the
sum of the expected Ui’s and the sum of Ci’s have the
same mean. A full proof is given in the appendix.

Proposition 1 can be used to define a deterministic
dynamical system: initial condition x0 ¼ X0 and, for tX0;

xtþ1 ¼ FðxtÞ ð4Þ
which we call the density approximation of Eq. (2) for the
population density. This density approximation will
prove the most common focus of our study of population
dynamics. However, an approximation of the absolute
number of individuals of each species, from Eq. (1), is
often useful. The dynamical system

mtþ1 ¼ nFðmt=nÞ ð5Þ
gives such an approximation.

2.3. Normal approximation

Site-based models are inherently stochastic while the
density approximation gives an approximation only of
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Fig. 1. Diagrammatic representation of a site-based contest model. On

generation t the individual animals (each represented by an ‘X’) choose

and enter a site (represented by boxes) at random. Only one animal per

site may successfully reproduce, producing b ¼ 3 offspring. Before the

next reproductive stage, each of the newly produced animals has

probability p ¼ 1=2 of dying. The surviving animals become the t þ 1

generation, and again choose reproductive sites.
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mean behaviour. It is thus important to establish how
large the fluctuations are around this approximation.
The following theorem gives us the variance of these
fluctuations:

Theorem 2. As n-N;

1ffiffiffi
n

p
Xn

i¼1

fðCi; xiÞ � nFðxÞ
 !

ð6Þ

converges in distribution to a normal distribution with

mean 0 and variance

vðxÞ ¼ Var½f
 � @F
@x

ðdiag xÞ @F
T

@x
; ð7Þ

where the variance Var½f
 is defined as the s � s matrix

e�x
X
kAZs

xk

k!
E½fðk; xiÞfðk; xiÞT
 � FðxÞFðxÞT:

FðxÞ is given by Eq. (3) above; @F
@x is the Jacobian matrix

of partial derivatives of FðxÞ; and diag x is the diagonal

matrix having x ¼ ðx1;y; xsÞ along the diagonal.

For a single species, s ¼ 1;

vðxÞ ¼ e�x
XN
k¼1

xk

k!
E½fðk; xiÞ2
 � FðxÞ2 � x

dF
dx

� �2

: ð8Þ

The proof of Theorem 2 is based on the fact that the
distribution of the population at each site, Ci; is
identical to that of a vector of Poisson random
variables, Ui; each with mean x; conditioned onPn

i¼1 Ui ¼ nx: The term Var½f
 is thus the variance for
the Ui’s while the adjustment involving the Jacobian of
F accounts for the conditioning that all the Ui sum to
nx: A full proof of Theorem 2 is given in the appendix.

We can use Theorem 2 to define a stochastic
dynamical system which approximates Xt: Since, by
definition in Eq. (2), Xtþ1 ¼ 1

n

Pn
i¼1 fðCi; xiÞ; for suffi-

ciently large n; the stochastic dynamical system

xtþ1 ¼ FðxtÞ þ
1ffiffiffi
n

p etðxtÞ; ð9Þ

where etðxtÞBNð0; vðxtÞÞ (multivariate normally distrib-
uted) will give a satisfactory description of Xtþ1:
Furthermore, since the standard deviation of Xtþ1 is
proportional to 1=

ffiffiffi
n

p
; for even larger n; Eq. (4) will give

an accurate description of our original site-based model.
In other words, as the number of sites increases,
fluctuations in the density decrease as 1=

ffiffiffi
n

p
: It should

be noted that n does not have to be very large for our
approximation to apply. Indeed, in many of the
examples we discuss in the next section n ¼ 100 or 200
and the error in the density approximation of the
standard deviation is less than 1=n:

A useful corollary (due to D.S. Broomhead, personal
communication) gives the stationary distribution of xt in
Eq. (9).

Corollary 3. Given a stable fixed point x� of the map

FðXtÞ; if X0 ¼ x� then as t-N (but conditioned on no

‘improbable excursions’ to other stable fixed points), Xt is

normally distributed with mean x� and variance approxi-

mately equal to wðx�Þ=n; where

wðx�Þ :¼
XN
t¼0

Jðx�Þtvðx�ÞJðx�Þt
T

ð10Þ

and Jðx�Þ ¼ @F
@xjx¼x�

is the Jacobian @F
@x evaluated at x�:

For a single species,

wðx�Þ ¼ vðx�Þ
XN
t¼0

dF
dx

����
x¼x�

 !2t

¼ vðx�Þ
1 � ðdF

dx

��
x¼x�

Þ2
: ð11Þ

The distribution of Xt close to x� is thus approximated
by a normal distribution with mean x� and variance
given by Eq. (10). This variance result may be easily
extended to find the distribution of Xt when the
corresponding F gives periodic orbits. The approxima-
tion of Xt is always conditional on no ‘improbable
excursions’. We now discuss the probability of such
excursions taking place.

2.4. Large deviations

Although the normal approximation of a site-based
model will prove useful for a wide range of applications, it
is not sufficient for calculating how long it will take a
population to become extinct. Indeed, such extinctions will
occur exactly when the population deviates from ‘normal
behaviour’. Furthermore, most biological realistic interac-
tion functions will give an absorbing state, x ¼ 0;
corresponding to extinction. This absorbing state will
usually be the only truly invariant distribution of a site-
based model, with the fixed points of F actually being
quasi-stable states around which the population density
fluctuates, with deviations of order 1=

ffiffiffi
n

p
; for long periods.

A common question of interest is then, how long a
population will make these normal fluctuations around the
fixed point before, through one or more large jumps, either
moving to another stable fixed point or becoming extinct.

The theory of large deviations may be used to
estimate the probability of such excursions through
large jumps (Dembo and Zeitouni, 1992). For most
reasonable interaction functions, it is possible to show
that large deviations away from a stable fixed point will
occur at a exponentially small frequency, i.e. of the
order OðaÞn; for some ao1: To this end, we will define a
two-point rate function Iðy; xÞ

Iðy; xÞ ¼ min
b

fLðb; xÞ �/b; ySg;
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where the logarithmic moment generating function L :
Rs � Rs-R is defined by

Lðb; xÞ ¼ log e�x
X
kAZs

xk

k!
expð/b;E½fðk; xiÞ
SÞ

 !
: ð12Þ

Note that /b; yS is the inner product, b1y1 þ?þ bsys;
of b and y: For a single species,

Iðy; xÞ ¼ min
b

log
XN
k¼0

xk

k!
ebE½fðk;xiÞ


 !
� x � by

( )
ð13Þ

is the rate function. The rate function can sometimes be
found by finding the minimum stationary point, b ¼
b�ðx; yÞ; of

@L
@b

¼ y ð14Þ

to give Iðy; xÞ ¼ Lðb�ðx; yÞ; xÞ �/b�ðx; yÞ; yS:
We now state the following large deviation theorem. It

says that the rate function, Iðy; xÞ; can be used to estimate
an upper bound for the probability of a transition from
one part of the population state space to another, and is a
direct application of Cramér’s theorem,

Theorem 4. As n-N; if XteK is the number of

individuals at time t; then

PrfXtþ1AK jXteKgpexpð�nðIK þ oð1ÞÞÞ; ð15Þ

where IK is the minimum of Iðy; xÞ; for xeK and for

yAK :

This result follows, like Theorem 2, from the fact that
each Ci can be approximated by a Poisson distributed
Ui; conditioned on the Ui’s summing to nx: The oð1Þ is
an adjustment to account for the conditioning (see
appendix for further notes on Cramér’s theorem and its
application).

For most biologically reasonably models, IK ¼
Iðxb; xbÞ; where xb lies on the boundary of the closed
set K : Thus, the bound is determined by the rate at
which points on the boundary of K remain on the
boundary. The resultant bound on the probability is
likely to be, relative to the real extinction probability,
extremely high. Indeed, the bound is not intended as an
accurate estimate of extinction probability and instead
merely demonstrates that probability of extinction is
exponentially small in the number of sites, n: While the
normal approximation in Theorem 2 gives the ‘stable’
population distribution away from extinction, Theorem
4 tells us then the time till extinction is reached grows
exponentially with the number of resource sites.

Obtaining accurate estimates of the real extinction
probability for a particular site model remains a difficult
problem. Since I is a rate equation, we might suppose
that the expected time until the population enters a set K

from a starting point, Xt ¼ x is simply 1=Iðxb; xÞ; where
xb is on the boundary of K : However, even if Xtþ1eK it
is not reasonable to assume that Xtþ1 ¼ x: Indeed, Xt

changes on every generation, and so then does Iðxb;XtÞ:
Furthermore, extinction may occur through two or
more ‘large deviations’ and it is only by looking at how a
sequence of such deviations might occur that we can
understand the extinction probability.

