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When the probability of measuring a particular value of some quantity varies inversely as

a power of that value, the quantity is said to follow a power law, also known variously as

Zipf’s law or the Pareto distribution. Power laws appear widely in physics, biology, earth

and planetary sciences, economics and finance, computer science, demography and the

social sciences. For instance, the distributions of the sizes of cities, earthquakes, forest

fires, solar flares, moon craters and people’s personal fortunes all appear to follow power

laws. The origin of power-law behaviour has been a topic of debate in the scientific

community for more than a century. Here we review some of the empirical evidence for

the existence of power-law forms and the theories proposed to explain them.

1. Introduction

Many of the things that scientists measure have a typical

size or ‘scale’—a typical value around which individual

measurements are centred. A simple example would be the

heights of human beings. Most adult human beings are

about 180 cm tall. There is some variation around this

figure, notably depending on sex, but we never see people

who are 10 cm tall, or 500 cm. To make this observation

more quantitative, one can plot a histogram of people’s

heights, as I have done in figure 1 (a). The figure shows the

heights in centimetres of adult men in the United States

measured between 1959 and 1962, and indeed the distribu-

tion is relatively narrow and peaked around 180 cm.

Another telling observation is the ratio of the heights of

the tallest and shortest people. The Guinness Book of

Records claims the world’s tallest and shortest adult men

(both now dead) as having had heights 272 cm and 57 cm

respectively, making the ratio 4.8. This is a relatively low

value; as we will see in a moment, some other quantities

have much higher ratios of largest to smallest.

Figure 1 (b) shows another example of a quantity with a

typical scale: the speeds in miles per hour of cars on the

motorway. Again the histogram of speeds is strongly

peaked, in this case around 75 mph.

But not all things we measure are peaked around a

typical value. Some vary over an enormous dynamic range,

sometimes many orders of magnitude. A classic example of

this type of behaviour is the sizes of towns and cities. The

largest population of any city in the US is 8.00 million for

New York City, as of the most recent (2000) census. The

town with the smallest population is harder to pin down,

since it depends on what you call a town. The author recalls

in 1993 passing through the town of Milliken, Oregon,

population 4, which consisted of one large house occupied

by the town’s entire human population, a wooden shack

occupied by an extraordinary number of cats and a very

impressive flea market. According to the Guinness Book,

however, America’s smallest town is Duffield, Virginia,

with a population of 52. Whichever way you look at it, the

ratio of largest to smallest population is at least 150000.

Clearly this is quite different from what we saw for heights

of people. And an even more startling pattern is revealed

when we look at the histogram of the sizes of cities, which is

shown in figure 2.

In the left panel of the figure, I show a simple histogram

of the distribution of US city sizes. The histogram is highly

right-skewed, meaning that while the bulk of the distribu-

tion occurs for fairly small sizes—most US cities have small

populations—there is a small number of cities with a
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population much higher than the typical value, producing

the long tail to the right of the histogram. This right-skewed

form is qualitatively quite different from the histograms of

people’s heights, but is not itself very surprising. Given that

we know there is a large dynamic range from the smallest to

the largest city sizes, we can immediately deduce that there

can only be a small number of very large cities. After all, in

a country such as America with a total population of 300

million people, you could at most have about 40 cities the

size of New York. And the 2700 cities in the histogram of

figure 2 cannot have a mean population of more than

36 108/2700=110 000.

What is surprising on the other hand, is the right panel of

figure 2, which shows the histogram of city sizes again, but

this time replotted with logarithmic horizontal and vertical

axes. Now a remarkable pattern emerges: the histogram,

when plotted in this fashion, follows quite closely a straight

line. This observation seems first to have been made by

Auerbach [1], although it is often attributed to Zipf [2].

What does it mean? Let p(x) dx be the fraction of cities with

population between x and x+dx. If the histogram is a

straight line on log – log scales, then ln p(x)= – a ln x+ c,

where a and c are constants. (The minus sign is optional,

but convenient since the slope of the line in figure 2 is

clearly negative.) Taking the exponential of both sides, this

is equivalent to

pðxÞ ¼ Cx�a; ð1Þ

with C=exp(c).

Distributions of the form (1) are said to follow a power

law. The constant a is called the exponent of the power law.

Figure 1. Left: histogram of heights in centimetres of American males. Data from the National Health Examination Survey,

1959 – 1962 (US Department of Health and Human Services). Right: histogram of speeds in miles per hour of cars on UK

motorways. Data from Transport Statistics 2003 (UK Department for Transport).

Figure 2. Left: histogram of the populations of all US cities with population of 10000 or more. Right: another histogram of

the same data, but plotted on logarithmic scales. The approximate straight-line form of the histogram in the right panel

implies that the distribution follows a power law. Data from the 2000 US Census.
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(The constant C is mostly uninteresting; once a is fixed, it is

determined by the requirement that the distribution p(x)

sum to 1; see section 3.1.)

Power-law distributions occur in an extraordinarily

diverse range of phenomena. In addition to city popula-

tions, the sizes of earthquakes [3], moon craters [4], solar

flares [5], computer files [6] and wars [7], the frequency of

use of words in any human language [2, 8], the frequency of

occurrence of personal names in most cultures [9], the

numbers of papers scientists write [10], the number of

citations received by papers [11], the number of hits on web

pages [12], the sales of books, music recordings and almost

every other branded commodity [13, 14], the numbers of

species in biological taxa [15], people’s annual incomes [16]

and a host of other variables all follow power-law

distributions*.

Power-law distributions are the subject of this article. In

the following sections, I discuss ways of detecting power-

law behaviour, give empirical evidence for power laws in a

variety of systems and describe some of the known

mechanisms by which power-law behaviour can arise.

Readers interested in pursuing the subject further may

also wish to consult the recent reviews by Sornette [18] and

Mitzenmacher [19], as well as the bibliography compiled by

Li{.

2. Measuring power laws

Identifying power-law behaviour in either natural or man-

made systems can be tricky. The standard strategy makes

use of a result we have already seen: a histogram of a

quantity with a power-law distribution appears as a straight

line when plotted on logarithmic scales. Just making a

simple histogram, however, and plotting it on log scales to

see if it looks straight is, in most cases, a poor way to

proceed.

Consider figure 3. This example shows a fake data set: I

have generated a million random real numbers drawn from

a power-law probability distribution p(x)=Cx – a with

exponent a= –2.5, just for illustrative purposes{. Panel

(a) of the figure shows a normal histogram of the numbers,

produced by binning them into bins of equal size 0.1. That

is, the first bin goes from 1 to 1.1, the second from 1.1 to

1.2, and so forth. On the linear scales used this produces a

nice smooth curve.

To reveal the power-law form of the distribution it is

better, as we have seen, to plot the histogram on

logarithmic scales, and when we do this for the current

data we see the characteristic straight-line form of the

power-law distribution, figure 3 (b). However, the plot is

in some respects not a very good one. In particular the

right-hand end of the distribution is noisy because of

sampling errors. The power-law distribution dwindles in

this region, meaning that each bin only has a few samples

in it, if any. So the fractional fluctuations in the bin

counts are large and this appears as a noisy curve on the

plot. One way to deal with this would be simply to throw

out the data in the tail of the curve. But there is often

useful information in those data and furthermore, as we

will see in section 2.1, many distributions follow a power

law only in the tail, so we are in danger of throwing out

the baby with the bathwater.

An alternative solution is to vary the width of the bins

in the histogram. If we are going to do this, we must also

normalize the sample counts by the width of the bins they

fall in. That is, the number of samples in a bin of width

Dx should be divided by Dx to get a count per unit interval

of x. Then the normalized sample count becomes

independent of bin width on average and we are free to

vary the bin widths as we like. The most common choice

is to create bins such that each is a fixed multiple wider

than the one before it. This is known as logarithmic

binning. For the present example, for instance, we might

choose a multiplier of 2 and create bins that span the

intervals 1 to 1.1, 1.1 to 1.3, 1.3 to 1.7 and so forth (i.e.

the sizes of the bins are 0.1, 0.2, 0.4 and so forth). This

means the bins in the tail of the distribution get more

samples than they would if bin sizes were fixed, and this

reduces the statistical errors in the tail. It also has the nice

side-effect that the bins appear to be of constant width

when we plot the histogram on log scales.

I used logarithmic binning in the construction of figure 2

(b), which is why the points representing the individual bins

appear equally spaced. In figure 3 (c) I have done the same

for our computer-generated power-law data. As we can see,

the straight-line power-law form of the histogram is now

much clearer and can be seen to extend for at least a decade

further than was apparent in figure 3 (b).

Even with logarithmic binning there is still some noise in

the tail, although it is sharply decreased. Suppose the

bottom of the lowest bin is at xmin and the ratio of the

widths of successive bins is a. Then the kth bin extends

from xk – 1=xmina
k – 1 to xk=xmina

k and the expected

number of samples falling in this interval is

*Power laws also occur in many situations other than the statistical

distributions of quantities. For instance, Newton’s famous 1/r2 law for

gravity has a power-law form with exponent a=2. While such laws are

certainly interesting in their own way, they are not the topic of this paper.

Thus, for instance, there has in recent years been some discussion of the

‘allometric’ scaling laws seen in the physiognomy and physiology of

biological organisms [17], but since these are not statistical distributions

they will not be discussed here.
{http://linkage.rockefeller.edu/wli/zipf/.
{This can be done using the so-called transformation method. If we can

generate a random real number r uniformly distributed in the range

04 r5 1, then x=xmin(1 – r)
71/a71 is a random power-law-distributed

real number in the range xmin4 x5? with exponent a. Note that there

has to be a lower limit xmin on the range; the power-law distribution

diverges as x?0—see section 2.1.
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Z xk

xk�1

pðxÞ dx ¼ C

Z xk

xk�1

x�a dx

¼ C
aa�1 � 1

a� 1
ðxmina

kÞ�aþ1:

ð2Þ

Thus, so long as a4 1, the number of samples per bin goes

down as k increases and the bins in the tail will have more

statistical noise than those that precede them. As we will see

in the next section, most power-law distributions occurring

in nature have 24a4 3, so noisy tails are the norm.

Another, and in many ways a superior, method of

plotting the data is to calculate a cumulative distribution

function. Instead of plotting a simple histogram of the data,

we make a plot of the probability P(x) that x has a value

greater than or equal to x:

PðxÞ ¼
Z 1

x

pðx0Þ dx0: ð3Þ

The plot we get is no longer a simple representation of the

distribution of the data, but it is useful nonetheless. If the

distribution follows a power law p(x)=Cx – a, then

PðxÞ ¼ C

Z 1

x

x0�a
dx0 ¼ C

a� 1
x�ða�1Þ: ð4Þ

Thus the cumulative distribution function P(x) also follows

a power law, but with a different exponent a – 1, which is 1

less than the original exponent. Thus, if we plot P(x) on

logarithmic scales we should again get a straight line, but

with a shallower slope.

But notice that there is no need to bin the data at all to

calculate P(x). By its definition, P(x) is well defined for

every value of x and so can be plotted as a perfectly normal

function without binning. This avoids all questions about

what sizes the bins should be. It also makes much better use

of the data: binning of data lumps all samples within a

given range together into the same bin and so throws out

Figure 3. (a) Histogram of the set of 1 million random numbers described in the text, which have a power-law distribution

with exponent a=2.5. (b) The same histogram on logarithmic scales. Notice how noisy the results get in the tail towards the

right-hand side of the panel. This happens because the number of samples in the bins becomes small and statistical

fluctuations are therefore large as a fraction of sample number. (c) A histogram constructed using ‘logarithmic binning’. (d) A

cumulative histogram or rank/frequency plot of the same data. The cumulative distribution also follows a power law, but

with an exponent of a – 1=1.5.
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any information that was contained in the individual values

of the samples within that range. Cumulative distributions

do not throw away any information; it is all there in the

plot.

