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Group-living animals are often faced with choosing between one
or more alternative resource sites. A central question in such
collective decision making includes determining which individuals
induce the decision and when. This experimental and theoretical
study of shelter selection by cockroach groups demonstrates that
choices can emerge through nonlinear interaction dynamics be-
tween equal individuals without perfect knowledge or leadership.
We identify a simple mechanism whereby a decision is taken on the
move with limited information and signaling and without com-
parison of available opportunities. This mechanism leads to opti-
mal mean benefit for group individuals. Our model points to a
generic self-organized collective decision-making process indepen-
dent of animal species.

collective behavior � nonlinear dynamics � self-organization

The fundamental ecological issue of determining the distri-
bution of animal group sizes has traditionally been ap-

proached by models that assume that individuals possess perfect
information about alternatives and that there is no social effect
on the decisions. Ideal free-distribution models predict that the
distribution of organisms between resource sites will be one that
maximizes individual benefit, given the constraints of competi-
tion between conspecifics (1). Group-membership games are
applied to aggregation economies, where cooperation among
conspecifics enhances resource harvesting, and, therefore, indi-
viduals in groups are more efficient than solitary conspecifics
(1). These categories of models do not discuss the decision
mechanisms used by animals. However, expected outcomes of
these models probably depend on individual decision-making
mechanisms (2–5).

For group-living animals, decision making depends on both
social interactions and assessment of environmental opportuni-
ties. The important questions concerning the collective decision-
making mechanisms include determining which group members
induce the decision and whether it precedes action (4–7).
Networks of interactions and leadership can play an important
role in such context (5, 8–10). Some mechanisms require that a
small number of individuals foresee the possibilities and inform
their conspecifics (11, 12). Whether this explanation holds for
groups of insects, fishes, and birds constrained by crowding
effects, range of communication, limited cognitive abilities, and
limited signaling capabilities can be questioned.

Here, we address these two fundamental issues in collective
decision making: (i) how individuals induce the decision and
(ii) how to cope with crowding effects. We focus on the
collective choice of shelters or safe resting places that are
important resources for many gregarious species of cock-
roaches, in particular.

Results
We report an experimental and theoretical study of groups of
cockroaches (Blattella germanica) tested in a circular arena (see
Fig. 1A) with identical shelters. The ‘‘cockroaches-shelter’’ sys-
tem is well adapted to study collective decision making because
it provides an interplay between competition for the resources,

which have a limited carrying capacity, and cooperation,
whereby individuals aggregate. This interplay allows us to in-
vestigate the relationship between behavioral mechanisms and
optimality.

In our experimental setup, individuals have no a priori infor-
mation about resource distribution and decide only between
staying in a patch and leaving it to search for another. We take
into account conspecific attraction for individuals already in a
group that affects their probability of leaving to explore and the
crowding effect that influences their decision to join the en-
countered group.

Model for Collective Decision Making. Site selection by cockroaches
results from shifts between resting in shelters and exploration of
the arena by the insects. We extend previous studies (13–14) and,
on a larger data set, we validate a dynamical model of aggrega-
tion, based on the behavior of individual cockroaches (see
Supporting Materials and Methods, which is published as sup-
porting information on the PNAS web site). Each individual in
shelter i has a probability Qi (inverse of resting time estimated
experimentally from the resting time distribution) to leave it and
to start to explore. Each exploring cockroach has a probability
to encounter and to join site i (Ri). Experiments show that Qi

decreases with the number of individuals xi present in shelter i
according to the following equation:

Qi �
�

1 � ��xi

S�
n. [1]

Eq. 1 formulates the interindividual attraction effect and
evaluates the probability of leaving a shelter according to its
physical characteristics and its occupation level. Parameter �
depends on shelter quality. The maximum probability of leaving
a shelter per unit of time is observed with solitary individuals. S
is the carrying capacity of the shelter, i.e., the number of
individuals that can rest in the shelter. Parameter � is a reference
surface ratio for estimating carrying capacities. When n � 1, the
social interactions lead to a threshold response in the residence
time as a function of conspecifics presence.