Despite the above observations, we now give some
heuristic discussion of how extinction time might be
estimated for a site model with a stable fixed point, x ¼ x�;
of Eq. (5). We might assume that Xtþt ¼ x for all toTe

up until XtþTe
AK: An estimate for the time, Te; at which

the population enters K through a large deviation is thencTeTe ¼ expðnIðxb; x�ÞÞ: ð16Þ

This estimate assumes that a single transition takes the
system away from the attracting fixed point, directly
into K : An extension of this, for a single species with
K ¼ ½0; xb
; which attempts to account for the ‘normal’
fluctuations around x� is

1=cTeTe ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2wðx�Þp
p Z

N

x¼xb

exp �ðx� � xÞ2

2wðx�Þ

 !
� expð�nIðxb; xÞÞ dx; ð17Þ

where wðx�Þ is as defined in Eq. (11). While possibly
incorporating the distribution of x before the population
enters K this estimate still fails to account for the fact
that for the population to enter K may take two or more
large deviations. We discuss these estimates further in
the context of a particular interaction function later in
this paper.

3. Single species competition

The applicability of site-based models and the above
results can only be made clear through examples and the
rest of this paper is dedicated to presenting examples
where Proposition 1, Theorems 2 and 4 can be applied.
Such a presentation serves not only to illustrate the
application of the theorems, but also aid in under-
standing the proof of the theorems given in the
appendix. We begin by presenting a contest competition
model, by first describing the model and deriving a
density approximation without reference to the general
site-based models of the previous section. In doing so,
we aim to highlight the logic of our approach, and thus
illustrate how the site-based framework may be applied
to specific models.

3.1. Contest competition

Consider the following description as the basis of a
site-based model of a contest for breeding sites
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(Nicholson, 1954). On generation t; Mt animals choose
one of n sites uniformly at random. If, after all the
animals are placed at the sites, a particular site contains
only one animal, then this animal produces b offspring.
If two or more animals choose the same site then only
one of these animals can successfully reproduce. We
choose the successful animal uniformly at random
amongst all the animals at the site. We also assume that
reproducing animals die, leaving only b offspring at the
site. Between breeding stages, the animals have a constant
probability, p; of surviving to the next stage of
reproduction. Fig. 1 illustrates how such contest competi-
tion works for three generations with n ¼ 10 sites.

The population density, relative to the number of sites
n ¼ 100; for a computer simulation of a contest model
for various values of b is shown in Fig. 2. From the
simulations it appears that provided b41=p the popula-
tion seems to settle at a stable level. While it is possible to
use such simulations to determine the equilibrium
population for particular parameter values, the simula-
tions do not provide a mathematical link between the
individual-level parameters and the population dynamics.
Ideally, we would like to plot the equilibrium popula-
tion—if indeed such an equilibrium does always exist—as
a function of b and p; without running simulations
repeatedly for different parameter values.

To understand the relationship between population
dynamics and the individual level parameters we derive
a simple mean approximation for our stochastic site-
based model. The conditional expectation of the
population at the next generation, Mtþ1 given that the
current population Mt ¼ m; is the sum of the expected
number of offspring produced each year multiplied by

their probability of survival until the next year:

EðMtþ1jMt ¼ mÞ ¼ p
Xn

s¼1

Eðno: of offspring

produced at site s j Mt ¼ mÞ:

By introducing the observation that sites which do not
contain an animal produce no offspring, while sites
containing one or more animals produce b offspring
we get

EðMtþ1jMt ¼ mÞ ¼ p
Xn

s¼1

bPðat least one animal

at site s j Mt ¼ mÞ:

Since the animals are distributed uniformly at random
between n cells we can write

EðMtþ1jMt ¼ mÞ ¼ bp
Xn

s¼1

ð1 � ð1 � 1=nÞmÞ

¼ rnð1 � ð1 � 1=nÞmÞ;

where we can think of r ¼ bp as the density-independent
reproductive gain per individual. The fact that 1 � ð1 �
1=nÞmp1 ensures that the expected population
EðMtþ1jMt ¼ mÞ will never exceed rn:

By noting that lnð1 � 1=nÞ þ 1=n-0 very quickly as
n-N we see that for large n;

EðMtþ1jMt ¼ mÞ ¼ rnð1 � e�m=nÞ:

By iterating this expectation we can find an approxima-
tion for the evolution of the population density, Xt ¼
Mt=n; of individuals:

xtþ1 ¼ f ðxtÞ :¼ rð1 � e�xtÞ: ð18Þ
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The map f has a fixed point at 0 and the set ½0; r
 is
invariant under its action. To ascertain the local stability
of 0, we note that the gradient of f ðxÞ is f 0ðxÞ ¼ re�x:
Thus, f 0ð0Þ41 provided the density-independent repro-
ductive gain, r41 the population will grow. When ro1
populations will decrease to zero.

If a population of one animal will grow (i.e. r41)
then f has exactly one non-zero fixed point which is
stable. Thus, the population stabilises at x�; the non-
zero solution to lnð1 � x=rÞ ¼ x: x� accurately approx-
imates the mean population density of the site-based
simulations. For example, when b ¼ 6 and p ¼ 0:2; the
attracting fixed point of f is x� ¼ 1:594; which can be
compared to that for the simulation in Fig. 2 where the
population density for b ¼ 6 and n ¼ 100 was on
average 1:589: In general, x� lies within 1=n of the
simulated mean. Eq. (18) thus gives a very accurate
description of the dynamics of our site-based model.

In the preceding discussion we have shown how a
density approximation can be derived for the specific
site-based contest model, without reference to the more
general site-based models presented in the previous
section. Contest competition may, however, be de-
scribed using the following interaction function:

fðCi; xiÞ ¼
xi; Ci40;

0; Ci ¼ 0;

�
ð19Þ

where xiBBinðb; pÞ: Then applying the density approx-
imation in Proposition 1 directly we get precisely the same
density approximation as in Eq. (18). Furthermore, we
can now employ the normal approximation in Theorem 2,
to obtain the population variance associated with f;

vðxÞ ¼Var½f
 � x
df

dx

� �2

¼ðrð1 � pÞ þ r2Þð1 � e�xÞ
� ðrð1 � e�xÞÞ2 � xðre�xÞ2

¼ rð1 � pÞð1 � e�xÞ þ r2e�xð1 � ð1 þ xÞe�xÞ: ð20Þ

Using Eq. (9), the dynamics of our site-based model are
thus approximated by the stochastic equation

xtþ1 ¼ rð1 � e�xtÞ þ
ffiffiffiffiffiffiffiffiffiffi
vðxtÞ

n

r
et; ð21Þ

where each etBNð0; 1Þ:
The equilibrium distribution of Eq. (21) can now be

solved, and is very close to that of simulations of the
original site-based model. Indeed, Fig. 3 compares, for
various values of b; the standard deviation around the
equilibrium distribution of the site-based contest model,
with the standard deviation estimated using Corollary 3:

wðx�Þ

¼ rð1 � pÞð1 � e�x� Þ þ r2e�x� ð1 � ð1 þ x�Þe�x� Þ
ð1 � ðre�x� Þ2Þ

:

ð22Þ

This standard deviation estimate is within 1=n of the
simulation variance for all values of b: The normal
approximation can thus produce extremely accurate
descriptions of the equilibrium distribution of our site-
based model, even when n ¼ 100 is relatively small. In
general, for interaction functions where the underlying
density approximation has a single stable fixed point,
both the mean and the variance can be estimated with an
error of only 1=n using Proposition 1 and Corollary 3,
respectively. It is thus possible to take the rules
governing interaction between individuals and give
accurate analytic approximations of the distribution of
the population over time.

3.2. Scramble competition

In contest competition, one winner takes all of the
resource no matter how many individuals compete for
that resource. Another equally plausible mechanism for
competition, known as scramble competition, is where
overcrowding of a particular resource can lead to
neither individual benefiting from the resource (Nichol-
son, 1954). Consider the following model of scramble
competition, where if two or more individuals compete
for the same resource site, none of them produce any
offspring. Individuals occupying a site on their own
produce b offspring, which survive with probability p:
The interaction function for this process is thus

fðCi; xiÞ ¼
xi; Ci ¼ 1;

0; otherwise;

�
ð23Þ

where xiBBinðb; pÞ:
The density approximation of the interaction function

in Eq. (23) is the exponential logistic or Ricker map:

xtþ1 ¼ rxte
�xt ; ð24Þ

where, as before, r ¼ bp: The non-zero equilibrium
density of individuals is thus the non-zero fixed point of
Eq. (24), x� ¼ lnðrÞ: Unlike contest competition, where
the population always reached a stable level, for
scramble competition if lnðrÞ42 then the population
will have periodic dynamics and, for even larger values
of r; chaotic dynamics (Sumpter and Broomhead, 2001).