Figure 3 (d) shows our computer-generated power-law

data as a cumulative distribution, and indeed we again see

the tell-tale straight-line form of the power law, but with a

shallower slope than before. Cumulative distributions like

this are sometimes also called rank/frequency plots for

reasons explained in Appendix A. Cumulative distributions

with a power-law form are sometimes said to follow Zipf’s

law or a Pareto distribution, after two early researchers who

championed their study. Since power-law cumulative

distributions imply a power-law form for p(x), ‘Zipf’s

law’ and ‘Pareto distribution’ are effectively synonymous

with ‘power-law distribution’. (Zipf’s law and the Pareto

distribution differ from one another in the way the

cumulative distribution is plotted—Zipf made his plots

with x on the horizontal axis and P(x) on the vertical one;

Pareto did it the other way around. This causes much

confusion in the literature, but the data depicted in the

plots are of course identical*.)

We know the value of the exponent a for our artificial

data set since it was generated deliberately to have a

particular value, but in practical situations we would often

like to estimate a from observed data. One way to do this

would be to fit the slope of the line in plots like figures 3 (b),

(c) or (d), and this is the most commonly used method.

Unfortunately, it is known to introduce systematic biases

into the value of the exponent [20], so it should not be relied

upon. For example, a least-squares fit of a straight line to

figure 3 (b) gives a=2.26+ 0.02, which is clearly

incompatible with the known value of a=2.5 from which

the data were generated.

An alternative, simple and reliable method for extracting

the exponent is to employ the formula

a ¼ 1þ n
Xn
i¼1

ln
xi
xmin

" #�1

: ð5Þ

Here the quantities xi, i=1. . .n are the measured values of

x and xmin is again the minimum value of x. (As discussed

in the following section, in practical situations xmin usually

corresponds not to the smallest value of x measured but to

the smallest for which the power-law behaviour holds.) The

derivation of this formula is given in Appendix B. An error

estimate for a can be derived by a standard bootstrap or

jackknife resampling method [21]; for large data sets of the

type discussed in this paper, a bootstrap is normally the

more computationally economical of the two.

Applying equation (5) to our present data gives an

estimate of a=2.500+ 0.002 for the exponent, which

agrees well with the known value of 2.5.

2.1 Examples of power laws

In figure 4 we show cumulative distributions of twelve

different quantities measured in physical, biological,

technological and social systems of various kinds. All have

been proposed to follow power laws over some part of their

range. The ubiquity of power-law behaviour in the natural

world has led many scientists to wonder whether there is a

single, simple, underlying mechanism linking all these

different systems together. Several candidates for such

mechanisms have been proposed, going by names like ‘self-

organized criticality’ and ‘highly optimized tolerance’.

However, the conventional wisdom is that there are

actually many different mechanisms for producing power

laws and that different ones are applicable to different

cases. We discuss these points further in section 4.

The distributions shown in figure 4 are as follows.

(a) Word frequency: Estoup [8] observed that the

frequency with which words are used appears to

follow a power law, and this observation was

famously examined in depth and confirmed by Zipf

[2]. Panel (a) of figure 4 shows the cumulative

distribution of the number of times that words occur

in a typical piece of English text, in this case the text

of the novel Moby Dick by Herman Melville{. Similar

distributions are seen for words in other languages.

(b) Citations of scientific papers: As first observed by

Price [11], the numbers of citations received by

scientific papers appear to have a power-law distribu-

tion. The data in panel (b) are taken from the Science

Citation Index, as collated by Redner [23], and are for

papers published in 1981. The plot shows the

cumulative distribution of the number of citations

received by a paper between publication and June

1997.

(c) Web hits: The cumulative distribution of the number

of ‘hits’ received by web sites (i.e. servers, not pages)

during a single day from a subset of the users of the

AOL Internet service. The site with the most hits, by

a long way, was yahoo.com. After Adamic and

Huberman [12].

(d) Copies of books sold: The cumulative distribution of

the total number of copies sold in America of the 633

bestselling books that sold 2 million or more copies

*See http://www.hpl.hp.com/research/idl/papers/ranking/ for a useful

discussion of these and related points.

{The most common words in this case are, in order, ‘the’, ‘of’, ‘and’, ‘a’ and

‘to’, and the same is true for most written English texts. Interestingly,

however, it is not true for spoken English. The most common words in

spoken English are, in order, ‘I’, ‘and’, ‘the’, ‘to’ and ‘that’ [22].
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Figure 4. Cumulative distributions or ‘rank/frequency plots’ of twelve quantities reputed to follow power laws. The

distributions were computed as described in Appendix A. Data in the shaded regions were excluded from the calculations of

the exponents in table 1. Source references for the data are given in the text. (a) Numbers of occurrences of words in the novel

Moby Dick by Hermann Melville. (b) Numbers of citations to scientific papers published in 1981, from time of publication

until June 1997. (c) Numbers of hits on web sites by 60000 users of the America Online Internet service for the day of 1

December 1997. (d) Numbers of copies of bestselling books sold in the US between 1895 and 1965. (e) Number of calls

received by AT&T telephone customers in the US for a single day. (f) Magnitude of earthquakes in California between

January 1910 and May 1992. Magnitude is proportional to the logarithm of the maximum amplitude of the earthquake, and

hence the distribution obeys a power law even though the horizontal axis is linear. (g) Diameter of craters on the moon.

Vertical axis is measured per square kilometre. (h) Peak gamma-ray intensity of solar flares in counts per second, measured

from Earth orbit between February 1980 and November 1989. (i) Intensity of wars from 1816 to 1980, measured as battle

deaths per 10000 of the population of the participating countries. (j) Aggregate net worth in dollars of the richest individuals

in the US in October 2003. (k) Frequency of occurrence of family names in the US in the year 1990. (l) Populations of US

cities in the year 2000.
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between 1895 and 1965. The data were compiled

painstakingly over a period of several decades by

Alice Hackett, an editor at Publisher’s Weekly [24].

The best selling book during the period covered was

Benjamin Spock’s The Common Sense Book of Baby

and Child Care. (The Bible, which certainly sold more

copies, is not really a single book, but exists in many

different translations, versions and publications, and

was excluded by Hackett from her statistics.)

Substantially better data on book sales than Hack-

ett’s are now available from operations such as

Nielsen BookScan, but unfortunately at a price this

author cannot afford. I should be very interested to

see a plot of sales figures from such a modern source.

(e) Telephone calls: The cumulative distribution of the

number of calls received on a single day by 51 million

users of AT&T long distance telephone service in the

United States. After Aiello et al. [25]. The largest

number of calls received by a customer on that day

was 375746, or about 260 calls a minute (obviously to

a telephone number that has many people manning

the phones). Similar distributions are seen for the

number of calls placed by users and also for the

numbers of e-mail messages that people send and

receive [26, 27].

(f) Magnitude of earthquakes: The cumulative distribu-

tion of the Richter magnitude of earthquakes

occurring in California between January 1910 and

May 1992, as recorded in the Berkeley Earthquake

Catalog. The Richter magnitude is defined as the

logarithm, base 10, of the maximum amplitude of

motion detected in the earthquake, and hence the

horizontal scale in the plot, which is drawn as linear,

is in effect a logarithmic scale of amplitude. The

power-law relationship in the earthquake distribution

is thus a relationship between amplitude and fre-

quency of occurrence. The data are from the National

Geophysical Data Center, www.ngdc.noaa.gov.

(g) Diameter of moon craters: The cumulative distribu-

tion of the diameter of moon craters. Rather than

measuring the (integer) number of craters of a given

size on the whole surface of the moon, the vertical

axis is normalized to measure the number of craters

per square kilometre, which is why the axis goes

below 1, unlike the rest of the plots, since it is entirely

possible for there to be less than one crater of a given

size per square kilometre. After Neukum and Ivanov

[4].

(h) Intensity of solar flares: The cumulative distribution

of the peak gamma-ray intensity of solar flares. The

observations were made between 1980 and 1989 by

the instrument known as the Hard X-Ray Burst

Spectrometer aboard the Solar Maximum Mission

satellite launched in 1980. The spectrometer used a

CsI scintillation detector to measure gamma-rays

from solar flares and the horizontal axis in the figure

is calibrated in terms of scintillation counts per

second from this detector. The data are from the

NASA Goddard Space Flight Center, umbra.nas-

com.nasa.gov/smm/hxrbs.html. See also Lu and

Hamilton [5].

(i) Intensity of wars: The cumulative distribution of the

intensity of 119 wars from 1816 to 1980. Intensity is

defined by taking the number of battle deaths among

all participant countries in a war, dividing by the total

combined populations of the countries and multi-

plying by 10000. For instance, the intensities of the

First and Second World Wars were 141.5 and 106.3

battle deaths per 10000 respectively. The worst war of

the period covered was the small but horrifically

destructive Paraguay-Bolivia war of 1932 – 1935 with

an intensity of 382.4. The data are from Small and

Singer [28]. See also Roberts and Turcotte [7].

(j) Wealth of richest Americans: The cumulative dis-

tribution of the total wealth of the richest people in

the United States. Wealth is defined as aggregate net

worth, i.e. total value in dollars at current market

prices of all an individual’s holdings, minus their

debts. For instance, when the data were compiled in

2003, America’s richest person, William H. Gates III,

had an aggregate net worth of $46 billion, much of it

in the form of stocks of the company he founded,

Microsoft Corporation. Note that net worth does not

actually correspond to the amount of money in-

dividuals could spend if they wanted to: if Bill Gates

were to sell all his Microsoft stock, for instance, or

otherwise divest himself of any significant portion of

it, it would certainly depress the stock price. The data

are from Forbes magazine, 6 October 2003.

(k) Frequencies of family names: Cumulative distribution

of the frequency of occurrence in the US of the 89000

most common family names, as recorded by the US

Census Bureau in 1990. Similar distributions are

observed for names in some other cultures as well (for

example in Japan [29]) but not in all cases. Korean

family names for instance appear to have an

exponential distribution [30].

(l) Populations of cities: Cumulative distribution of the

size of the human populations of US cities as

recorded by the US Census Bureau in 2000.

Few real-world distributions follow a power law over their

entire range, and in particular not for smaller values of the

variable being measured. As pointed out in the previous

section, for any positive value of the exponent a the function
p(x)=Cx – a diverges as x?0. In reality therefore, the

distribution must deviate from the power-law form below

some minimum value xmin. In our computer-generated
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example of the last section we simply cut off the distribution

altogether below xmin so that p(x)=0 in this region, but

most real-world examples are not that abrupt. Figure 4

shows distributions with a variety of behaviours for small

values of the variable measured; the straight-line power-law

form asserts itself only for the higher values. Thus one often

hears it said that the distribution of such-and-such a

quantity ‘has a power-law tail’.

Extracting a value for the exponent a from distributions

like these can be a little tricky, since it requires us to make

a judgement, sometimes imprecise, about the value xmin

above which the distribution follows the power law. Once

this judgement is made, however, a can be calculated

simply from equation (5)*. (Care must be taken to use the

correct value of n in the formula; n is the number of

samples that actually go into the calculation, excluding

those with values below xmin, not the overall total number

of samples.)