The probability for an exploring cockroach to join site i (Ri)
decreases with linear crowding effect:

Ri � ��1 �
xi

S� . [2]

Parameter � represents the maximal kinetic constant for
entering a shelter. Ri decreases with the ratio between the
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number of individuals present on site i (xi) and its carrying
capacity (S).

This model is based on observations showing that no long-
range interactions among cockroaches occur (13–15). Neither
chemical marking nor memory effect were significant because,
under our experimental conditions, the cockroaches were placed
in a new environment free of chemical traces laid by conspecifics
for a short time (24 h) and were surrounded by a uniform
enclosure, preventing cockroaches from using spatial elements
beyond the setup (15).

The differential equations describing the time evolution of the
number of individuals on each site (xi) is:

dxi

dt
� �xe� 1 �

x i

S� �
�x i

1 � �� x i

S�
n i � 1, . . . , p [3]

N � xe � �
i�1

p

x i, [4]

where xe is the population outside the shelters and p is the
number of shelters. When all of the shelters are qualitatively
identical, their parameters are equal. All their values are esti-
mated experimentally (n � 2, � � 0.01 s�1, � � 1667, and � �
0.001 s�1; see refs. 13 and 14, and Supporting Materials and
Methods. The parameter �, defined as the ratio S�N, measures
the carrying capacity expressed as a fraction or a multiple of the
total population N. To account for experimental f luctuations
(which can be large because of a small number of individuals),
we also performed stochastic simulations of the model (13).

Site Selection with Two Sites (P � 2). For two shelters (P � 2) with
small carrying capacities (S � N�2 or � � 1�2), the model
predicts that individuals fill the two shelters up to their maximum
(x1 � x2 � S), and the remaining individuals stay outside (Fig.
1B). Remarkably, when the carrying capacity of each shelter
exceeds half the population (n � S � N�2 or 1 � � � 1�2), the
shelters are no longer saturated, but individual equipartition
between the two shelters remains (x1 � x2 � N�2 � S, Fig. 1B,
plateau branch). Experiments with two shelters and 1 � � � 1�2
confirm the model predictions. The most frequent distribution
corresponds to an equal number of cockroaches in each shelter
(x1 � x2 � N�2) (Fig. 2 A and B, blue bars). Thus, the possible
solution of saturating one of the shelters and then placing the
surplus in the second shelter is not that produced at the group
level. The model demonstrates that this effect is a direct con-
sequence of the linear crowding effect (see Eq. 2).

When S increases and becomes larger than the size of the total
population (S � N or � � 1), the model predicts two new
emerging stable solutions corresponding to almost the entire
population in one shelter, leaving the second shelter empty and
no individuals outside. The site that receives the entire popula-
tion is chosen randomly. Equipartition between the two sites still
exists but is unstable. Experiments confirm that for large shelters
(� � 1) nearly all individuals aggregate in one of the shelters, the
other remaining empty (Fig. 2 A and B, blue bars). Indeed, the
experiments follow a bifurcation pattern that quantitatively
matches the stochastic simulations of the model.

Site Selection with More Than Two Sites (P > 2). Using the model,
we investigated the influence of the numbers of the shelters on
the pattern formation. When the number of shelters is larger
(P � 2, Fig. 3), and the total carrying capacity of the shelters is
below the size of the population (S � N�p or � � 1�p), the
individuals tend to use the scarce available space as much as
possible, saturating the sites, and the remaining individuals stay
outside.