Using Theorem 2, the estimated variance of the
scramble site model defined by (23) is

vðxtÞ ¼ rð1 � pÞxte
�xt

þ r2xte
�xtð1 � ð1 � xt þ x2

t Þe�xtÞ: ð25Þ

Fig. 4 compares the distribution of population densities
of the site-based scramble model with that of iterations
of the stochastic difference equation

xt ¼ rxte
�xt þ

ffiffiffiffiffiffiffiffiffiffi
vðxtÞ

n

r
et; ð26Þ

where each etBNð0; 1Þ: The three different parameter
values shown in Fig. 4 correspond to population
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dynamics with a stable fixed point ðr ¼ 6Þ; a period-2
cycle ðr ¼ 12Þ and chaotic oscillations ðr ¼ 18Þ: Pro-
vided the population does not become extinct, iteration
of Eq. (26) reproduces the distribution of the site-based
simulation extremely well.

3.3. Competition models from first principles

The density approximation can give important insight
into the theoretical justification of particular models. In
the preceding discussion we have shown how the
dynamics of scramble competition are captured by the
Ricker map and contest competition by a saturating
function with no turning point. Inverting Eq. (3), the
density approximation allows us to infer the interaction
rules implied by other difference equations. For
example, the logistic equation xtþ1 ¼ rxtð1 � xtÞ is often
cited as a simple example of a model of population
dynamics but less often fit to biological data, since it
can, for r44; produce negative populations. It is
interesting to note then

FðxÞ ¼ e�xexrxtð1 � xtÞ

¼ e�x rx � 3rx3

3!
� 8x4

4!
� 15x5

5!
�?

� �
:

Equating co-efficients to Eq. (3) gives an interaction
function

fðCi; xiÞ ¼ �rCiðCi � 2Þ
which for all Ci42 gives negative populations at a
resource site (i.e. each animal can give birth to a
negative number of offspring). There is thus little
biological justification for using the logistic equation

as a model of population dynamics when individuals are
known to reproduce after being distributed at random
between discrete resource sites. In this way, the density
approximation can be used to make explicit and test the
assumptions implied about animal interactions when
fitting difference equation models to field data.

3.4. Evolutionary stable strategies: scramble vs. contest

While fitting interaction functions to data addresses
problems in applied ecology, a theoretical question that
often arises when considering contest and scramble
competition concerns which type of competition is most
advantageous to the reproducing individual. In our
model, a population of individuals employing the
contest strategy are able to maintain a larger population
than those employing the scramble strategy: the contest
strategy gives an equilibrium population density close to
r; while, if the scramble site model has a stable
population density it is equal to lnðrÞ: In this sense,
the carrying capacity of the environment is dependent
on the interaction of the individuals. The fact that
contest gives a much larger population size does not
however imply that, given a choice of contest or
scramble strategies, contest is optimal for an individual.
To find the optimal or evolutionary stable strategy we
must consider interactions between contest and scram-
ble individuals.

Scramble individuals could be thought of as using the
resource either by exploiting it without regard for its
limited capacity: i.e. they adopt an aggressive behaviour
toward the resource which renders it unusable by any
other individual. To model this concept, we assume that

ARTICLE IN PRESS

5 10 15 20 25 30
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of offspring (b)

S
ta

nd
ar

d 
de

vi
at

io
n

Fig. 3. The standard deviation around the equilibrium distribution of the site-based model (crosses), taken over 5000 generations, compared to the

prediction in Eq. (22),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðx�Þ=n

p
(solid line). Here n ¼ 100 and p ¼ 0:2:

A. Johansson, D.J.T. Sumpter / Theoretical Population Biology 64 (2003) 497–517 505



a single scramble individual produces all the offspring
when at a resource site on its own or with only contest
individuals, but when at a site with one or more other
scramble individuals no offspring are produced. Contest
individuals produce no offspring whenever one or more
scramble individuals are present at a resource site. If
only contest individuals are present at a site then, as in
our original contest model, xiBBinðb; pÞ offspring are
produced by one randomly chosen individual.

These assumptions give an interaction function as
follows:

fððCi;1;Ci;2Þ; xiÞ

¼
ðxi; 0Þ; Ci;140 and Ci;2 ¼ 0;

ð0; xiÞ; Ci;1 ¼ 0 and Ci;2 ¼ 1;

ð0; 0Þ; otherwise;

8><>: ð27Þ

where Ci;1 and Ci;2 are, respectively, the number of
contest and scramble individuals at site i: In terms of

evolutionary game theory f can be thought of as a
payoff function for the two strategies. Note that in this
case xi is the same for scramble and contest individuals,
i.e. there is no cost to be paid by being a scramble
individual.

As with the separate contest and scramble models, we
can derive an approximation of our combined contest
and scramble model. Applying Proposition 1 directly we
get

xtþ1

ytþ1

� �
¼ F

xt

yt

� �
¼

rð1 � e�xtÞe�yt

ryte
�yt

� �
ð28Þ

for the evolution of the contest ðxtÞ and scramble ðytÞ
populations, respectively. We can see immediately that
the change in the number of scramble individuals does
not depend on the number of contest individuals, and
indeed equation for ytþ1 is equivalent to Eq. (24).
Eq. (28) shows, however, that the rate of growth of
contest individuals is always reduced by the inclusion
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of scramble individuals in the population. Furthermore,
when the scramble population reaches equilibrium at
y� ¼ lnðrÞ:
xtþ1 ¼ rð1 � e�xt=nÞe�lnðrÞ ¼ 1 � e�xt :

Differentiating the right-hand side with respect to xt we
get e�xto1 and hence xtþ1oxt for all xt40: Thus, at an
equilibrium population of scramble individuals, the
population of contesters always decreases. At small
populations of contesters and scramblers both popula-
tions will grow, but provided r is in the range of values
at which yt goes to a positive stable equilibrium, the
scramble individuals will eventually cause the contest
individuals to become extinct. A similar result holds for
the case when Eq. (28) has periodic and chaotic cycles,
contesters will eventually become extinct (result due
to J. Stark, personal communication).

The fact that scramble is selected for has conse-
quences for the dynamics of the population. Scramble
populations may have periodic or chaotic dynamics,
while contest populations will always have stable
dynamics. The large fluctuations in the population that
occur when the dynamics are unstable can result in
extinction of the population. The problem is com-
pounded by the fact that large values of r are also
selected for: if two scramble populations with different
values of r compete with each other, the population
with the smaller value of r will eventually go extinct.
Thus, in our model, chaotic population dynamics and
increased rates of population extinction are actually
selected for. At the level of the individual, scramble
strategy and large r; which are the conditions for chaos
at a population level, are the evolutionary stable
strategy. Indeed, our model results in a chaotic ‘tragedy
of the commons’: the contest strategy which maximised
resource usage is replaced by a scramble strategy which
at best greatly reduces resource usage and at worse leads
to population extinction.

4. Other site-based models

4.1. Co-operation

The application of the density and normal approx-
imations is not limited to questions of competition for
resource sites. We can also consider situations where
some form co-operation is required for offspring to be
produced at a resource site. For example, if two or more
individuals are needed per resource site in order for
offspring to be produced then the interaction function is

fðCi; xiÞ ¼
xi; Ci41;

0; otherwise;

�
ð29Þ

where, as before, xiBBinðb; pÞ and r ¼ E½xi
 ¼ bp:
Using Proposition 1, the density approximation is thus

xtþ1 ¼ hðxtÞ ¼ rð1 � ð1 þ xtÞe�xtÞ: ð30Þ

Cobweb diagrams for two qualitatively different para-
meterisations of Eq. (30) are shown in Fig. 5.

The function h has a fixed point at hð0Þ ¼ 0: The fact
that h0ð0Þ ¼ 0 indicates that 0 is a turning point.
Furthermore, as x-N; hðxÞ-r and hðxÞ has a point
of inflection at 1, where the shape of h changes from
convex to concave. For small values of r; hðxtÞ will fail
to cross the line xtþ1 ¼ xt (see Fig. 5a), but as r is
increased, a saddle node bifurcation occurs and two
fixed points (one stable and one unstable) appear (see
Fig. 5b). The new stable fixed point corresponds to a
sustainable positive population. An initial population
greater than the unstable fixed point will grow to a level
equal to the position of the stable fixed point, while an
initial population less than the unstable fixed point will
die out to zero. Solving numerically x ¼ hðxÞ for r gives
the bifurcation point, having value r ¼ 3:351; at which a
stable population is possible. Thus, individuals must on
average produce at least 3:351 offspring which survive to
the next generation in order to have a non-zero
sustainable population.