Table 1 lists the estimated exponents for each of the

distributions of figure 4, along with standard errors

calculated by bootstrapping 100 times, and also the values

of xmin used in the calculations. Note that the quoted

errors correspond only to the statistical sampling error in

the estimation of a; I have included no estimate of any

errors introduced by the fact that a single power-law

function may not be a good model for the data in some

cases or for variation of the estimates with the value

chosen for xmin.

In the author’s opinion, the identification of some of the

distributions in figure 4 as following power laws should be

considered unconfirmed. While the power law seems to be

an excellent model for most of the data sets depicted, a

tenable case could be made that the distributions of web

hits and family names might have two different power-law

regimes with slightly different exponents. And the data for

the numbers of copies of books sold cover rather a small

range—little more than one decade horizontally{. None-

theless, one can, without stretching the interpretation of the

data unreasonably, claim that power-law distributions have

been observed in language, demography, commerce,

information and computer sciences, geology, physics and

astronomy, and this on its own is an extraordinary

statement.

2.2 Distributions that do not follow a power law

Power-law distributions are, as we have seen, impressively

ubiquitous, but they are not the only form of broad

distribution. Lest I give the impression that everything

interesting follows a power law—an opinion that has been

espoused elsewhere—let me emphasize that there are quite

a number of quantities with highly right-skewed distribu-

tions that nonetheless do not follow power laws. A few of

them, shown in figure 5, are the following.

(a) The lengths of relationships between couples, which

although they span more than four orders of

magnitude appear to be exponentially distributed.

(b) The abundance of North American bird species,

which spans over five orders of magnitude but is

probably distributed according to a log-normal. A

log-normally distributed quantity is one whose

logarithm is normally distributed; see section 4.7

and [34] for further discussions.

(c) The number of entries in people’s email address

books, which spans about three orders of magnitude

but seems to follow a stretched exponential. A

stretched exponential is a curve of the form exp( –

axb) for some constants a, b.

(d) The distribution of the sizes of forest fires, which

spans six orders of magnitude and could follow a

power law but with an exponential cut-off.

This being an article about power laws, I will not discuss

further the possible explanations for these distributions, but

Table 1. Parameters for the distributions shown in figure 4.
The labels on the left refer to the panels in the figure. Exponent
values were calculated using the maximum likelihood method
of equation (5) and Appendix B, except for the moon craters
(g), for which only cumulative data were available. For this
case the exponent quoted is from a simple least-squares fit and
should be treated with caution. Numbers in parentheses give

the standard error on the trailing figures.

Quantity Minimum Exponent

xmin a
(a) frequency of use of words 1 2.20(1)

(b) number of citations to papers 100 3.04(2)

(c) number of hits on web sites 1 2.40(1)

(d) copies of books sold in the US 2000000 3.51(16)

(e) telephone calls received 10 2.22(1)

(f) magnitude of earthquakes 3.8 3.04(4)

(g) diameter of moon craters 0.01 3.14(5)

(h) intensity of solar flares 200 1.83(2)

(i) intensity of wars 3 1.80(9)

(j) net worth of Americans $600m 2.09(4)

(k) frequency of family names 10000 1.94(1)

(l) population of US cities 40000 2.30(5)

*Sometimes the tail is also cut off because there is, for one reason or

another, a limit on the largest value that may occur. An example is the

finite-size effects found in critical phenomena—see section 4.5. In this case,

equation (5) must be modified [20].
{Significantly more tenuous claims to power-law behaviour for other

quantities have appeared elsewhere in the literature, for instance in the

discussion of the distribution of the sizes of electrical blackouts [31,32].

These however I consider insufficiently substantiated for inclusion in the

present work.

330 M.E.J. Newman



the scientist confronted with a new set of data having a

broad dynamic range and a highly skewed distribution

should certainly bear in mind that a power-law model is

only one of several possibilities for fitting it.

3. The mathematics of power laws

A continuous real variable with a power-law distribution

has a probability p(x) dx of taking a value in the interval

from x to x+dx, where

p xð Þ ¼ Cx�a; ð6Þ

with a4 0. As we saw in section 2.1, there must be

some lowest value xmin at which the power law is

obeyed, and we consider only the statistics of x above

this value.

3.1 Normalization

The constant C in equation (6) is given by the normal-

ization requirement that

1 ¼
Z 1

xmin

p xð Þdx ¼ C

Z 1

xmin

x�adx ¼ C

1� a
x�aþ1
� �1

xmin
: ð7Þ

We see immediately that this makes sense only if a4 1,

since otherwise the right-hand side of the equation would

diverge: power laws with exponents less than unity cannot

be normalized and do not normally occur in nature. If

a4 1 then equation (7) gives

C ¼ a� 1ð Þxa�1
min ; ð8Þ

and the correct normalized expression for the power law

itself is

Figure 5. Cumulative distributions of some quantities whose values span several orders of magnitude but that nonetheless do

not obey power laws. (a) The length in days of the most recent sexual relationship of 1013 men and women interviewed in the

study of Foxman et al. (unpublished). (b) The number of sightings of 591 species of birds in the North American Breeding

Bird Survey 2003. (c) The number of addresses in the e-mail address books of 16881 users of a large university computer

system [33]. (d) The size in acres of all wildfires occurring on US federal lands between 1986 and 1996 (National Fire

Occurrence Database, USDA Forest Service and Department of the Interior). Note that the horizontal axes in frames (a) and

(c) are linear but in (b) and (d) they are logarithmic.
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p xð Þ ¼ a� 1

xmin

x

xmin

� ��a

: ð9Þ

Some distributions follow a power law for part of their

range but are cut off at high values of x. That is, above

some value they deviate from the power law and fall off

quickly towards zero. If this happens, then the distribution

may be normalizable no matter what the value of the

exponent a. Even so, exponents less than unity are rarely, if

ever, seen.

3.2 Moments

The mean value of x in our power law is given by

xh i ¼
Z 1

xmin

xp xð Þdx ¼ C

Z 1

xmin

x�aþ1dx

¼ C

2� a
x�aþ2
� �1

xmin
:

ð10Þ

Note that this expression becomes infinite if a4 2. Power

laws with such low values of a have no finite mean. The

distributions of sizes of solar flares and wars in table 1 are

examples of such power laws.

What does it mean to say that a distribution has no

finite mean? Surely we can take the data for real solar

flares and calculate their average? Indeed we can, but this

is only because the data set is of finite size. Equation (10)

can be made to give a finite value of hxi if we cut the

integral off at some upper limit, i.e. if there is a maximum

as well as a minimum value of x. In any real data set of

finite size there is indeed such a maximum, which is just

the largest value of x observed. But if we make more

measurements and generate a larger dataset, we have a

non-negligible chance of getting a larger maximum value

of x, and this will make the value of hxi larger in turn.

The divergence of equation (10) is telling us that as we go

to larger and larger data sets, our estimate of the mean

hxi will increase without bound. We discuss this more

below.

For a4 2 however, the mean does not diverge: the value

of hxi will settle down to a normal finite value as the data

set becomes large, and that value is given by equation (10)

to be

xh i ¼ a� 1

a� 2
xmin: ð11Þ

We can also calculate higher moments of the distribution

p(x). For instance, the second moment, the mean square, is

given by

x2
� � ¼ C

3� a
x�aþ3
� �1

xmin
: ð12Þ

This diverges if a4 3. Thus power-law distributions in this

range, which includes almost all of those in table 1, have no

finite mean square in the limit of a large data set, and thus

also no finite variance or standard deviation. We discuss

the meaning of this statement further below. If a4 3, then

the second moment is finite and well defined, taking the

value

x2
� � ¼ a� 1

a� 3
x2min: ð13Þ

These results can easily be extended to show that in

general all moments hxmi exist for m5 a7 1 and all higher

moments diverge. The ones that do exist are given by

xmh i ¼ a� 1

a� 1�m
xmmin: ð14Þ

3.3 Largest value

Suppose we draw n measurements from a power-law

distribution. What value is the largest of those measure-

ments likely to take? Or, more precisely, what is the

probability p(x) dx that the largest value falls in the interval

between x and x+dx?

The definitive property of the largest value in a sample is

that there are no others larger than it. The probability that

a particular sample will be larger than x is given by the

quantity P(x) defined in equation (3):

P xð Þ ¼
Z 1

x

p x0ð Þdx0 ¼ C

a� 1
x�aþ1 ¼ x

xmin

� ��aþ1

; ð15Þ

so long as a4 1. The probability that a sample is not

greater than x is 1 –P(x). Thus the probability that a

particular sample we draw, sample i, will lie between x and

x+dx and that all the others will be no greater than it is

p(x) dx6 [1 –P(x)]n – 1. Then there are n ways to choose i,

giving a total probability

p xð Þ ¼ np xð Þ 1� P xð Þ½ �n�1: ð16Þ

Now we can calculate the mean value hxmaxi of the

largest sample thus:

xmaxh i ¼
Z 1

xmin

xp xð Þdx ¼ n

Z 1

xmin

xp xð Þ 1� P xð Þ½ �n�1dx:

ð17Þ

332 M.E.J. Newman



Using equations (9) and (15), this is

xmaxh i ¼ n a� 1ð Þ

�
Z 1

xmin

x

xmin

� ��aþ1

1� x

xmin

� ��aþ1
" #n�1

dx

¼ nxmin

Z 1

0

yn�1

1� yð Þ1= a�1ð Þ dy

¼ nxminB n; a� 2ð Þ= a� 1ð Þð Þ;

ð18Þ

where I have made the substitution y=1– (x/xmin)
– a+1

and B(a, b) is Legendre’s beta-function*, which is defined

by

B a; bð Þ ¼ � að Þ� bð Þ
� aþ bð Þ ; ð19Þ

with G(a) the standard G-function:

� að Þ ¼
Z 1

0

ta�1exp �tð Þdt: ð20Þ

The beta-function has the interesting property that for

large values of either of its arguments it itself follows a

power law{. For instance, for large a and fixed b, B(a,

b)*a – b. In most cases of interest, the number n of samples

from our power-law distribution will be large (meaning

much greater than 1), so

B n; a� 2ð Þ= a� 1ð Þð Þ � n� a�2ð Þ= a�1ð Þ ð21Þ

and

xmaxh i � n1= a�1ð Þ: ð22Þ

Thus hxmaxi always increases as n becomes larger so long as

a4 1.

This allows us to complete the calculation of the

moments in section 3.2. Consider for instance the second

moment, which is often of interest in power laws. For the

crucial case 25 a4 3, which covers most of the power-law

distributions observed in real life, we saw in equation (12)

that the second moment of the distribution diverges as the

size of the data set becomes infinite. But in reality all data

sets are finite and so have a finite maximum sample xmax.

This means that (12) becomes

x2
� � ¼ C

3� a
x�aþ3
� �xmax

xmin
: ð23Þ

As xmax becomes large this expression is dominated by the

upper limit, and using the result, equation (22), for xmax, we

get

x2
� � � n 3�að Þ= a�1ð Þ: ð24Þ

So, for instance, if a ¼ 5
2, then the mean-square sample

value, and hence also the sample variance, goes as n1/3 as

the size of the data set gets larger.

3.4 Top-heavy distributions and the 80/20 rule

Another interesting question is where the majority of the

distribution of x lies. For any power law with exponent

a4 1, the median is well defined. That is, there is a point

x1/2 that divides the distribution in half so that half the

measured values of x lie above x1/2 and half lie below. That

point is given byZ 1

x1=2

p xð Þdx ¼ 1

2

Z 1

xmin

p xð Þdx; ð25Þ

or

x1=2 ¼ 21= a�1ð Þxmin: ð26Þ

So, for example, if we are considering the distribution of

wealth, there will be some well-defined median wealth that

divides the richer half of the population from the poorer.