When the shelter sizes increase (N�p � S � N or 1�pv � � �
1), a structured cascade of stable solutions appears as a function
of �. The partitions correspond, respectively, to N�p in p, N�(p �
1) in p � 1, N�(p � 2) in p � 2 of the p available sites. The
population does not use all of the available shelters as their
carrying capacity increases, and, among the selected sites, all
groups are of equal size. The plateau value of N�p at which the
population stops saturating the occupied shelters starts when the
total carrying capacity of the shelters is equal to the size of the
population (S � N�p). When N�(p � i � 1) � S � N�(p � i),
the population occupies p � i shelters, and i shelters remain
empty. For high values of S (S � N), whatever the number of
shelters, only one shelter is selected randomly (with a frequency
of 1�p), and it catches the entire population.

For example, the solution made by 50 cockroaches with three
shelters having a carrying capacity of 40 each, is: 25 cockroaches

Fig. 1. Experimental setup and bifurcation diagram of the collective choice
predicted by the model. (A) Choice tests with groups of cockroaches were
made in Petri dishes (14 cm) with small plastic caps for shelters. Numbers of
individuals in each shelter were recorded during the resting period 24 h after
the beginning of the test. (B) Steady states of Eqs. 3 and 4), giving the fraction
of individuals in one shelter as a function of the ratio of the carrying capacity
and total individual number � with the measured values � � 0.001 s�1, � � 0.01
s�1, � � 1,167, n � 2. The steady states and their stability are solved numerically
with MAPLE, see text for parameter values. Thick line, stable state; thin line,
unstable state. Only one of the shelters is represented for symmetry reason.
Above the graph, the corresponding shelter-filling outcome. When � � 1, only
one solution exists, corresponding to an equal number of individuals in each
shelter. When � � 1�2, the individuals fill the two shelters up to their
maximum (x1 � x2 � S) When � � 1�2, a plateau value is reached correspond-
ing to equipartition of the individuals (x1�n � x2�n � 1�2). When � � 1, three
solutions exist, among which one is unstable and corresponds to equiparti-
tion, and the two stable states correspond to all individuals in one of the
shelters i.e., [x1 � 0; x2�N � 1; xe � 0] or [x1�N � 1; x2 � 0; xe � 0].
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in one shelter, 25 in the second shelter, and none in the third.
This solution is adopted despite the possibility of filling up one
shelter to its maximum, one of the shelters (up to 40), and leaving
the surplus individuals (the remaining 10) in another shelter. If
the capacity of each shelter is �50, only one is occupied by all
of the cockroaches.

This collective choice is induced by the threshold response in
the residence time according to the presence of conspecifics. If
n � 1, i.e., in absence of this threshold, although social inter-
actions remain, the model shows that the choice disappears and
individuals are distributed equally between the shelters in all
cases.

Optimality of the Collective Choice. Adaptive value and cost–
benefit associated to the gregarious behavior referring to the
Allee effect have been widely discussed and for many organisms,
from bacteria to mammals (16). Under some circumstances,
individuals improve their survival potential by modifying their
local environment by aggregating (17). In situations where the
animals have to choose among identical resource sites, and there
is no cost associated with competition at the site, the highest
individual benefit is reached when all individuals are aggregated
at the site.

In a patchy environment, the benefit also depends on the patch
quality that individuals are visiting or exploiting. The intrapatch
competition among individuals for resources favors their disper-
sion and limits the size of the clusters and benefits from
gregariousness.

Ideal free-distribution theory provides a framework to study

the effects of density-dependent resource competition on dis-
tribution of individuals or habitat selection (1). This framework
predicts equal partition of individuals among identical resources.
In our experiments, such distributions are observed only for a
specific range of the control parameter (�). Rather, the exper-
iments are in full agreement with our mechanistic model (Eq. 3).

Aggregation reduces different physical stresses, such as pre-
dation, or increases food intake. Under these conditions, indi-
vidual benefit A, because of the gregarious behavior, increases
with the group size x, i.e., dA�dx � 0. For equivalent sites,
including the observed cooperative effect (i.e., n � 1, see
Supporting Materials and Methods). We consider for shelter i the
following revenue function:

Ai � � 1 � �� x i

S�
n� . [5]

Under our experimental conditions, the resources are the
number of shelters and their carrying capacity. Groups form by
accretion, and the probability that an individual joins a group (R)
decreases with the level of occupation of the shelter (x) (dR�dx �
0, see Eq. 2) because of crowding effects. This decrease of R
corresponds to a competition among individuals. Therefore, two
density-dependent effects control the mean individual benefit:
the advantage related to the gregarious behavior itself increasing
with the cluster size, and the probability of having access to the
resource decreasing with the density.