When r43:351; h has three fixed points: a stable
point x� ¼ 0 corresponding to extinction, an unstable
point x� ¼ u corresponding to the minimum sustainable
population and a stable point x� ¼ s corresponding to a
positive stable population. Given the site-based model
with a population fluctuating around the positive stable
equilibrium, we can use the large deviation theory
(Theorem 4) to predict time until till extinction for
various r: From Eq. (12), the logarithmic moment
generating function of h is

Lðb; xÞ ¼ logfebrex � ðebr � 1Þð1 þ xÞg � x

and we can solve Eq. (14) for b to get

Iðy; xÞ ¼ � log
r� y

re�xð1 þ xÞ

� �
� y

r
log

yð1 þ xÞ
ðr� yÞðex � 1 � xÞ

� �
ð31Þ

the rate function of h:
Fig. 6 shows time till extinction for the co-operation

model starting with a population of nbp; where n ¼ 100;
p ¼ 0:01 and b ranges from 335 to 363 (i.e. r ranges
from 3:35 to 3:63). The crosses show the mean time till
extinction for 100 simulations, for each parameter value,
of the site-based model. The solid and dotted lines show
various bounds and estimates on the probability of
extinction and estimates on the time till extinction. The
extinction time for the site model simulations grow
exponentially with b: Once r exceeds 3:63; each
simulation of the site model takes over a day to execute
on a fast desktop computer.

We now describe in detail where the bounds and
estimates of extinction time shown in Fig. 6 are
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obtained. Recall, from Eq. (15) that we can calculate an
absolute upper bound for the probability of extinction
by defining a set K that contains 0 but does not contain
s: A natural candidate for this set is K ¼ ½0; u
; since
below u the population will ‘usually’ go to 0 and above
u the population will ‘usually’ go toward s: The dotted
line at the bottom of Fig. 6 is

expðnIðu; uÞÞ ð32Þ

the lower bound on extinction time. Clearly, this bound
lies a long way from the actual extinction time of the
site-based simulations but it serves to prove that

extinction time does indeed grow exponentially with
the number of sites n:

The dashed and solid lines in the middle part of Fig. 6
are estimated extinction times using our heuristics in
Eqs. (16) and (17), respectively. The dashed line is
derived from Eq. (16),

2 expðnIðu; sÞÞ ð33Þ

which is twice the rate at which s goes u: The
multiplication by a factor of 2 comes from the fact that
when the population is at exactly the minimum
sustainable level it will, with a probability of approxi-
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mately 1=2; move toward extinction and otherwise with
a probability of approximately 1=2 move toward the
positive stable equilibrium. The solid line is an estimate
based on evaluating the integral in Eq. (17), for the
appropriate wðsÞ and Iðu; sÞ functions. This estimate
attempts to account for the ‘normal’ fluctuations around
x� as well as large deviations by evaluating the integral
in Eq. (17), for the appropriate wðsÞ and Iðu; sÞ
functions. Both of these estimates lie nearer to the mean
extinction times from the simulations than the lower
bound, but neither accurately captures the shape of the
curve as b increases.

The estimates obtained from Eqs. (16) and (17) are
however more accurate than that obtained by the
normal approximation. The dotted line toward the top
of Fig. 6 shows an extinction probability estimated by
numerically integrating

1 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wðsÞp

p Z
N

x¼u

exp �ðs � xÞ2

2wðsÞ

 !
dx; ð34Þ

where wðsÞ is calculated using Eq. (11). This approxima-
tion greatly over-estimates extinction time as b increases,
and contrasts strongly with the very good approxima-
tion provided by the normal approximation in the
‘short’ term: as evidenced in Figs. 3 and 4. While the
central area of the normal distribution and the distribu-
tion generated by site-based models are very similar, the
tails of these two distributions are very different. Thus,
although the normal approximation gives a very good
estimate of the ‘normal’ behaviour of the population
dynamics of site-based models while the population
remains away from extinction the approximation is very
poor at predicting when that extinction will occur. Large
deviation theory may be used to produce better
estimates, and we have suggested two candidates, but
more research is required in this area. In particular, we
need to establish if it really is a single large deviation, as
assumed in Eq. (33) or a number of deviations which
produce extinctions.

4.2. Predator–prey dynamics

There are a number of ways in which interactions
between predators and prey may be incorporated into
an interaction function. A simple example is as follows:

fððC1;i;C2;iÞ; ðx1;i; x2;i;RiÞÞ

¼

ð0; 0Þ; C1;i ¼ 0 and C2;i ¼ 0;

ðC1;ix1;i; 0Þ; C1;i40 and C2;i ¼ 0;

ð0;C2;ix2;iÞ; C1;i40 and C2;i40;

ð0;C2;iRiÞ; C1;i ¼ 0 and C2;i40;

8>>><>>>: ð35Þ

where C1;i and C2;i are, respectively, the number of prey
and predators at site i: Here, the prey will reproduce
without limit in the absence of predators, producing
x1;iBBinða; pÞ offspring each generation. However, if

the prey occupies the same resource site as a predator
then all predators at that site produce x2;iBBinðb; qÞ
offspring. Predators landing on sites without prey will
only survive with probability r; so that Ri is Bernoulli
distributed with parameter r:

The density approximation for the interaction func-
tion in Eq. (35) is given by

xtþ1

ytþ1

� �
¼

axte
�yt

ytðre�xt þ bð1 � e�xtÞÞ

� �
; ð36Þ

where a ¼ E½x1;i
 ¼ pa and b ¼ E½x2;i
 ¼ qb: These
equations have fixed points at x� ¼ y� ¼ 0 and x� ¼
lnððb� rÞ=ðb� 1ÞÞ and y� ¼ lnðaÞ: The eigenvalues of
the Jacobian of ðytþ1;xtþ1Þ at these fixed points are a
and r for the zero fixed point and 17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�y�ð1 � bÞ

p
for

the non-zero fixed point. Thus, provided, a41 the zero
fixed point is unstable. Furthermore, since the non-zero
fixed point either has one eigenvalue greater than unity
(for bo1) or a pair of complex eigenvalues with a
modulus greater than unity (for b41), it is also
unstable. This observation implies unlimited growth of
either prey alone or both predators and prey together.
However, for finite n there cannot be unlimited growth
of both prey and predators, since once predator
numbers are sufficiently large they will occupy every
resource site and kill every prey. Thus, predators will
always become extinct.

A small adjustment to the interaction function
completely changes the predator–prey dynamics. We
use the interaction function

fððC1;i;C2;iÞ; ðx1;i; x2;i;RiÞÞ

¼

ð0; 0Þ C1;ia1 and C2;i ¼ 0;

ðx1;i; 0Þ C1;i ¼ 1 and C2;i ¼ 0;

ð0;C2;ix2;iÞ C1;i40 and C2;i40;

ð0;C2;iRiÞ C1;i ¼ 0 and C2;i40;

8>>><>>>: ð37Þ

so that prey have scramble competition in the absence of
predators. The density approximation becomes

xtþ1

ytþ1

� �
¼ gðxt; ytÞ :¼

axte
�xt e�yt

ytðre�xt þ bð1 � e�xtÞÞ

� �
: ð38Þ

These equations now have three non-negative fixed
points: at ð0; 0Þ corresponding to extinction of both
predators and prey; at ðlnðaÞ; 0Þ corresponding to
predator extinction and the prey reaching the carrying
capacity for scramble competition; and at

ln
�r þ b
b� 1

� �
; ln

aðb� 1Þ
b� r

� �� �
;

where predator and prey co-exist. Dependent on the
values of a; b and r; iteration of Eq. (38) will either move
to one of these fixed points, enter a stable cycle or
(possibly) oscillate chaotically.