But we can also ask how much of the wealth itself lies in

those two halves. Obviously more than half of the total

amount of money belongs to the richer half of the

population. The fraction of the money in the richer half

is given byR1
x1=2

xp xð ÞdxR1
xmin

xp xð Þdx ¼ x1=2

xmin

� ��aþ2

¼ 2� a�2ð Þ= a�1ð Þ; ð27Þ

provided a4 2 so that the integrals converge. Thus, for

instance, if a=2.1 for the wealth distribution, as indicated

in table 1, then a fraction 2– 0.091^94% of the wealth is in

the hands of the richer 50% of the population, making the

distribution quite top-heavy.

More generally, the fraction of the population whose

personal wealth exceeds x is given by the quantity P(x),

equation (15), and the fraction of the total wealth in the

hands of those people is

W xð Þ ¼
R1
x x0p x0ð Þdx0R1
xmin

x0p x0ð Þdx0 ¼
x

xmin

� ��aþ2

; ð28Þ

assuming again that a4 2. Eliminating x/xmin between (15)

and (28), we find that the fraction W of the wealth in the

hands of the richest P of the population is

*Also called the Eulerian integral of the first kind.
{This can be demonstrated by approximating the G-functions of equation
(19) using Sterling’s formula.
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W ¼ P a�2ð Þ= a�1ð Þ; ð29Þ

of which equation (27) is a special case. This again has a

power-law form, but with a positive exponent now. In

figure 6 I show the form of the curve of W against P for

various values of a. For all values of a the curve is concave

downwards, and for values only a little above 2 the curve

has a very fast initial increase, meaning that a large fraction

of the wealth is concentrated in the hands of a small

fraction of the population.

Using the exponents from table 1, we can for example

calculate that about 80% of the wealth should be in the

hands of the richest 20% of the population (the so-called

‘80/20 rule’, which is borne out by more detailed observa-

tions of the wealth distribution), the top 20% of web sites

get about two-thirds of all web hits, and the largest 10% of

US cities house about 60% of the country’s total

population.

If a4 2 then the situation becomes even more extreme.

In that case, the integrals in equation (28) diverge at their

upper limits, meaning that in fact they depend on the value

xmax of the largest sample, as described in section 3.3. But

for a4 1, equation (22) tells us that the expected value of

xmax goes to ? as n becomes large, and in that limit the

fraction of money in the top half of the population,

equation (27), tends to unity. In fact, the fraction of money

in the top anything of the population, even the top 1%,

tends to unity, as equation (28) shows. In other words, for

distributions with a5 2, essentially all of the wealth (or

other commodity) lies in the tail of the distribution. The

frequency of family names, which has an exponent a=1.9,

is an example of this type of behaviour. For the data of

figure 4 (k), about 75% of the population have names in the

top 15000. Estimates of the total number of unique family

names in the US put the figure at around 1.5 million. So in

this case 75% of the population have names in the most

common 1%—a very top-heavy distribution indeed. The

line a=2 thus separates the regime in which you will with

some frequency meet people with uncommon names from

the regime in which you will hardly ever meet such people.

3.5 Scale-free distributions

A power-law distribution is also sometimes called a scale-

free distribution. Why? Because a power law is the only

distribution that is the same whatever scale we look at it on.

By this we mean the following.

Suppose we have some probability distribution p(x) for a

quantity x, and suppose we discover or somehow deduce

that it satisfies the property that

p bxð Þ ¼ g bð Þp xð Þ; ð30Þ

for any b. That is, if we increase the scale or units by which

we measure x by a factor of b, the shape of the distribution

p(x) is unchanged, except for an overall multiplicative

constant. Thus for instance, we might find that computer

files of size 2 kB are 1
4 as common as files of size 1 kB.

Switching to measuring size in megabytes we also find that

files of size 2 MB are 1
4 as common as files of size 1 MB.

Thus the shape of the file – size distribution curve (at least

for these particular values) does not depend on the scale on

which we measure file size.

This scale-free property is certainly not true of most

distributions. It is not true for instance of the exponential

distribution. In fact, as we now show, it is only true of one

type of distribution, the power law.

Starting from equation (30), let us first set x=1, giving

p(b)= g(b)p(1). Thus g(b)= p(b)/p(1) and (30) can be

written as

p bxð Þ ¼ p bð Þp xð Þ
p 1ð Þ : ð31Þ

Since this equation is supposed to be true for any b, we can

differentiate both sides with respect to b to get

xp0 bxð Þ ¼ p0 bð Þp xð Þ
p 1ð Þ ; ð32Þ

Figure 6. The fraction W of the total wealth in a country

held by the fraction P of the richest people, if wealth is

distributed following a power law with exponent a. If

a=2.1, for instance, as it appears to in the United States

(table 1), then the richest 20% of the population hold about

86% of the wealth (dashed lines).
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where p’ indicates the derivative of p with respect to its

argument. Now we set b=1 and get

x
dp

dx
¼ p0 1ð Þ

p 1ð Þ p xð Þ: ð33Þ

This is a simple first-order differential equation which has

the solution

ln p xð Þ ¼ p 1ð Þ
p0 1ð Þ ln xþ constant: ð34Þ

Setting x=1 we find that the constant is simply ln p(1), and

then taking exponentials of both sides

p xð Þ ¼ p 1ð Þx�a; ð35Þ

where a= – p(1)/p’(1). Thus, as advertised, the power-law

distribution is the only function satisfying the scale-free

criterion (30).

This fact is more than just a curiosity. As we will see

in section 4.5, there are some systems that become scale-

free for certain special values of their governing para-

meters. The point defined by such a special value is

called a ‘continuous phase transition’ and the argument

given above implies that at such a point the observable

quantities in the system should adopt a power-law

distribution. This indeed is seen experimentally and the

distributions so generated provided the original motiva-

tion for the study of power laws in physics (although

most experimentally observed power laws are probably

not the result of phase transitions—a variety of other

mechanisms produce power-law behaviour as well, as we

will shortly see).

3.6 Power laws for discrete variables

So far I have focused on power-law distributions for

continuous real variables, but many of the quantities we

deal with in practical situations are in fact discrete—usually

integers. For instance, populations of cities, numbers of

citations to papers or numbers of copies of books sold are

all integer quantities. In most cases, the distinction is not

very important. The power law is obeyed only in the tail of

the distribution where the values measured are so large

that, to all intents and purposes, they can be considered

continuous. Technically however, power-law distributions

should be defined slightly differently for integer quantities.

If k is an integer variable, then one way to proceed is to

declare that it follows a power law if the probability pk of

measuring the value k obeys

pk ¼ Ck�a; ð36Þ

for some constant exponent a. Clearly this distribution

cannot hold all the way down to k=0, since it diverges

there, but it could in theory hold down to k=1. If we

discard any data for k=0, the constant C would then be

given by the normalization condition

1 ¼
X1
k¼1

pk ¼ C
X1
k¼1

k�a ¼ Cz að Þ; ð37Þ

where z(a) is the Riemann z-function. Rearranging,

C=1/z(a) and

pk ¼ k�a

z að Þ : ð38Þ

If, as is usually the case, the power-law behaviour is seen

only in the tail of the distribution, for values k5 kmin, then

the equivalent expression is

pk ¼ k�a

z a; kminð Þ ; ð39Þ

where z a;kminð Þ ¼P1
k¼kmin

k�a is the generalized or incom-

plete z-function.
Most of the results of the previous sections can be

generalized to the case of discrete variables, although the

mathematics is usually harder and often involves special

functions in place of the more tractable integrals of the

continuous case.

It has occasionally been proposed that equation (36) is

not the best generalization of the power law to the discrete

case. An alternative and in many cases more convenient

form is

pk ¼ C
� kð Þ� að Þ
� kþ að Þ ¼ CB k; að Þ; ð40Þ

where B(a, b) is, as before, the Legendre beta-function,

equation (19). As mentioned in section 3.3, the beta-

function behaves as a power law pk*k – a for large k and so

the distribution has the desired asymptotic form. Simon

[35] proposed that equation (40) be called the Yule

distribution, after Udny Yule who derived it as the limiting

distribution in a certain stochastic process [36], and this

name is often used today. Yule’s result is described in

section 4.4.

The Yule distribution is nice because sums involving it

can frequently be performed in closed form, where sums

involving equation (36) can only be written in terms of

special functions. For instance, the normalizing constant C

for the Yule distribution is given by

1 ¼ C
X1
k¼1

B k; að Þ ¼ 1

a� 1
; ð41Þ
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and hence C= a – 1 and

pk ¼ a� 1ð ÞB k; að Þ: ð42Þ

The first and second moments (i.e. the mean and mean

square of the distribution) are

kh i ¼ a� 1

a� 2
; k2
� � ¼ a� 1ð Þ2

a� 2ð Þ a� 3ð Þ ; ð43Þ

and there are similarly simple expressions corresponding to

many of our earlier results for the continuous case.

4. Mechanisms for generating power-law distributions

In this section we look at possible candidate mechanisms by

which power-law distributions might arise in natural and

man-made systems. Some of the possibilities that have been

suggested are quite complex—notably the physics of critical

phenomena and the tools of the renormalization group that

are used to analyse it. But let us start with some simple

algebraic methods of generating power-law functions and

progress to the more involved mechanisms later.

4.1 Combinations of exponentials

A much more common distribution than the power law is

the exponential, which arises in many circumstances, such

as survival times for decaying atomic nuclei or the

Boltzmann distribution of energies in statistical mechanics.

Suppose some quantity y has an exponential distribution:

p yð Þ � exp ayð Þ: ð44Þ

The constant a might be either negative or positive. If it is

positive then there must also be a cut-off on the

distribution—a limit on the maximum value of y—so that

the distribution is normalizable.

Now suppose that the real quantity we are interested in is

not y but some other quantity x, which is exponentially

related to y thus:

x � exp byð Þ; ð45Þ

with b another constant, also either positive or negative.

Then the probability distribution of x is

p xð Þ ¼ pðyÞ dy
dx

� exp ayð Þ
b exp byð Þ ¼

x�1þa=b

b
; ð46Þ

which is a power law with exponent a=1– a/b.

A version of this mechanism was used by Miller [37] to

explain the power-law distribution of the frequencies of

words as follows (see also [38]). Suppose we type randomly

on a typewriter*, pressing the space bar with probability qs
per stroke and each letter with equal probability ql per

stroke. If there are m letters in the alphabet then ql=(1 –

qs)/m. (In this simplest version of the argument we also type

no punctuation, digits or other non-letter symbols.) Then

the frequency x with which a particular word with y letters

(followed by a space) occurs is

x ¼ 1� qs
m

� �y
qs � exp byð Þ; ð47Þ

where b=ln (1 – qs) – ln m. The number (or fraction) of

distinct possible words with length between y and y+dy

goes up exponentially as p(y)*my=exp (ay) with a=ln

m. Thus, following our argument above, the distribution of

frequencies of words has the form p(x)*x – a with

a ¼ 1� a

b
¼ 2 lnm� ln 1� qsð Þ

lnm� ln 1� qsð Þ : ð48Þ

For the typical case where m is reasonably large and qs
quite small this gives a^2 in approximate agreement with

table 1.