Taking into account the cost of crowding, which reduces the
probability of joining a shelter (Eq. 2), the mean benefit per
individual with p shelters is:

Fig. 2. Experimental individual distributions among shelters and bifurcation diagram. We report on 263 experiments for 10 combinations of N and S that were
tested corresponding to 10 different values of the ratio �. Three values of N and six values of S were used. Blue bars represent the experimental observed
frequency of individual distributions for each � value, related to the population fraction in shelter 1. Light blue bars correspond to the highest experimental
frequencies. (A) White bars predicted steady-state distribution by stochastic simulations of the model. The four values of � correspond to arrows in Fig. 1B. For
� � 0.5 and � � 0.84, i.e., before the bifurcation point predicted in Fig. 1B, the observed distributions are equipartitioned between the two shelters i.e., the class
40–60%; meaning that half of the individuals are in shelter 1, which is the distribution predicted by the model. Because no individual remained outside, the other
half was in the other shelter. The predicted plateau value of equipartition is observed experimentally. The possible solution of filling first one shelter and then
the other shelter is not selected. Above the bifurcation, for � � 1.25 and � � 2.20, the most frequently observed distribution corresponds to all individuals
selecting the same shelter. The highest observation frequencies are classes 0–20% or 80–100%, with equal observation frequency. This means that nearly all of
the individuals were either in shelter 1 or in shelter 2 and that the choice between them is random. (B) Experimental bifurcation diagram, as a function of �,
in quantitative agreement with the model.
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B �
�

N �
i�1

p

xi� 1 � �� x i

S�
n� � 1 �

x i

S� . [6]

We assume that the benefit outside a shelter Ae, � 0.
Eq. 6 may also be expressed as a function of fi � xi�N, the

fraction of the population in shelter i and � � S�N. B can be
nondimensionalized by dividing by the time constant �, and,
after this transformation, B depends mainly on parameter �:

B �
1
N �

i�1

p

fi� 1 � �� f i

�
� n� � 1 �

f i

�
� . [7]

When P � 2, an equal distribution of the population between
both shelters ( f1 � f2 � 0.5) always corresponds to an
extremum of B. When � � 1, i.e., S � N, the carrying capacity
of one shelter is below the size of the total population (Fig.
4A). In this case, B is maximum for f1 � 0.5 (� f2). When � �
1 (S � N), B is minimum for the equal distribution. The
optimal benefits are reached for asymmetrical distributions
between both shelters ( f1 � f2 or f2 � f1). Moreover, as �
increases, the asymmetry of the distribution corresponding to
the maximum of the benefit becomes larger. This means that
one of the shelters is favored over the other. When � � 1.2, the

highest benefits are reached for an aggregation of all of the
individuals in the same shelter ( f1 � 1, f2 � 0) or ( f2 � 0, f1 �
1). This preference is due to the dynamics of the process and
not to a difference in shelter quality, because both are equal.
Hence, the shelter that is selected is chosen randomly with a
probability of 0.5, as shown by the model and the experimental
data.

Comparing Fig. 4A to Figs. 1 and 2, the optimal benefits
correspond to the stable solution of the model. Indeed, for � �
1, the equipartition: f1 � f2 for which B is optimal is a stable
solution. A bifurcation occurs �� � 1, and then the system
presents three steady states: equipartition between the shelters
and two asymmetrical distributions. The equipartition of indi-
viduals is unstable, and B is a minimum. The two other solutions
are stable states and correspond to the values ( f1 � 1, f2 � 0) or
( f2 � 0, f1 � 1) that correspond to the optimal benefits. These
properties of B are robust. From a qualitative point of view, B,
as a function of fi and �, exhibits the same properties indepen-
dently of the value of the other parameters. The condition to
preserve them are that dAi�dxi � 0, and dRi�dxi � 0.