Fig. 7(a) shows a simulation of the site-based model
defined by the interaction function in Eq. (37) compared
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to a numerical solution to Eq. (38) and a numerical
solution of the normal approximation of the site-based
model. Fig. 7(b) shows the same data plotted as prey
population against predator population. The noise term
in for the normal approximation, when there are x prey
and y predators, is calculated from the covariance
matrix

vðxÞ ¼
aðð1 � pÞ þ aÞxe�x�y

yðrðð1 � rÞ þ 1Þe�x þ bðð1 � qÞ þ bÞð1� e�xÞÞ

� �
�

1 0

0 1

� �
� gðx; yÞgðx; yÞT � J

x 0

0 y

� �
JT; ð39Þ

where

J ¼
að1 � xÞe�x�y �axe�x�y

yðb� rÞe�x re�x þ bð1 � e�xÞ

� �
is the Jacobian of g:

The mean approximation model alone proves to be a
poor approximation of the site-based model. This can be
seen in the differences in the time series between the
mean approximation and the site-based simulations in
Fig. 7. The normal approximation provides a much
better match to the site-based model. Indeed, tested over
100 simulations, the difference between site-based
simulations and normal approximation in the mean
and variance was seen to be less than 1=n: Furthermore,
in all of these 100 site-based and normal approximation
simulations both populations went extinct, with an
average extinction time over 100 simulations of 1042
time steps for the site-based model and 975 for the
normal approximation. This accurate reproduction of
the dynamics of the site-based model by the normal
approximation is seen to hold for a whole range of
parameter values, even when n ¼ 200 is relatively small.

The difference between our first and second predator–
prey models illustrates an important point about
interaction functions: seemingly small changes in the

ARTICLE IN PRESS

500 520 540 560 580 600 620 640 660 680 700
0

0.5

1.0

1.5

Site−based simulation

500 520 540 560 580 600 620 640 660 680 700
0

0.5

1.0

1.5
P

re
y 

(x
t)

 &
 P

re
da

to
rs

 (
y t

)

Mean approximation

500 520 540 560 580 600 620 640 660 680 700
0

0.5

1.0

1.5

Normal approximation

Time (t)

0 1.0 2.0
0

0.5

1.0

1.5

2.0
Site−based simulation

Prey (xt)

P
re

da
to

rs
 (

y t)

0 1.0 2.0
0

0.5

1.0

1.5

2.0
Mean approximation

Prey (xt)

P
re

da
to

rs
 (

y t)

0 1.0 2.0
0

0.5

1.0

1.5

2.0
Normal approximation

Prey (xt)

P
re

da
to

rs
 (

y t)

(a)

(b)

Fig. 7. Comparison of a simulation of the site-based model defined by the interaction function in Eq. (37), a numerical solution to Eq. (38) and a

numerical solution of the normal approximation of the site-based model with noise determined by the variance matrix in equation. Solid lines are

prey population densities and dashed lines are predator population densities. Plot (a) is the results in time series form, while (b) is the same data

plotted as an implicit prey vs. predator form. In all simulations/solutions a ¼ 7; b ¼ 4; p ¼ 0:6; q ¼ 0:5 and r ¼ 0:5:
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interaction rules can produce rather large changes in the
dynamics of the population. In this sense, the interaction
functions we have considered here are not structurally
stable: the outcome in terms of population dynamics is
highly dependent on the structure of the rules. The
question then is how well these structural dependencies
are mimicked by real animal populations. For example,
are there circumstances in which removing density
dependence of prey can lead to both prey and predator
extinction? The power of the interaction function and
the application of Proposition 1 is that the consequences
of changes in the interactions of different species can be
easily examined. An interesting area of future research
would be a systematic comparison of different predator–
prey models both in terms of local interactions and
population dynamics.

5. Discussion and future directions

In this paper, we have presented a methodology for
understanding the dynamics of a whole range of
ecological systems that can be described in terms of
site-based interactions between individuals. The metho-
dology is grounded in three main results: the density
approximation (Proposition 1), the normal approxima-
tion (Theorem 2) and a large deviation theory (Theorem
4). The density approximation demonstrates a large
system size equivalence between site-based models and
difference equations. The normal approximation gives
the variance in this approximation and allows approx-
imation of site-based models even for relatively small
systems with complicated dynamics. The large deviation
theorem gives bounds and estimates on extinction
probability, not captured by the normal approximation.
The intention of this paper has been to lay a foundation
by stating, proving and illustrating these results. The
main challenge to our results is whether they are
applicable to understanding real ecological systems. As
a conclusion, we discuss how our models might be fitted
to field data, along with some ideas on how problems of
spatial scale and local dispersal might be addressed.
Finally, we note a role that site-based models may have
in understanding evolutionary dynamics.

5.1. Fitting models to field data

In order to predict future change in animal popula-
tions difference equation models can be fitted to time
series data of past observations of these populations.
Such fitting is commonly made by examining the year-
on-year density dependent reproduction or using other
general methods for the study of non-linear time series
(see, for a review, Berryman, 1999). One of the major
limitations of such an approach is that long time-series
of population change are seldom available—a typical

time series for a forest insect population has observa-
tions for 10s of years—while the fitting methods require
very long time series—10s of 1000s of observations are
needed to reliably fit chaotic time series (Turchin and
Taylor, 1992).

The power of the interaction function, f; is that it
allows prediction of population dynamics through local
observations of resource sites on a single generation
without the analysis of long and difficult to obtain time
series. We first describe the competition of individuals in
terms of usage of discrete resource sites over which, on
each generation, the individuals are distributed at
random. We then write down the appropriate interac-
tion function for such competition and thus derive the
equivalent difference equation model. This approach
works even when the population dynamics are periodic
or chaotic.

Sumpter and Broomhead (2001) applied exactly this
approach in predicting the population levels of a
parasitic mite, Varroa in the Asian honey bee, which
exhibited scramble competition. Data to parameterise
interaction functions has also been collected, for
example, for two species of bean bruchids: Callosobru-

chus analis which larvae exhibit contest competition and
C. phaseoli which larvae exhibit scramble competition
(Toquenaga and Fujii, 1991). Indeed, a whole range of
competition and interference patterns have been ob-
served between these beetles (Takano et al., 2001).
Coupled with information about how the beetles
distribute themselves between beans and data of
fecundity, very strong predictions about the dynamics
of laboratory populations should be possible.

The link between population dynamics and interac-
tion function goes both ways. Where it is impossible to
collect the data required to parameterise an interaction
function, population dynamics may be used to infer that
interaction function. For example, time series data may
be used to determine whether a particular species has a
scramble or contest competition, or to determine aspects
of predator–prey local interactions. Some population
dynamic models, such as the logistic map, have no
biologically realistic interaction function, suggesting
either that they are poor models or not explainable in
terms of non-overlapping generations with random
distribution of individuals at discrete interaction sites.

While the density approximation relates interaction
function to mean population dynamics, the normal
approximation gives a relationship between the mean of
an interaction function and its variance, assuming both
are derived from a particular interaction function. This
relationship has never, to our knowledge, been ac-
counted for when fitting models to ecological time
series. For example, fitting the Ricker map to noisy data
involves fitting either

rxte
�xt þ set or rxte

�xt eset ;
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where etBNð0; 1Þ (Turchin and Taylor, 1992; Berryman,
1999). However, when fitting to site-based models at
least, s should be considered a function of xt and is not
independent of r: Indeed, the proper way to fit the
Ricker map to data generated by a well-mixed site-based
system is by fitting the independent parameters r and
n in the stochastic difference equation

rxte
�xt þ

ffiffiffiffiffiffiffiffiffiffi
vðxtÞ

n

r
et; ð40Þ

where v is the noise term from Eq. (25). Caution is
required here, however, since Eq. (40) captures demo-
graphic noise only, i.e. stochasticity resulting from
interactions amongst individuals. In real ecological time
series, there is also variation in the environment,
modelled by appropriate changes in r and n: Determin-
ing the relative importance of demographic and
environmental noise and fitting appropriate models to
ecological data will require further theoretical develop-
ment.

5.2. Spatial scale

A central assumption made in describing an ecologi-
cal system as a well-mixed site-based model, is that all
interactions take place at discrete sites. While this may
hold for many ecological systems, such as those
described in the introduction, there are many more
systems for which this assumption fails to hold:
individuals often disperse globally but compete over a
continuous resource environment. We can however
think of the total continuous resource area of size a

being split into smaller resource areas of size r; such that
n ¼ a=r is the number of resource units. r corresponds to
a range over which an individual competes with other
individuals. If we are then to fit, for example, Eq. (40) to
data where individuals compete over a continuous and
stable resource environment the value of n obtained
should be approximately equal to a=r: This observation
could be used, in the absence of environmental noise, to
determine species interaction ranges from time series
data.