This is a reasonable theory as far as it goes, but real text

is not made up of random letters. Most combinations of

letters do not occur in natural languages; most are not even

pronounceable. We might imagine that some constant

fraction of possible letter sequences of a given length would

correspond to real words and the argument above would

then work just fine when applied to that fraction, but upon

reflection this suggestion is obviously bogus. It is clear for

instance that very long words simply do not exist in most

languages, although there are exponentially many possible

combinations of letters available to make them up. This

observation is backed up by empirical data. In figure 7 (a)

we show a histogram of the lengths of words occurring in

the text of Moby Dick, and one would need a particularly

vivid imagination to convince oneself that this histogram

follows anything like the exponential assumed by Miller’s

argument. (In fact, the curve appears roughly to follow a

log-normal [34].)

There may still be some merit in Miller’s argument

however. The problem may be that we are measuring word

‘length’ in the wrong units. Letters are not really the basic

units of language. Some basic units are letters, but some are

groups of letters. The letters ‘th’ for example often occur

together in English and make a single sound, so perhaps

they should be considered to be a separate symbol in their

own right and contribute only one unit to the word length?

Following this idea to its logical conclusion we can

imagine replacing each fundamental unit of the language—

*This argument is sometimes called the ‘monkeys with typewriters’

argument, the monkey being the traditional exemplar of a random typist.
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whatever that is—by its own symbol and then measuring

lengths in terms of numbers of symbols. The pursuit of

ideas along these lines led Claude Shannon in the 1940s to

develop the field of information theory, which gives a

precise prescription for calculating the number of symbols

necessary to transmit words or any other data [39, 40]. The

units of information are bits and the true ‘length’ of a word

can be considered to be the number of bits of information it

carries. Shannon showed that if we regard words as the

basic divisions of a message, the information y carried by

any particular word is

y ¼ �k ln x; ð49Þ

where x is the frequency of the word as before and k is a

constant. (The reader interested in finding out more about

where this simple relation comes from is recommended to

look at the excellent introduction to information theory by

Cover and Thomas [41].)

But this has precisely the form that we want. Inverting it

we have x=exp( – y/k) and if the probability distribution

of the ‘lengths’ measured in terms of bits is also exponential

as in equation (44) we will get our power-law distribution.

Figure 7 (b) shows the latter distribution, and indeed it

follows a nice exponential—much better than figure 7 (a).

This is still not an entirely satisfactory explanation.

Having made the shift from pure word length to informa-

tion content, our simple count of the number of words of

length y—that it goes exponentially as my—is no longer

valid, and now we need some reason why there should be

exponentially more distinct words in the language of high

information content than of low. That this is the case is

experimentally verified by figure 7 (b), but the reason must

be considered still a matter of debate. Some possibilities are

discussed by, for instance, Mandelbrot [42] and more

recently by Mitzenmacher [19].

Another example of the ‘combination of exponentials’

mechanism has been discussed by Reed and Hughes [43].

They consider a process in which a set of items, piles or

groups each grows exponentially in time, having size

x^(bt) with b4 0. For instance, populations of organisms

reproducing freely without resource constraints grow

exponentially. Items also have some fixed probability of

dying per unit time (populations might have a stochasti-

cally constant probability of extinction), so that the times t

at which they die are exponentially distributed p(t)^(at)

with a5 0.

These functions again follow the form of equations (44)

and (45) and result in a power-law distribution of the sizes

x of the items or groups at the time they die. Reed and

Hughes suggest that variations on this argument may

explain the sizes of biological taxa, incomes and cities,

among other things.

4.2 Inverses of quantities

Suppose some quantity y has a distribution p(y) that passes

through zero, so that y has both positive and negative

values. And suppose further that the quantity we are really

interested in is the reciprocal x=1/y, which will have

distribution

p xð Þ ¼ p yð Þ dy
dx

¼ � p yð Þ
x2

: ð50Þ

The large values of x, those in the tail of the distribution,

correspond to the small values of y close to zero and thus

the large-x tail is given by

p xð Þ � x�2; ð51Þ

where the constant of proportionality is p(y=0).

More generally, any quantity x= y – g for some g will

have a power-law tail to its distribution p(x)*x – a, with

a=1+1/g. The first clear description of this mechanism of

which I am aware is that of Jan et al. [44]; a good discussion

has also been given by Sornette [45].

One might argue that this mechanism merely generates a

power law by assuming another one: the power-law

relationship between x and y generates a power-law

distribution for x. This is true, but the point is that the

mechanism takes some physical power-law relationship

between x and y—not a stochastic probability distribu-

Figure 7. (a) Histogram of the lengths in letters of all

distinct words in the text of the novel Moby Dick. (b)

Histogram of the information content a la Shannon of

words in Moby Dick. The former does not, by any stretch

of the imagination, follow an exponential, but the latter

could easily be said to do so. (Note that the vertical axes are

logarithmic.)
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tion—and from that generates a power-law probability

distribution. This is a non-trivial result.

One circumstance in which this mechanism arises is in

measurements of the fractional change in a quantity. For

instance, Jan et al. [44] consider one of the most famous

systems in theoretical physics, the Ising model of a magnet.

In its paramagnetic phase, the Ising model has a

magnetization that fluctuates around zero. Suppose we

measure the magnetization m at uniform intervals and

calculate the fractional change d=(Dm)/m between each

successive pair of measurements. The change Dm is roughly

normally distributed and has a typical size set by the width

of that normal distribution. The 1/m on the other hand

produces a power-law tail when small values of m coincide

with large values of Dm, so that the tail of the distribution

of d follows p(d)*d – 2 as above.

In figure 8 I show a cumulative histogram of measure-

ments of d for simulations of the Ising model on a square

lattice and the power-law distribution is clearly visible.

Using equation (5), the value of the exponent is

a=1.98+ 0.04, in good agreement with the expected

value of 2.

4.3 Random walks

Many properties of random walks are distributed accord-

ing to power laws, and this could explain some power-law

distributions observed in nature. In particular, a randomly

fluctuating process that undergoes ‘gambler’s ruin’*, i.e.

that ends when it hits zero, has a power-law distribution of

possible lifetimes.

Consider a random walk in one dimension, in which a

walker takes a single step randomly one way or the other

along a line in each unit of time. Suppose the walker starts

at position 0 on the line and let us ask what the probability

is that the walker returns to position 0 for the first time at

time t (i.e. after exactly t steps). This is the so-called first

return time of the walk and represents the lifetime of a

gambler’s ruin process. A trick for answering this question

is depicted in figure 9. We consider first the unconstrained

problem in which the walk is allowed to return to zero as

many times as it likes, before returning there again at time

t. Let us denote the probability of this event as ut. Let us

also denote by ft the probability that the first return time is

t. We note that both of these probabilities are non-zero

only for even values of their arguments since there is no

way to get back to zero in any odd number of steps.

As figure 9 illustrates, the probability ut= u2n, with n

integer, can be written

u2n ¼ 1; if n ¼ 0;Pn
m¼1 f2mu2n�2m; if n � 1;

	
ð52Þ

where m is also an integer and we define f0=0. This

equation can conveniently be solved for f2n using a

generating function approach. We define

U zð Þ ¼
X1
n¼0

u2nz
n; F zð Þ ¼

X1
n¼1

f2nz
n: ð53Þ

Then, multiplying equation (52) throughout by zn and

summing, we find

U zð Þ ¼ 1þ
X1
n¼1

Xn
m¼1

f2mu2n�2mz
n

¼ 1þ
X1
m¼1

f2mz
m
X1
n¼m

u2n�2mz
n�m

¼ 1þ F zð ÞU zð Þ:

ð54Þ

So

F zð Þ ¼ 1� 1

U zð Þ : ð55Þ

Figure 8. Cumulative histogram of the magnetization

fluctuations of a 1286 128 nearest-neighbour Ising model

on a square lattice. The model was simulated at a

temperature of 2.5 times the spin – spin coupling for

100000 time steps using the cluster algorithm of Swendsen

and Wang [46] and the magnetization per spin measured at

intervals of ten steps. The fluctuations were calculated as

the ratio di=2(mi+1 –mi)/(mi+1+mi).

*Gambler’s ruin is so called because a gambler’s night of betting ends when

his or her supply of money hits zero (assuming the gambling establishment

declines to offer him or her a line of credit).
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The function U(z) however is quite easy to calculate. The

probability u2n that we are at position zero after 2n steps is

u2n ¼ 2�2n 2n
n

� �
; ð56Þ

so{

U zð Þ ¼
X1
n¼0

2n
n

� �
zn

4n
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1� z
p ; ð57Þ

and hence

F zð Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
: ð58Þ

Expanding this function using the binomial theorem thus:

F zð Þ ¼ 1

2
zþ

1
2 � 1

2

2!
z2 þ

1
2 � 1

2 � 3
2

3!
z3 þ � � �

¼
X1
n¼1

2n

n

� �
2n� 1ð Þ22n z

n

ð59Þ

and comparing this expression with equation (53), we

immediately see that

f2n ¼
2n
n

� �
2n� 1ð Þ22n ; ð60Þ

and we have our solution for the distribution of first return

times.

Now consider the form of f2n for large n. Writing out the

binomial coefficient as 2n
n

� � ¼ 2nð Þ!= n!ð Þ2, we take logs thus:
ln f2n ¼ ln 2nð Þ!� 2 ln n!� 2n ln 2� ln 2n� 1ð Þ; ð61Þ

and use Sterling’s formula ln n! ’ n ln n� nþ 1
2 ln n to

get ln f2n ’ 1
2 ln 2� 1

2 ln n� ln 2n� 1ð Þ, or

f2n ’ 2

n 2n� 1ð Þ2
 !1=2

: ð62Þ

In the limit n??, this implies that f2n*n – 3/2, or

equivalently

ft � t�3=2: ð63Þ

So the distribution of return times follows a power law with

exponent a ¼ � 3
2. Note that the distribution has a divergent

mean (because a4 2). As discussed in section 3.3, in

practice this implies that the mean is determined by the size

of the sample. If we measure the first return times of a large

number of random walks, the mean will of course be finite.

But the more walks we measure, the larger that mean will

become, without bound.

As an example application, the random walk can be

considered a simple model for the lifetime of biological

taxa. A taxon is a branch of the evolutionary tree, a group

of species all descended by repeated speciation from a

common ancestor. The ranks of the Linnean hierarchy—

genera, families, orders and so forth—are examples of

taxa*. If a taxon gains and loses species at random over

time, then the number of species performs a random walk,

the taxon becoming extinct when the number of species

reaches zero for the first (and only) time. (This is one

example of ‘gambler’s ruin’.) Thus the time for which taxa

live should have the same distribution as the first return

times of random walks.

In fact, it has been argued that the distribution of the

lifetimes of genera in the fossil record does indeed follow a

power law [47]. The best fits to the available fossil data put

the value of the exponent at a=1.7+ 0.3, which is in

agreement with the simple random walk model [48]{.

Figure 9. The position of a one-dimensional random walker

(vertical axis) as a function of time (horizontal axis). The

probability u2n that the walk returns to zero at time t=2n

is equal to the probability f2m that it returns to zero for the

first time at some earlier time t=2m, multiplied by the

probability u2n – 2m that it returns again a time 2n – 2m later,

summed over all possible values of m. We can use this

observation to write a consistency relation, equation (52),

which can be solved for ft, equation (60).

{The enthusiastic reader can easily derive this result for him or herself by

expanding
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
using the binomial theorem.