Analysis of Eq. 7 for other values of p shows similar
relationships between the stability of the states and their
associated benefit (Figs. 3 and 4B). Fig. 4B shows the fractions
of the population in shelter 1 (x1) that maximizes the benefit
B as a function of � for 2, 3, and 4 shelters [p � (2, 3, 4)].
Among all potential patterns, the cockroaches adopt the same
family of clustering patterns independent of the total number
of shelters. The cockroaches minimize the number of occupied
shelters and are equally distributed between the occupied
shelters.

The mechanism favors group cohesion by avoiding dispersal
among patches. Individuals optimize their partitioning according
to a tradeoff between being together and access to shelter
resources. This remarkable pattern of site selection corresponds
to a maximum of the benefit associated with clustering balanced
by limited resources.

For each value of �, we compute the maximum benefit and
the associated distributions of the individuals in the shelters.
When � increases, the maximum benefit switches from an
equal partition between the shelters to all individuals grouped
in only one of the equivalent shelters chosen randomly with a
probability � 1�p.

Discussion
The relationship between mechanism and optimality is an
important question for group-living organism (18, 19). The
collective decision-making process presented here results from
a simple activation–inhibition process: the larger the popula-
tion in a shelter, the lower the probability to enter and to leave
the shelter. Our experimentally validated model is based on
the following hypothesis: (i) individuals randomly explore the
environment and encounter sites; (ii) individuals select sites
according to their quality; (iii) individuals are inf luenced by
conspecifics through social amplification, with all animals
being equal; and (iv) individuals are constrained by crowding
effects. Without elaborate communication, global informa-
tion, and explicit comparison of available opportunities, the
animals are able to assess the availability of resources and
adapt the way they form groups among selected sites. The
collective decision emerges from the interactions between
equal individuals, initially possessing little information about
their environment.

It is remarkable, then, that these rules should produce a
collective pattern that maximizes individual fitness. The match
among the mechanistic model (Fig. 1B), the behavioral data
(Fig. 2B), and the optimality model (Fig. 4B) shows that the
cockroaches can use these simple behavioral rules to make
optimal decisions. Such optimization is only possible if the

Fig. 3. Bifurcation diagrams showing the fraction of individuals in one
shelter, (x1) in relation to � with the measured values � � 0.001 S�1, � � 0.01
S�1, and � � 1167; n � 2. Panels show examples for P � 3 and P � 4 shelters;
thin lines, unstable states; thick lines, stable states. For P � 3 and for low values
of S, the only stable solution is equipartition of individuals among the three
shelters (x1 � x2 � x3). When S increases (S � N�2), this state becomes unstable.
The stable branch corresponds to solutions where the individuals are equally
distributed only among two of the three shelters, the last one remaining
empty. For S � N, two branches for x1 are stable, corresponding to the solution
where only one shelter harbors all of the individuals and the two others are,
therefore, empty [(x1 � N, x2 � x3 � 0); (x1 � x3 � 0, x2 � N); (x1 � x2 � 0, x3 �
N)]. The branches corresponding to an equal distribution between two or
three shelters are unstable. For P � 4: compared to the previous case, one more
stable branch occurs, corresponding to equipartition among the four shelters.
When S increases, the cascade of new stable states corresponds to equiparti-
tion among three or two shelters. When S � N, the only stable state corre-
sponds to one of the shelters harboring all of the individuals. During the
emergence of steady states, zones of coexisting stable states are observed.
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system remains dynamic. At any moment, on average, the
individuals must be able to change their choice and leave
the group to start exploring again. Otherwise, the individual
repartition will tend again to a binomial distribution. Maximi-
zation of individual fitness depends on a constant flow of
information.