When two or more species interact they often do so at
two very different spatial scales. For example, an area
containing thousands of insects may contain zero or one
predatory bird (Gurney and Nisbet, 1998). This
disparity of scales can be incorporated into our models
by first identifying the scale for each of the species, then
distributing fractions of the species amongst resource
sites. For example, if there are yt birds, we could
distribute ryt bird attack units and xt insects amongst
the n resource units. In this case, r would be the
maximum number of resource units that a bird could
search for insects. A sensible interaction function could
thus be constructed and density approximation made,
though it is questionable as to whether the normal

approximation will also apply. Indeed, the variance may
depend on the shape of the search area for the birds.
Such models require more thorough investigation to
establish their biological realism and are a ripe area for
future research.

5.3. Local dispersal

Another assumption made about the site-based
models we discuss in this paper is that dispersal is
global. Although interactions take place at local
resource sites, between generations individuals are
well-mixed over the entire system, i.e. they can move
to any of the n sites. In many of the individual-based
models applied in understanding ecological systems
dispersal is local, and much of the interesting dynamics
observed in these models is due to the resulting spatial
effects (Diekmann et al., 2000). One of the intriguing
questions regarding these systems is how to capture their
behaviour of a complicated explicitly spatial system in a
small set of equations. To address this problem, Rand
and Wilson (1995) used delay embedding techniques to
show that the dynamics of a spatial resource–predator–
prey model could be captured in a set of four differential
equations. Pascual and Levin (1999) describe a spatial
predator–prey model, not far removed in terms of
interactions from the predator–prey model we discuss
above, and show when sampling of the population is
made at the appropriate spatial scale the dynamics are
well approximated by two differential equations. Such
observations are encouraging since they indicate that, on
some spatial scale at least, the population dynamics of
spatial site-based models can be approximately equiva-
lent to those of a small number of differential equations.

The important question then is how to relate an
interaction function and a set of rules for local dispersal
to a simple dynamical system consisting of a handful of
equations, without resorting to statistical fitting techni-
ques. The well-mixed site models discussed in this paper
show how this relationship is established when the
distances moved between interactions is large. Looking
at this relationship is in itself useful since it separates the
effects of discreteness and stochasticity in interactions
from those induced by the fact that interactions are local
in space. It is moreover possible that by identifying the
dispersal scale associated with a particular spatial
model, we may be able to approximate local dynamics
at that scale using a local normal approximation.
Indeed, the normal approximation was seen to apply
to systems where n was as small as 100 (contest
competition) or 200 (predator–prey model), while the
characteristic dispersal scale identified by Pascual and
Levin (1999) was as large as n ¼ 50 � 50 ¼ 2500:
Approximation of such a spatial model would thus take
the form of a lattice of stochastic coupled difference
equations. Mathematical analysis of these coupled
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equations would be considerably easier than analysis of
the original spatially explicit site-based model. Indeed,
coupled map lattice approximations may prove a useful
alternative to the higher-order moment approximation
techniques (Diekmann et al., 2000).

5.4. Evolutionary dynamics

The example of contest vs. scramble competition
which we analyse using the interaction function in
Eq. (27) is somewhat contrived. We may equally well see
contest individuals always beating scramble individuals
at the resource sites (see, for example, Toquenaga and
Fujii, 1990b). We use the example to illustrate the
connection between our approach and the dynamical
systems approach to evolutionary game theory (Hof-
bauer and Sigmund, 1998): our interaction function, f;
can be viewed as a payoff function and F as a replicator
equation. In the dynamical systems approach to game
theory the replicator equations take the form of
Lotka–Voltera equations, the equilibrium solution
of which determine the evolutionary stable strategy.
The same logic applies here, the solution to F gives
the evolutionary stable strategy for f: The added
feature in our case is the more general and realistic
nature of the dynamics described by F; which are
obtained by the local interactions between individuals.
Different strategies produce not only different
payoffs but also different population dynamics. In the
example of contest vs. scramble competition, the
evolutionary stable strategy of scramble produced
chaotic dynamics and led to a ‘tragedy of the commons’
whereby a resource was under exploited by the group as
a whole.

In comparing contest and scramble reproduction both
in terms of population dynamics and in terms of
evolutionary stable strategies we have given a clear
example of the relationship between population dy-
namics and evolution. In many ecological systems,
population dynamics and evolution run on similar
time-scales and both play a role in determining the
overall population dynamics. If we extend the contest
vs. scramble model so that movement between genera-
tions is not well-mixed (i.e. using a local dispersal
model) we see co-existence between scramble and
contest competition despite the fact that scramble
always defeats contest at a local resource site and
both have equal fecundity. This observation can
be explained by the locally unstable dynamics of
scramble competition compared to the always stable
dynamics of contest competition. The coupling of
population dynamics and evolution in this way thus
provides some insight into the age-old problem of
species co-existence. We hope that the results presented
in this paper will prove useful for analysing other
questions of this type.

Acknowledgments

We thank Minus van Baalen, Åke Brännström,
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Appendix A. Proofs

Proof (of Proposition 1). The conditional expectation
of the population at the next generation, Mtþ1 given that
the current population Mt ¼ m ¼ nXt; is the sum of the
expected number of offspring produced at each site.
Thus,

E½Mtþ1jMt ¼ m
 ¼
Xn

i¼1

E½fðCi; xiÞjMt ¼ m


¼
Xn

i¼1

X
kAZs

PrfCi ¼ kjMt ¼ mg

� E½fðk; xiÞjCi ¼ k
: ðA:1Þ

Since the animals are distributed uniformly at random
between n cells, the probability that a particular site
contains a particular individual of species j is 1=n: Thus,
the probability there are kj individuals of species j at a
particular site is

mj

kj

� �
ð1=nÞkj ð1 � 1=nÞmj�kj ;

where kj is the jth element of k: Since the distribution of
each species is independent

PrfCi ¼ kjMt ¼ mg ¼
m

k

� �
ð1=nÞkð1 � 1=nÞm�k;

where for notational convenience,

m

k

� �
¼
Ys

j¼1

mj

kj

� �
and ak ¼

Ys

j¼1

akj :

Eq. (A.1) thus becomes

E½Mtþ1jMt ¼ m
 ¼
Xn

i¼1

X
kAZs

m

k

� �
ð1=nÞkð1 � 1=nÞm�k

� E½fðk; xiÞ
:

Since the distribution of xi is independent of the site for
all i;

E½Mtþ1jMt ¼ m
 ¼ n
X
kAZs

m

k

� �
ð1=nÞkð1 � 1=nÞm�k

� E½fðk; xiÞ
: ðA:2Þ
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Recall that the population density is Xt ¼ Mt=n:
Proposition 1 then follows from the observation that
for large n; nkEn!=ðn � kÞ! and

m

k

� �
ð1=nÞkð1 � 1=nÞm�kE

xk

k!
ð1 � 1=nÞm�k-e�x x

k

k!

as n-N: Substituting the right-hand side into Eq. (A.2)
for each k gives

E½Xtþ1jXt ¼ x
-FðxÞ :¼ e�x
X
kAZs

xk

k!
E½fðk; xiÞ


as n-N; as in Proposition 1. &

Proof (of Theorem 2). The proof is based on the
observation that for large n the distribution of the site
count C ¼ ðC1;y;CnÞ can be derived from (though is
not equal to) the distribution of n independent random
variables U ¼ ðU1;y;UnÞ with identical distribution,
UiBPoðxÞ (s-dimensional Poisson distribution), where
Mt ¼ m ¼ nx is the number of individuals on generation
t (Kolchin et al., 1978). Step 1 is to show that
conditioned on

P
i Ui ¼ m the distributions of C and

U are equal. In step 2, we define a class of random
variables with elements

Df :¼ 1ffiffiffi
n

p
Xn

i¼1

fðUi; xiÞ � nFðxÞ
 !

;

where f is the interaction function. By the central limit
theorem, as n-N; Df has mean 0 and a known
variance. The question is then to relate the variance of
Df to the variance of Eq. (6) (for the Ci’s). We begin
this, in step 3, by first constructing a family of
interaction functions with the property that whenP

i Ui ¼ m; DKj
¼ 0; for j ¼ 1;y; s: In step 4, we

construct a Dz which is uncorrelated with, and thus
converges to a random variable independent of, the
DKj

’s. Through this independence, the limit distribution
of Eq. (6) is seen to be equivalent to the limit
distribution of Dz: The variance in Eq. (7), which is
equal to the variance of the limit distribution of Dz; is
thus obtained.

Step 1. We start by showing that the uniform
distribution of C ¼ ðC1;y;CnÞ is equal to that of
U ¼ ðU1;y;UnÞ where each element has identical
distribution UiBPoðxÞ; conditioned on the eventP

i Ui ¼ m ¼ nx: The distribution of C can be
expressed as follows. For each of the m individuals,
we choose uniformly at random and independently one
of n sites to put that specific individual into.
The distribution across all sites is then multinomial.