*Modern phylogenetic analysis, the quantitative comparison of species’

genetic material, can provide a picture of the evolutionary tree and hence

allow the accurate ‘cladistic’ assignment of species to taxa. For prehistoric

species, however, whose genetic material is not usually available,

determination of evolutionary ancestry is difficult, so classification into

taxa is based instead on morphology, i.e. on the shapes of organisms. It is

widely accepted that such classifications are subjective and that the

taxonomic assignments of fossil species are probably riddled with errors.
{To be fair, I consider the power law for the distribution of genus lifetimes

to fall in the category of ‘tenuous’ identifications to which I alluded in the

second footnote on p. 9. This theory should be taken with a pinch of salt.
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4.4 The Yule process

One of the most convincing and widely applicable

mechanisms for generating power laws is the Yule process,

which was invented in the 1920s by G. Udny Yule and,

coincidentally, also inspired by observations of the statistics

of biological taxa as discussed in the previous section. In

addition to having a (possibly) power-law distribution of

lifetimes, biological taxa also have a very convincing

power-law distribution of sizes. That is, the distribution

of the number of species in a genus, family or other

taxonomic group appears to follow a power law quite

closely. This phenomenon was first reported by J.C. Willis

in 1922. His impressive plot of the distribution of the

numbers of species in genera of flowering plants is

reproduced in its original form in figure 10. (To the

author’s knowledge, this is the first published graph

showing a power-law statistical distribution using the

modern logarithmic scales, preceding even Alfred Lotka’s

remarkable 1926 discovery of the so-called ‘law of scientific

productivity’, i.e. the apparent power-law distribution of

the numbers of papers that scientists write [10].)

Yule offered an explanation for the observations of

Willis using a simple—almost trivial—model that has since

found wide application in other areas. He argued as

follows. Suppose first that new species appear but they

never die; species are only ever added to genera and never

removed. This differs from the random walk model of the

last section, and certainly from reality as well. It is believed

that in practice all species and all genera become extinct in

the end. But let us persevere; there is nonetheless much of

worth in Yule’s simple model.

Species are added to genera by speciation, the splitting of

one species into two, which is known to happen by a variety

of mechanisms, including competition for resources, spatial

separation of breeding populations and genetic drift. If we

assume that this happens at some stochastically constant

rate, then it follows that a genus with k species in it will gain

new species at a rate proportional to k, since each of the k

species has the same chance per unit time of dividing in

two. Let us further suppose that occasionally, say once

every m speciation events, the new species produced is, by

chance, sufficiently different from the others in its genus as

to be considered the founder member of an entire new

genus. (To be clear, we define m such that m species are

added to pre-existing genera and then one species forms a

new genus. So m+1 new species appear for each new

genus and there are m+1 species per genus on average.)

Thus the number of genera goes up steadily in this model,

as does the number of species within each genus.

We can analyse this Yule process mathematically as

follows*. Let us measure the passage of time in the model

by the number of genera n. At each time step one new

species founds a new genus, thereby increasing n by 1, and

m other species are added to various pre-existing genera

which are selected in proportion to the number of species

they already have. We denote by pk,n the fraction of genera

that have k species when the total number of genera is n.

Thus the number of such genera is npk,n. We now ask what

the probability is that the next species added to the system

happens to be added to a particular genus i having ki
species in it already. This probability is proportional to ki,

and so when properly normalized is just ki/Siki. But Siki is

simply the total number of species, which is n(m+1).

Furthermore, between the appearance of the nth and the

(n+1)th genera, m other new species are added, so the

probability that genus i gains a new species during this

interval is mki/(n(m+1)). And the total expected number

of genera of size k that gain a new species in the same

interval is

mk

n mþ 1ð Þ � npk;n ¼ m

mþ 1
kpk;n: ð64Þ

Now we observe that the number of genera with k species

will decrease on each time step by exactly this number, since

by gaining a new species they become genera with k+1

instead. At the same time the number increases because of

species that previously had k – 1 species and now have an

extra one. Thus we can write a master equation for the new

number (n+1)pk,n+1 of genera with k species thus:

Figure 10. J.C. Willis’s 1922 plot of the cumulative

distribution of the number of species in genera of flowering

plants [49,15]. (Reproduced with permission from Nature,

vol. 109, pp. 177 – 179 http://www.nature.com/).

*Yule’s analysis of the process was considerably more involved than the

one presented here, essentially because the theory of stochastic processes as

we now know it did not yet exist in his time. The master equation method

we employ is a relatively modern innovation, introduced in this context by

Simon [35].
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nþ 1ð Þpk;nþ1 ¼ npk;n þ m

mþ 1
k� 1ð Þpk�1;n � kpk;n

� �
: ð65Þ

The only exception to this equation is for genera of size

1, which instead obey the equation

nþ 1ð Þp1;nþ1 ¼ np1;n þ 1� m

mþ 1
p1;n; ð66Þ

since by definition exactly one new such genus appears on

each time step.

Now we ask what form the distribution of the sizes of

genera takes in the limit of long times. To do this we

allow n?? and assume that the distribution tends to

some fixed value pk=limn??pn,k independent of n. Then

equation (66) becomes p1=1 –mp1/(m+1), which has the

solution

p1 ¼ mþ 1

2mþ 1
: ð67Þ

And equation (65) becomes

pk ¼ m

mþ 1
k� 1ð Þpk�1 � kpk½ �; ð68Þ

which can be rearranged to read

pk ¼ k� 1

kþ 1þ 1=m
pk�1; ð69Þ

and then iterated to get

pk ¼ k� 1ð Þ k� 2ð Þ . . . 1
kþ 1þ 1=mð Þ kþ 1=mð Þ . . . 3þ 1=mð Þ p1

¼ 1þ 1=mð Þ k� 1ð Þ . . . 1
kþ 1þ 1=mð Þ . . . 2þ 1=mð Þ ;

ð70Þ

where I have made use of equation (67). This can be

simplified further by making use of a handy property of the

G-function, equation (20), that G(a)= (a – 1)G(a – 1). Using

this, and noting that G(1)=1, we get

pk ¼ 1þ 1=mð Þ� kð Þ� 2þ 1=mð Þ
� kþ 2þ 1=mð Þ

¼ 1þ 1=mð ÞB k; 2þ 1=mð Þ;
ð71Þ

where B(a, b) is again the beta-function, equation (19).

This, we note, is precisely the distribution defined in

equation (40), which Simon called the Yule distribution.

Since the beta-function has a power-law tail B(a, b)*a – b,

we can immediately see that pk also has a power-law tail

with an exponent

a ¼ 2þ 1

m
: ð72Þ

The mean number m+1 of species per genus for the

example of flowering plants is about 3, making m^2 and

a^2.5. The actual exponent for the distribution in figure 10

is a=2.5+ 0.1, which is in excellent agreement with the

theory.

Most likely this agreement is fortuitous, however. The

Yule process is probably not a terribly realistic explanation

for the distribution of the sizes of genera, principally

because it ignores the fact that species (and genera) become

extinct. However, it has been adapted and generalized by

others to explain power laws in many other systems, most

famously city sizes [35], paper citations [50, 51], and links to

pages on the world wide web [52, 53]. The most general

form of the Yule process is as follows.

Suppose we have a system composed of a collection of

objects, such as genera, cities, papers, web pages and so

forth. New objects appear every once in a while as cities

grow up or people publish new papers. Each object also has

some property k associated with it, such as number of

species in a genus, people in a city or citations to a paper,

which is reputed to obey a power law, and it is this power

law that we wish to explain. Newly appearing objects have

some initial value of k which we will denote k0. New genera

initially have only a single species k0=1, but new towns or

cities might have quite a large initial population—a single

person living in a house somewhere is unlikely to constitute

a town in their own right but k0=100 people might do so.

The value of k0 can also be zero in some cases: newly

published papers usually have zero citations for instance.

In between the appearance of one object and the next, m

new species/people/citations etc. are added to the entire

system. That is some cities or papers will get new people or

citations, but not necessarily all will. And in the simplest

case these are added to objects in proportion to the number

that the object already has. Thus the probability of a city

gaining a new member is proportional to the number

already there; the probability of a paper getting a new

citation is proportional to the number it already has. In

many cases this seems like a natural process. For example,

a paper that already has many citations is more likely to be

discovered during a literature search and hence more likely

to be cited again. Simon [35] dubbed this type of ‘rich-get-

richer’ process the Gibrat principle. Elsewhere it also goes

by the names of the Matthew effect [54], cumulative

advantage [50], or preferential attachment [52].

There is a problem however when k0=0. For example, if

new papers appear with no citations and garner citations in

proportion to the number they currently have, which is

zero, then no paper will ever get any citations! To overcome

this problem one typically assigns new citations not in
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proportion simply to k, but to k+ c, where c is some

constant. Thus there are three parameters k0, c and m that

control the behaviour of the model.

By an argument exactly analogous to the one given

above, one can then derive the master equation

nþ 1ð Þpk;nþ1 ¼ npk;n þm
k� 1þ c

k0 þ cþm
pk�1;n

�m
kþ c

k0 þ cþm
pk;n; for k4k0;

ð73Þ

and

nþ 1ð Þpk0;nþ1 ¼ npk0;n þ 1�m
k0 þ c

k0 þ cþm
pk0;n; for k ¼ k0:

ð74Þ

(Note that k is never less than k0, since each object appears

with k= k0 initially.)

Looking for stationary solutions of these equations as

before, we define pk=limn??pn,k and find that

pk0 ¼
k0 þ cþm

mþ 1ð Þ k0 þ cð Þ þm
; ð75Þ

and

pk ¼ k� 1þ cð Þ k� 2þ cð Þ . . . k0 þ cð Þ
k� 1þ cþ að Þ k� 2þ cþ að Þ . . . k0 þ cþ að Þ pk0

¼ � kþ cð Þ� k0 þ cþ að Þ
� k0 þ cð Þ� kþ cþ að Þ pk0 ; ð76Þ

where I have made use of the G-function notation

introduced for equation (71) and, for reasons that will

become clear in just a moment, I have defined

a=2+(k0+ c)/m. As before, this expression can also be

written in terms of the beta-function, equation (19):

pk ¼ B kþ c; að Þ
B k0 þ c; að Þ pk0 : ð77Þ

Since the beta-function follows a power law in its tail, B(a,

b)*a – b, the general Yule process generates a power-law

distribution pk*k – a with the exponent related to the three

parameters of the process according to

a ¼ 2þ k0 þ c

m
: ð78Þ

For example, the original Yule process for number of

species per genus has c=0 and k0=1, which reproduces

the result of equation (72). For citations of papers or links

to web pages we have k0=0 and we must have c4 0 to get

any citations or links at all. So a=2+ c/m. In his work on

citations Price [50] assumed that c=1, so that paper

citations have the same exponent a=2+1/m as the

standard Yule process, although there does not seem to

be any very good reason for making this assumption. As we

saw in table 1 (and as Price himself also reported), real

citations seem to have an exponent a^3, so we should

expect c^. For the data from the Science Citation Index

examined in section 2.1, the mean number m of citations

per paper is 8.6. So we should put c^8.6 too if we want the

Yule process to match the observed exponent.

The most widely studied model of links on the web, that

of Barabási and Albert [52], assumes c=m so that a=3,

but again there does not seem to be a good reason for this

assumption. The measured exponent for numbers of links

to web sites is about a=2.2, so if the Yule process is to

match the data in this case, we should put c^0.2m.

However, the important point is that the Yule process is

a plausible and general mechanism that can explain a

number of the power-law distributions observed in nature

and can produce a wide range of exponents to match the

observations by suitable adjustments of the parameters.