Positive feedback based on threshold response to presence of
conspecifics, described here, has already been experimentally
observed in different taxa of ants, cockroaches, spiders, and
vertebrates (20–24, 5). It is particularly well understood in ants,
where such a mechanism leads to robustness and optimality in
foraging response (25, 26). For ants, however, the aim is to
maximize group-level fitness. Our study confirms that the same
mechanism maximizes individual-level fitness.

We would predict that the collective decision-making process
studied here should have its equivalent in many gregarious
animals, including, for example, fish at aggregation devices (27).
This minimal model, modulated by species traits, should be
generic and relevant for understanding optimal group-size for-
mation. Indeed, to lead to optimal group sizes, natural selection
should play on only a limited number of phenotypic variations
like sensitivity to crowding or interattraction among conspecif-
ics. As is often observed with such self-organization mechanism,
the biology incorporates positive feedback at the individual
interaction level, and the environmental constraints produce
negative feedback (28–31).

Materials and Methods
Choice tests with groups of first instar cockroach larvae (B.
germanica) were made in Petri dishes (14 cm in diameter) with
two identical small plastic caps acting as shelters (Fig. 1 A). By
testing equal-quality opportunities, the existence of feedback

and the role of leadership or network of interactions can be
detected experimentally. When shelters differ in quality, the
results can be explained by the same mechanism presented here,
taking into account only a bias toward preferred shelters.

All tested cockroaches came from our reference strain. We
followed the same breeding and experimental procedures as
described in Amé et al. (13). Groups of larvae were introduced
into the setup before their nocturnal activity period. We report
experiments for three group sizes (n � 20, 50, and 100 individ-
uals) and six shelter sizes (S � 25, 32, 42, 68, 93, 110 individuals).
Ten combinations of N and S were tested corresponding to 10
different values of the ratio � � S�N. For a given value of �,
between 14 and 32 tests were performed (see supporting infor-
mation). The distributions of individuals among the shelters
were recorded during their resting period (24 h after the
beginning of the experiment) by counting the number of indi-
viduals in each shelter.

Preliminary experiments (68 tests) with two identical shel-
ters and very large populations (N �� S) were performed to
estimate carrying capacity of each of the six tested shelter sizes.
The fact that a large proportion of the total population
remained outside the shelters until the end of the test insured
that the shelters were saturated. The maximal number of
individuals filling up the shelters were then counted. Based on
these experiments, the functions and parameters of the model
were estimated.

We thank R. Jeanson, L. A. Giraldeau, C. Hemelrijk, N. Franks, and
F. X. Dechaume Moncharmont for critical reading of the manuscript.
This paper is a contribution to the project LEURRE funded by the
Future and Emerging Technologies program of the European Commu-
nity (IST-2001-35506). C.D. and J.L.D. are research associates from the
Belgian National Funds for Scientific Research.

Fig. 4. FFF. (A) Optimal benefit associated with individual distributions between two shelters of equal quality. The benefit function takes into account the
advantage of forming large groups and the costs of crowding and finding the sites (n � 2 in Eq.7). When � � 1, the maximum is observed for an equal distribution
of individuals between the two shelters, even when the shelters can contain more than N�2 individuals. As � increases, the benefit surface spreads �x1 � x2 �
N�2. The benefit maxima are found for all individuals in one of the shelters, thus maximizing group size. (B) Cascade of increasing benefit for two, three, and
four shelters. We show the individual distribution in the shelters maximizing the benefit (Eq. 7). For a given value of �, the benefit maximum is given by the
steady-state distribution among shelters in accordance with the model for collective decision (Eqs. 3 and 4). For intermediate value of � (�0.5, �1.25) the
individuals use only some of available shelters. The dynamics induces the emergence of rational distributions of the individuals among the available shelters.
These population fractions maximize group sizes, minimize the number of shelters used, and take into account crowding effects and the probability of
encountering the shelter.
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