That is

PrfC1 ¼ k1;y;Cn ¼ kng

¼
m

k1;y; kn

� ��
nm

¼ m!

nm

Yn

i¼1

1

ki!

¼ m!
e�mxm

e�mmm

Yn

i¼1

1

ki!

¼ e�mxm

Prf
P

i Ui ¼ mg
Yn

i¼1

1

ki!

¼ PrfU1 ¼ k1;y;Un ¼ kng
Prf
Pn

i¼1 Ui ¼ mg

¼ Pr U1 ¼ k1;y;Un ¼ kn

Xn

i¼1

Ui ¼ m

�����
( )

:

Thus, the distributions of C and U conditioned onP
i Ui ¼ m are equal.
Step 2. Consider the class D of random variables Df

Df :¼ 1ffiffiffi
n

p
Xn

i¼1

fðUi; xiÞ � nFðxÞ
 !

; ðA:3Þ

where FðxÞ is the density approximation given by Eq. (3).
Since the Ui are independent identically distributed
random variables, by the central limit theorem, an element
of D; Df converges in distribution to a Gaussian random
variable as n-N with x fixed. Moreover, by the
‘multidimensional’ central limit theorem, the joint limit
distribution of Df ¼ ðDf1

;y;Dfs
Þ is an s-dimensional

Gaussian distribution with mean 0 and variance matrix

Var½DU;f
 ¼Var½f


:¼ e�x
X
kAZs

xk

k!
E½fðk; xiÞfðk; xiÞT


� FðxÞFðxÞT: ðA:4Þ

We can consider the correlation between two elements
of D using

Cov½Df1
;Df2


 ¼ e�x
X
k

xk

k!
E½f1ðk; xiÞf2ðk; xiÞT


� F1ðxÞF2ðxÞT: ðA:5Þ
Uncorrelated elements will have Cov½Df1

;Df2

 ¼ 0:

Furthermore, in the limit n-N; when all elements are
normally distributed, the condition that Cov½Df1

;Df2

 ¼

0 implies that Df1
and Df2

are independent (see, for
example, Capinski and Kopp, 1999, Chapter 6). Note
that D is a Hilbert space with an inner product defined
by the covariance in Eq. (A.5).

Step 3. Let DKj
; j ¼ 1;y; s be the elements of D given

by the interaction functions defined by

Kjðk; uÞ ¼ kj1s; ðA:6Þ
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i.e. Kj is the interaction function for which the number
of individuals produced of each species is equal to kj; the
number of species j at the site (this is only to be
considered as a mathematical construct, and not as
anything biologically realistic!). Note that

DKj
¼ 1

n

Xn

i¼1

kj � nxj

 !
; ðA:7Þ

which is equal to zero, under the condition used in step 1
that

Pn
i¼1 Ui ¼ nx and DKj

¼ 0:
By Eq. (A.5), for DfAD;

Cov½Df;DKj

 ¼ e�x

X
k

kjx
k

k!
fðkÞ � xjF½f
ðxÞ

¼ xj e�x
X
k

kjx
k

xjk!
fðkÞ � FðxÞ

 !

¼ xj

@F
@xj

: ðA:8Þ

Note that the DKj
; j ¼ 1;y; s form an orthogonal set,

in that Cov½DKi
;DKj


 ¼ 0 if iaj: Furthermore,
Var½DKj


 ¼ Cov½DKj
;DKj


 ¼ xj:
Step 4. Given an interaction function f; we can

construct the Dzl
; l ¼ 1;y; s; which are the orthogonal

projection of each Dfl
onto the subspace spanned by

DK ¼ ðDK1
;y;DKs

Þ: These are given by

Dzl
¼Dfl

� 1

x1
Cov½Dfl

;DK1

DK1

�?

� 1

xs

Cov½Dfl
;DKs


DKs

¼Dfl
�
Xs

j¼1

@Fl

@xj

DKj

by Eq. (48). Note that

Cov½Dzl
;DKi


 ¼Cov½Dfl
;DKi


 �
Xs

j¼1

@Fl

@xj

Cov½DKj
;DKi




¼ 0

for all i; so Dzl
is indeed orthogonal to all DKi

; i ¼
1;y; s: Thus, with Dz ¼ ðDz1 ;y;Dzs

Þ; we have

Df ¼ Dz þ
@F
@x

DK ; ðA:9Þ

where @F
@x is the Jacobian matrix of partial derivatives of

F: Since each Dzl
is orthogonal to all DKj

; Dz converges
to a Gaussian random variable that is independent of
the Gaussian limit distributions of DKj

; j ¼ 1;y; s: Thus
as n-N; by the multivariate central limit theorem, Dz

has variance

Var½Dz
 ¼ Var½Df
 �
@F
@x

diag x
@F
@x

T

; ðA:10Þ

where diag x is the diagonal matrix having x ¼
ðx1;y; xsÞ along the diagonal.

To conclude the proof, it remains to show that the
variance given in Eq. (A.10) is indeed the variance given
in the statement of the theorem. To show this we note
from step 1 that the distribution of C equals that of U
given that

Pn
i¼1 Ui ¼ nx: Thus under this condition, by

Eq. (A.9)

1ffiffiffi
n

p
Xn

i¼1

fðCi; xiÞ � nFðxÞ
 !

ðA:11Þ

is equal in distribution to Df: But we showed in step 3
that when

Pn
i¼1 Ui ¼ nx; DKj

¼ 0; so under this condi-
tion Eq. (A.11) is also equal in distribution to Df �
@F
@x Dk: Moreover, since Dz; in the limit, is stochastically
independent of DKj

; it follows that the limit distribu-
tion of Eq. (A.11) equals the limit distribution of
Dz: And thus, by Eq. (A.10), the limit distribution of
Eq. (6) is

vðxÞ ¼ Var½Dz
 ¼ Var½f
 � @F
@x

diag x
@FT

@x

as n-N and as stated in the theorem. &

Proof (of Corollary 3). (corollary and proof were made
by D.S. Broomhead). The proof involves iterating and
repeatedly linearising Eq. (9):

xtþ1 ¼FðxtÞ þ
etðxtÞffiffiffi

n
p

¼F Fðxt�1Þ þ
et�1ðxt�1Þffiffiffi

n
p

� �
þ etðxtÞffiffiffi

n
p

EFðFðxt�1ÞÞ þ JðFðxt�1ÞÞ
et�1ðxt�1Þffiffiffi

n
p þ etðxtÞffiffiffi

n
p

EFðFðFðxt�2ÞÞÞ þ JðFðFðxt�2ÞÞÞJðFðxt�2ÞÞ

� et�2ðxt�2Þffiffiffi
n

p þ JðFðxt�1ÞÞ
et�1ðxt�1Þffiffiffi

n
p þ etðxtÞffiffiffi

n
p

Eyy;

where JðxtÞ ¼ @F
@x

��
x¼xt

is the Jacobian. When the itera-
tions of Eq. (9) occur round a stable fixed point,
xtEFðxtÞExtþ1Ex� for all t so that

xtþ1Ex� þ
Xt

t¼0

Jðx�Þt
et�tðx�Þffiffiffi

n
p :

xtþ1 is thus normally distributed with mean x� and
variance wðx�Þ=n; where

wðx�Þ :¼ Var½XtjX0 ¼ x�
E
XN
t¼0

Jðx�Þtvðx�Þ Jðx�Þt
T

as given in Eq. (10). &

Proof (of Theorem 4). We do not provide a full proof
of Cramérs theorem (see, for example, the text book of
Dembo and Zeitouni, 1992). However, we note that
Cramérs theorem, like the central limit theorem, is seen
to hold for any random variable which is the mean of
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n independent random variables. From its definition, in
Eq. (2), Xtþ1; is a sum of random variables, though these
are not independent. We thus rely on the fact that as
n-N; Xtþ1 is well approximated by a sum of
independent Poisson distributed random variables
(as in the proof of Theorem 2). We note however that
in Eq. (12) we do not define the log generating function
of some adjusted function z but instead that of f: This
replacement leads to the oð1Þ term in the exponential on
the right-hand sides of the equation in Theorem 4 and of
Eq. (15). &

References

Berryman, A.A., 1999. Principles of Population Dynamics and their

Application. Stanley Thornes (Publishers), Cheltenham, UK,

pp. 243.

Boerlijst, M., Lamers, M.E, Hogeweg, P., 1993. Evolutionary

consequences of spiral waves in a host–parasitoid system. Proc.