For several of the distributions shown in figure 4, especially

citations, city populations and personal income, it is now

the most widely accepted theory.

4.5 Phase transitions and critical phenomena

A completely different mechanism for generating power

laws, one that has received a huge amount of attention over

the past few decades from the physics community, is that of

critical phenomena.

Some systems have only a single macroscopic length-

scale, size-scale or time-scale governing them. A classic

example is a magnet, which has a correlation length that

measures the typical size of magnetic domains. Under

certain circumstances this length-scale can diverge, leaving

the system with no scale at all. As we will now see, such a

system is ‘scale-free’ in the sense of section 3.5 and hence

the distributions of macroscopic physical quantities have to

follow power laws. Usually the circumstances under which

the divergence takes place are very specific ones. The

parameters of the system have to be tuned very precisely to

produce the power-law behaviour. This is something of a

disadvantage; it makes the divergence of length-scales an

unlikely explanation for generic power-law distributions of

the type highlighted in this paper. As we will shortly see,

however, there are some elegant and interesting ways

around this problem.

The precise point at which the length-scale in a system

diverges is called a critical point or a phase transition. More

specifically it is a continuous phase transition. (There are

other kinds of phase transitions too.) Things that happen in

the vicinity of continuous phase transitions are known as
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critical phenomena, of which power-law distributions are

one example.

To better understand the physics of critical phenomena,

let us explore one simple but instructive example, that of

the ‘percolation transition’. Consider a square lattice like

the one depicted in figure 11 in which some of the squares

have been coloured in. Suppose we colour each square with

independent probability p, so that on average a fraction p

of them are coloured in. Now we look at the clusters of

coloured squares that form, i.e. the contiguous regions of

adjacent coloured squares. We can ask, for instance, what

the mean area hsi is of the cluster to which a randomly

chosen square belongs. If that square is not coloured in

then the area is zero. If it is coloured in but none of the

adjacent ones is coloured in then the area is one, and so

forth.

When p is small, only a few squares are coloured in and

most coloured squares will be alone on the lattice, or maybe

grouped in twos or threes. So hsi will be small. This

situation is depicted in figure 12 for p=0.3. Conversely, if

p is large—almost 1, which is the largest value it can have—

then most squares will be coloured in and they will almost

all be connected together in one large cluster, the so-called

spanning cluster. In this situation we say that the system

percolates. Now the mean size of the cluster to which a

vertex belongs is limited only by the size of the lattice itself

and as we let the lattice size become large hsi also becomes

large. So we have two distinctly different behaviours, one

for small p in which hsi is small and does not depend on the

size of the system, and one for large p in which hsi is much

larger and increases with the size of the system.

And what happens in between these two extremes? As we

increase p from small values, the value of hsi also increases.

But at some point we reach the start of the regime in which

hsi goes up with system size instead of staying constant. We

now know that this point is at p=0.5927462. . ., which is

called the critical value of p and is denoted pc. If the size of

the lattice is large, then hsi also becomes large at this point,

and in the limit where the lattice size goes to infinity hsi
actually diverges. To illustrate this phenomenon, I show in

figure 13 a plot of hsi from simulations of the percolation

model and the divergence is clear.

Now consider not just the mean cluster size but the entire

distribution of cluster sizes. Let p(s) be the probability that

a randomly chosen square belongs to a cluster of area s. In

general, what forms can p(s) take as a function of s? The

important point to notice is that p(s), being a probability

distribution, is a dimensionless quantity—just a number—

but s is an area. We could measure s in terms of square

metres, or whatever units the lattice is calibrated in. The

average hsi is also an area and then there is the area of a

unit square itself, which we will denote a. Other than these

three quantities, however, there are no other independent

parameters with dimensions in this problem. (There is the

area of the whole lattice, but we are considering the limit

where that becomes infinite, so it is out of the picture.)

If we want to make a dimensionless function p(s) out of

these three dimensionful parameters, there are three

dimensionless ratios we can form: s/a, a/hsi and s/hsi (or

their reciprocals, if we prefer). Only two of these are

independent however, since the last is the product of the

other two. Thus in general we can write

p sð Þ ¼ Cf
s

a
;
a

sh i
� �

; ð79Þ

where f is a dimensionless mathematical function of its

dimensionless arguments and C is a normalizing constant

chosen so that Ssp(s)=1.

But now here’s the trick. We can coarse-grain or rescale

our lattice so that the fundamental unit of the lattice

changes. For instance, we could double the size of our unit

square a. The kind of picture I am thinking of is shown in

figure 14. The basic percolation clusters stay roughly the

same size and shape, although I have had to fudge things

around the edges a bit to make it work. For this reason this

argument will only be strictly correct for large clusters s

whose area is not changed appreciably by the fudging. (And

the argument thus only tells us that the tail of the

distribution is a power law, and not the whole distribution.)

The probability p(s) of getting a cluster of area s is

unchanged by the coarse-graining since the areas them-

selves are, to a good approximation, unchanged, and the

mean cluster size is thus also unchanged. All that has

changed, mathematically speaking, is that the unit area a

Figure 11. The percolation model on a square lattice:

squares on the lattice are coloured in independently at

random with some probability p. In this example p=1
2.
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has been rescaled a?a/b for some constant rescaling factor

b. The equivalent of equation (79) in our coarse-grained

system is

p sð Þ ¼ C0f
s

a=b
;
a=b

sh i
� �

¼ C0f
bs

a
;

a

b sh i
� �

: ð80Þ

Comparing with equation (79), we can see that this is equal,

to within a multiplicative constant, to the probability p(bs)

of getting a cluster of size bs, but in a system with a

different mean cluster size of bhsi. Thus we have related the

probabilities of two different sizes of clusters to one

another, but on systems with different average cluster size

and hence presumably also different site occupation

probability. Note that the normalization constant must in

general be changed in equation (80) to make sure that p(s)

still sums to unity, and that this change will depend on the

value we choose for the rescaling factor b.

But now we notice that there is one special point at which

this rescaling by definition does not result in a change in hsi
or a corresponding change in the site occupation prob-

ability, and that is the critical point. When we are precisely

at the point at which hsi??, then bhsi= hsi by definition.

Putting hsi?? in equations (79) and (80), we then get

p(s)=C’f(bs/a, 0)= (C’/C)p(bs). Or equivalently

p bsð Þ ¼ g bð Þp sð Þ; ð81Þ

where g(b)=C/C’. Comparing with equation (30) we see

that this has precisely the form of the equation that defines

a scale-free distribution. The rest of the derivation below

equation (30) follows immediately, and so we know that

p(s) must follow a power law.

This in fact is the origin of the name ‘scale-free’ for a

distribution of the form (30). At the point at which hsi
diverges, the system is left with no defining size-scale, other

than the unit of area a itself. It is ‘scale-free’, and by the

argument above it follows that the distribution of s must

obey a power law.

In figure 15 I show an example of a cumulative

distribution of cluster sizes for a percolation system right

at the critical point and, as the figure shows, the

distribution does indeed follow a power law. Technically

the distribution cannot follow a power law to arbitrarily

large cluster sizes since the area of a cluster can be no bigger

than the area of the whole lattice, so the power-law

distribution will be cut off in the tail. This is an example of

a finite-size effect. This point does not seem to be visible in

figure 15 however.

The kinds of arguments given in this section can be

made more precise using the machinery of the renorma-

lization group. The real-space renormalization group

makes use precisely of transformations such as that

shown in figure 14 to derive power-law forms and their

Figure 12. Three examples of percolation systems on 1006 100 square lattices with p=0.3, p= pc=0.5927. . . and p=0.9.

The first and last are well below and above the critical point respectively, while the middle example is precisely at it.

Figure 13. The mean area of the cluster to which a

randomly chosen square belongs for the percolation model

described in the text, calculated from an average over 1000

simulations on a 10006 1000 square lattice. The dotted

line marks the known position of the phase transition.
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exponents for distributions at the critical point. An

example application to the percolation problem is given

by Reynolds et al. [55]. A more technically sophisticated

technique is the k-space renormalization group, which

makes use of transformations in Fourier space to

accomplish similar aims in a particularly elegant formal

environment [56].

4.6 Self-organized criticality

As discussed in the preceding section, certain systems

develop power-law distributions at special ‘critical’ points

in their parameter space because of the divergence of some

characteristic scale, such as the mean cluster size in the

percolation model. This does not, however, provide a

plausible explanation for the origin of power laws in most

real systems. Even if we could come up with some model of

earthquakes or solar flares or web hits that had such a

divergence, it seems unlikely that the parameters of the real

world would, just coincidentally, fall precisely at the point

where the divergence occurred.

As first proposed by Bak et al. [57], however, it is possible

that some dynamical systems actually arrange themselves

so that they always sit at the critical point, no matter what

state we start off in. One says that such systems self-

organize to the critical point, or that they display self-

organized criticality. A now-classic example of such a

system is the forest fire model of Drossel and Schwabl [58],

which is based on the percolation model we have already

seen.

Consider the percolation model as a primitive model of a

forest. The lattice represents the landscape and a single tree

can grow in each square. Occupied squares represent trees

and empty squares represent empty plots of land with no

trees. Trees appear instantaneously at random at some

constant rate and hence the squares of the lattice fill up at

random. Every once in a while a wildfire starts at a random

square on the lattice, set off by a lightning strike perhaps,

and burns the tree in that square, if there is one, along with

every other tree in the cluster connected to it. The process is

illustrated in figure 16. One can think of the fire as leaping

Figure 14. A site percolation system is coarse-grained, so that the area of the fundamental square is (in this case) quadrupled.

The occupation of the squares in the coarse-grained lattice (right) is chosen to mirror as nearly as possible that of the squares

on the original lattice (left), so that the sizes and shapes of the large clusters remain roughly the same. The small clusters are

mostly lost in the coarse-graining, so that the arguments given in the text are valid only for the large-s tail of the cluster size

distribution.

Figure 15. Cumulative distribution of the sizes of clusters

for (site) percolation on a square lattice of 400006 40000

sites at the critical site occupation probability

pc=0.592746. . ..

Power laws, Pareto distributions and Zipfs law 345



from tree to adjacent tree until the whole cluster is burned,

but the fire cannot cross the firebreak formed by an empty

square. If there is no tree in the square struck by the

lightning, then nothing happens. After a fire, trees can grow

up again in the squares vacated by burnt trees, so the

process keeps going indefinitely.

If we start with an empty lattice, trees will start to appear

but will initially be sparse and lightning strikes will either

hit empty squares or if they do chance upon a tree they will

burn it and its cluster, but that cluster will be small and

localized because we are well below the percolation

threshold. Thus fires will have essentially no effect on the

forest. As time goes by however, more and more trees will

grow up until at some point there are enough that we have

percolation. At that point, as we have seen, a spanning

cluster forms whose size is limited only by the size of the

lattice, and when any tree in that cluster gets hit by the

lightning the entire cluster will burn away. This gets rid of

the spanning cluster so that the system does not percolate

any more, but over time as more trees appear it will

presumably reach percolation again, and so the scenario

will play out repeatedly. The end result is that the system

oscillates right around the critical point, first going just

above the percolation threshold as trees appear and then

being beaten back below it by fire. In the limit of large

system size these fluctuations become small compared to

the size of the system as a whole and to an excellent

approximation the system just sits at the threshold

indefinitely. Thus, if we wait long enough, we expect the

forest fire model to self-organize to a state in which it has a

power-law distribution of the sizes of clusters, or of the

sizes of fires.