R. Soc. London Ser. B 253, 15–18.

Bolker, B., Grenfell, B., 1995. Space, persistence and dynamics of

measles epidemics. Philos. Trans. R. Soc. London Ser. B 348,

309–320.

Capinski, M., Kopp, E., 1999. Measure, Integral and Probability.

Springer, London, pp. 227.

Czaran, T., 1998. Spatiotemporal Models of Population and Commu-

nity Dynamics. Chapman & Hall, London.

DeAngelis, D.L., Gross, L.J., 1992. Individual-based Models and

Approaches in Ecology: Populations, Communities and Ecosys-

tems. Chapman & Hall, London.

Dembo, A., Zeitouni, O., 1992. Large Deviation Techniques. Jones

and Bartlett Publishers, London, pp. 346.

Diekmann, U., Law, R., 2000. Relaxation projections and the method

of moments. In: Diekmann, U., et al. (Ed.), The Geometry of

Ecological Interactions. Cambridge University Press, Cambridge,

pp. 412–455.

Diekmann, U., Law, R., Metz, J.A.J., 2000. The Geometry of

Ecological Interactions. Cambridge University Press, Cambridge,

pp. 565.

Durrett, R., Levin, S.A., 1994a. Stochastic spatial models: a users’

guide to ecological applications. Philos. Trans. R. Soc. London Ser.

B 343, 329–350.

Durrett, R., Levin, S.A., 1994b. The importance of being discrete and

spatial. Theor. Popul. Biol. 46, 363–395.

Ermentrout, G., Edelstein-Keshet, L., 1992. Cellular automata

approaches to biological modelling. J. Theor. Biol. 160, 97–133.

Gurney, W.S.C., Nisbet, R.M., 1998. Ecological Dynamics. Oxford

University Press, Oxford, pp. 335.

Hanski, I., 1999. Metapopulation Ecology. Oxford University Press,

Oxford, pp. 313.

Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Popula-

tion Dynamics. Cambridge University Press, Cambridge,

pp. 323.

Iwao, K., Ohsaki, N., 1996. Inter- and intraspecific interactions among

larvae of specialist and generalist parasitoids. Resource Popul.

Ecol. 38, 265–273.

Iwasa, Y., Nakamaru, M., Levin, S.A., 1998. Allelopathy of bacteria

in a lattice population: competition between colicin-sensitive and

colicin-producing strains. Evol. Ecol. 12, 785–802.

Keeling, M.J., 2002. Using individual-based simulations to test

the Levins metapopulation paradigm. J. Anim. Ecol. 71,

270–279.

Keeling, M.J., Gilligan, C.A., 2000. Metapopulation dynamics of

bubonic plague. Nature 407, 903–906.

Keeling, M.J., Wilson, H.B., Pacala, S.W., 2000. Reinterpreting space,

time lags, and functional responses in ecological models. Science

290, 1758–1761.

Keeling, M.J., Wilson, H.B., Pacala, S.W., 2002. Deterministic limits

to stochastic spatial models of natural enemies. Am. Nat. 159,

57–80.

Keeling, M.J., et al., 2001. Dynamics of the 2001 UK foot and mouth

epidemic: stochastic dispersal in a heterogeneous landscape.

Science 294, 813–817.

Kerr, B., Riley, M.A., Feldman, M.W., Bohannan, B.J.M., 2002.

Local dispersal promotes biodiversity in a real-life game of rock-

paper-scissors. Nature 418, 171–174.

Kolchin, V.F., Sevastyanov, B.A., Chistyakov, V.P., 1978. Random

Allocations. Winston–Wiley, New York.

Levins, R., 1969. Some demographic and genetic consequences of

environmental heterogeneity for biological control. Bull. Entomol.

Soc. Am. 15, 237–240.

Levins, R., 1970. Extinction. Lecture Notes Math. 2, 75–107.

Nicholson, A.J., 1954. An outline of the dynamics of animal

populations. Aust. J. Zool. 2, 9–65.

Nowak, M.A., May, R.M., 1992. Evolutionary games and spatial

chaos. Nature 359, 826–829.

Pacala, S.W., 1986a. Neighbourhood models of plant population

dynamics. 2. Multispecies models of annuals. Theor. Popul. Biol.

29, 262–292.

Pacala, S.W., 1986b. Neighbourhood models of plant population

dynamics. 4. Single-species and multispecies models of annuals

with dormant seeds. Am. Nat. 128, 859–878.

Pacala, S.W., Silander, J.A., 1985. Neighbourhood models of plant

population dynamics. 1. Single-species models of annuals. Am.

Nat. 125, 385–411.

Pacala, S.W., Tilman, D., 1996. Limiting similarity in mechanistic and

spatial models of plant competition in heterogeneous environ-

ments. Am. Nat. 143, 222–257.

Pascual, M., Levin, S.A., 1999. From individuals to population

densities: searching for the intermediate scale of nontrivial

determinism. Ecology 80, 2225–2236.

Prinkkila, M-L., Hanski, I., 1995. Complex competitive interactions in

four species of Lucilia blowflies. Ecol. Entomol. 20, 261–272.

Rand, D.A., 1999. Correlation equations and pair approximations

for spatial ecologies. In: McGlade, J. (Ed.), Theoretical Ecology,

Vol. 2, Blackwell, Oxford, pp. 140–142.

Rand, D.A., Wilson, H.B., 1995. Using spatio-temporal chaos and

intermediate-scale determinism to quantify spatially extended

ecosystems. Proc. R. Soc. London Ser. B 259, 111–117.

Rath, W., 1999. Co-adaptation of Apis cerana Fabr. and Varroa

jacobsoni Oud. Apidologie 30, 97–110.

Royama, T., 1992. Analytical Population Dynamics. Chapman & Hall,

London, pp. 369.

Sumpter, D.J.T., Broomhead, D.S., 2001. Relating individual beha-

viour to population dynamics. Proc. R. Soc. London Ser. B 268,

925–932.

Takano, M., Toquenaga, Y., Fujii, K., 2001. Polymorphism of

competition type and its genetics in Callosobruchus maculatus

(Coleoptra: Bruchidae). Popul. Ecol. 43, 265–273.

Thomas, J.A., Elmes, G.W., Wardlaw, J.C., 1993. Contest competition

among Maculinea rebeli butterfly larvae in ant nests. Ecol.

Entomol. 18, 73–76.

Toquenaga, Y., 1993. Contest and scramble competitions in

Callosobruchus maculatus (Coleoptra: Bruchidae) II. Larval com-

petition and interference mechanisms. Resource Popul. Ecol. 35,

57–68.

Toquenaga, Y., Fujii, K., 1990a. Contest and scramble competition

between two bruchid species (Coleoptra: Bruchidae) I. Larval

ARTICLE IN PRESS
A. Johansson, D.J.T. Sumpter / Theoretical Population Biology 64 (2003) 497–517516



competition curves and interference mechanisms. Resource Popul.

Ecol. 32, 349–363.

Toquenaga, Y., Fujii, K., 1990b. Contest and scramble competition

between two bruchid species (Coleoptra: Bruchidae) III. Multiple-

generation competition experiment. Resource Popul. Ecol. 32, 187–197.

Toquenaga, Y., Fujii, K., 1991. Contest and scramble competition

between two bruchid species (Coleoptra: Bruchidae) II. Larval

competition experiment. Resource Popul. Ecol. 33, 129–139.

Tuda, M., 1998. Evolutionary character changes and population

responses in an insect host–parasitoid experimental system.

Resource Popul. Ecol. 40, 293–299.

Tuda, M., Iwasa, Y., 1998. Evolution of contest competition

and its effect on host–parasitoid dynamics. Evol. Ecol. 12,

855–870.

Turchin, P., Taylor, A.D., 1992. Complex dynamics in ecological time

series. Ecology 73 (1), 289–305.

ARTICLE IN PRESS
A. Johansson, D.J.T. Sumpter / Theoretical Population Biology 64 (2003) 497–517 517


	From local interactions to population dynamics in site-based models of ecology
	Introduction
	Site-based models
	Model definition
	Density approximation
	Normal approximation
	Large deviations

	Single species competition
	Contest competition
	Scramble competition
	Competition models from first principles
	Evolutionary stable strategies: scramble vs. contest

	Other site-based models
	Co-operation
	Predator-prey dynamics

	Discussion and future directions
	Fitting models to field data
	Spatial scale
	Local dispersal
	Evolutionary dynamics

	Acknowledgements
	Proofs
	of Proposition 1
	of Theorem 2
	of Corollary 3
	of Theorem 4
	References