In figure 17 I show the cumulative distribution of the

sizes of fires in the forest fire model and, as we can see, it

follows a power law closely. The exponent of the

distribution is quite small in this case. The best current

estimates give a value of a=1.19+ 0.01 [59], meaning that

the distribution has an infinite mean in the limit of large

system size. For all real systems however the mean is finite:

the distribution is cut off in the large-size tail because fires

cannot have a size any greater than that of the lattice as a

whole and this makes the mean well behaved. This cut-off is

clearly visible in figure 17 as the drop in the curve towards

the right of the plot. What is more the distribution of the

sizes of fires in real forests, figure 5 (d), shows a similar cut-

off and is in many ways qualitatively similar to the

distribution predicted by the model. (Real forests are

obviously vastly more complex than the forest fire model,

and no one is seriously suggesting that the model is an

accurate representation of the real world. Rather it is a

guide to the general type of processes that might be going

on in forests.)

There has been much excitement about self-organized

criticality as a possible generic mechanism for explaining

where power-law distributions come from. Per Bak, one of

the originators of the idea, wrote an entire book about it

[60]. Self-organized critical models have been put forward

not only for forest fires, but for earthquakes [61, 62], solar

flares [5], biological evolution [63], avalanches [57] and

many other phenomena. Although it is probably not the

universal law that some have claimed it to be, it is certainly

a powerful and intriguing concept that potentially has

applications to a variety of natural and man-made systems.

4.7 Other mechanisms for generating power laws

In the preceding sections I have described the best known

and most widely applied mechanisms that generate power-

law distributions. However, there are a number of others

that deserve a mention. One that has been receiving some

attention recently is the highly optimized tolerance

mechanism of Carlson and Doyle [64, 65]. The classic

Figure 16. Lightning strikes at random positions in the forest fire model, starting fires that wipe out the entire cluster to which

a struck tree belongs.
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example of this mechanism is again a model of forest fires

and is based on the percolation process. Suppose again

that fires start at random in a grid-like forest, just as we

considered in section 4.6, but suppose now that instead of

appearing at random, trees are deliberately planted by a

knowledgeable forester. One can ask what the best

distribution of trees is to optimize the amount of lumber

the forest produces, subject to random fires that could

start at any place. The answer turns out to be that one

should plant trees in blocks, with narrow firebreaks

between them to prevent fires from spreading. Moreover,

one should make the blocks smaller in regions where fires

start more often and larger where fires are rare. The

reason for this is that we waste some valuable space by

making firebreaks, space in which we could have planted

more trees. If fires are rare, then on average it pays to put

the breaks further apart—more trees will burn if there is a

fire, but we also get more lumber if there is not.

Carlson and Doyle show both by analytic arguments and

by numerical simulation that for quite general distributions

of starting points for fires this process leads to a

distribution of fire sizes that approximately follows a

power law. The distribution is not a perfect power law in

this case, but on the other hand neither are many of those

seen in the data of figure 4, so this is not necessarily a

disadvantage. Carlson and Doyle have proposed that

highly optimized tolerance could be a model not only for

forest fires but also for the sizes of files on the world wide

web, which appear to follow a power law [6].

Another mechanism, which is mathematically similar to

that of Carlson and Doyle but quite different in motivation,

is the coherent noise mechanism proposed by Sneppen and

Newman [66] as a model of biological extinction. In this

mechanism a number of agents or species are subjected to

stresses of various sizes, and each agent has a threshold for

stress above which an applied stress will wipe that agent

out—the species becomes extinct. Extinct species are

replaced by new ones with randomly chosen thresholds.

The net result is that the system self-organizes to a state

where most of the surviving species have high thresholds,

but the exact distribution depends on the distribution of

stresses in a way very similar to the relation between block

sizes and fire frequency in highly optimized tolerance. No

conscious optimization is needed in this case, but the end

result is similar: the overall distribution of the numbers of

species becoming extinct as a result of any particular stress

approximately follows a power law. The power-law form is

not exact, but it is as good as that seen in real extinction

data. Sneppen and Newman have also suggested that their

mechanism could be used to model avalanches and

earthquakes.

One of the broad distributions mentioned in section 2.2

as an alternative to the power law was the log-normal. A

log-normally distributed quantity is one whose logarithm is

normally distributed. That is

p ln xð Þ � exp � ln x� mð Þ2
2s2

 !
; ð82Þ

for some choice of the mean m and standard deviation s of

the distribution. Distributions like this typically arise when

we are multiplying together random numbers. The log of

the product of a large number of random numbers is the

sum of the logarithms of those same random numbers, and

by the central limit theorem such sums have a normal

distribution essentially regardless of the distribution of the

individual numbers.

But equation (82) implies that the distribution of x itself

is

p xð Þ ¼ p ln xð Þ d ln x
dx

¼ 1

x
exp � ln x� mð Þ2

2s2

 !
: ð83Þ

To see how this looks if we were to plot it on log scales, we

take logarithms of both sides, giving

ln p xð Þ ¼ �ln x� ln x� mð Þ2
2s2

¼ � ln xð Þ2
2s2

þ m
s2

� 1
h i

ln x� m2

2s2
;

ð84Þ

which is quadratic in ln x. However, any quadratic curve

looks straight if we view a sufficiently small portion of it, so

Figure 17. Cumulative distribution of the sizes of ‘fires’ in a

simulation of the forest fire model of Drossel and Schwabl

[58] for a square lattice of size 50006 5000.

Power laws, Pareto distributions and Zipfs law 347



p(x) will look like a power-law distribution when we look at

a small portion on log scales. The effective exponent a of

the distribution is in this case not fixed by the theory—it

could be anything, depending on which part of the

quadratic our data fall on.

On larger scales the distribution will have some down-

ward curvature, but so do many of the distributions

claimed to follow power laws, so it is possible that these

distributions are really log-normal. In fact, in many cases

we do not even have to restrict ourselves to a particularly

small portion of the curve. If s is large then the quadratic

term in equation (84) will vary slowly and the curvature of

the line will be slight, so the distribution will appear to

follow a power law over relatively large portions of its

range. This situation arises commonly when we are

considering products of random numbers.

Suppose for example that we are multiplying together

100 numbers, each of which is drawn from some distribu-

tion such that the standard deviation of the logs is around

1—i.e. the numbers themselves vary up or down by about a

factor of e. Then, by the central limit theorem, the standard

deviation for ln x will be s^10 and ln x will have to vary

by about + 10 for changes in (ln x)2/s2 to be apparent. But

such a variation in the logarithm corresponds to a variation

in x of more than four orders of magnitude. If our data

span a domain smaller than this, as many of the plots in

figure 4 do, then we will see a measured distribution that

looks close to a power law. And the range will get quickly

larger as the number of numbers we are multiplying grows.

One example of a random multiplicative process might

be wealth generation by investment. If a person invests

money, for instance in the stock market, they will get a

percentage return on their investment that varies over time.

In other words, in each period of time their investment is

multiplied by some factor which fluctuates from one period

to the next. If the fluctuations are random and uncorre-

lated, then after many such periods the value of the

investment is the initial value multiplied by the product of a

large number of random numbers, and therefore should be

distributed according to a log-normal. This could explain

why the tail of the wealth distribution, figure 4 (j), appears

to follow a power law.

Another example is fragmentation. Suppose we break a

stick of unit length into two parts at a position which is a

random fraction z of the way along the stick’s length. Then

we break the resulting pieces at random again and so on.

After many breaks, the length of one of the remaining

pieces will be Pizi, where zi is the position of the ith break.

This is a product of random numbers and thus the resulting

distribution of lengths should follow a power law over a

portion of its range. A mechanism like this could, for

instance, produce a power-law distribution of meteors or

other interplanetary rock fragments, which tend to break

up when they collide with one another, and this in turn

could produce a power-law distribution of the sizes of

meteor craters similar to the one in figure 4 (g).

In fact, as discussed by a number of authors [67 – 69],

random multiplication processes can also generate perfect

power-law distributions with only a slight modification: if

there is a lower bound on the value that the product of a set

of numbers is allowed to take (for example if there is a

‘reflecting boundary’ on the lower end of the range, or an

additive noise term as well as a multiplicative one) then the

behaviour of the process is modified to generate not a log-

normal, but a true power law.

Finally, some processes show power-law distributions of

times between events. The distribution of times between

earthquakes and their aftershocks is one example. Such

power-law distributions of times are observed in critical

models and in the coherent noise mechanism mentioned

above, but another possible explanation for their occur-

rence is a random extremal process or record dynamics. In

this mechanism we consider how often a randomly

fluctuating quantity will break its own record for the

highest value recorded. For a quantity with, say, a

Gaussian distribution, it is always in theory possible for

the record to be broken, no matter what its current value,

but the more often the record is broken the higher the

record will get and the longer we will have to wait until it is

broken again. As shown by Sibani and Littlewood [70], this

non-stationary process gives a distribution of waiting times

between the establishment of new records that follows a

power law with exponent a= –1. Interestingly, this is

precisely the exponent observed for the distribution of

waiting times for aftershocks of earthquakes. The record

dynamics has also been proposed as a model for the

lifetimes of biological taxa [71].

5. Conclusions

In this review I have discussed the power-law statistical

distributions seen in a wide variety of natural and man-

made phenomena, from earthquakes and solar flares to

populations of cities and sales of books. We have seen

many examples of power-law distributions in real data and

seen how to analyse those data to understand the behaviour

and parameters of the distributions. I have also described a

number of physical mechanisms that have been proposed to

explain the occurrence of power laws. Perhaps the two most

important of these are the following.

(a) The Yule process, a rich-get-richer mechanism in

which the most populous cities or best-selling books

get more inhabitants or sales in proportion to the

number they already have. Yule and later Simon

showed mathematically that this mechanism pro-

duces what is now called the Yule distribution, which

follows a power law in its tail.
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(b) Critical phenomena and the associated concept of

self-organized criticality, in which a scale-factor of a

system diverges, either because we have tuned the

system to a special critical point in its parameter

space or because the system automatically drives itself

to that point by some dynamical process. The

divergence can leave the system with no appropriate

scale factor to set the size of some measured quantity

and as we have seen the quantity must then follow a

power law.

The study of power-law distributions is an area in which

there is considerable current research interest. While the

mechanisms and explanations presented here certainly offer

some insight, there is much work to be done both

experimentally and theoretically before we can say we

really understand the physical processes driving these

systems. Without doubt there are many exciting discoveries

still waiting to be made.
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Appendix A: Rank/frequency plots

Suppose we wish to make a plot of the cumulative

distribution function P(x) of a quantity such as, for

example, the frequency with which words appear in a body

of text (figure 4 (a)). We start by making a list of all the

words along with their frequency of occurrence. Now the

cumulative distribution of the frequency is defined such

that P(x) is the fraction of words with frequency greater

than or equal to x. Or alternatively one could simply plot

the number of words with frequency greater than or equal

to x, which differs from the fraction only in its normal-

ization.

Now consider the most frequent word, which is ‘the’ in

most written English texts. If x is the frequency with

which this word occurs, then clearly there is exactly one

word with frequency greater than or equal to x, since no

other word is more frequent. Similarly, for the frequency

of the second most common word—usually ‘of’—there

are two words with that frequency or greater, namely ‘of’

and ‘the’. And so forth. In other words, if we rank the

words in order, then by definition there are n words with

frequency greater than or equal to that of the nth most

common word. Thus the cumulative distribution P(x) is

simply proportional to the rank n of a word. This means

that to make a plot of P(x) all we need do is sort the

words in decreasing order of frequency, number them

starting from 1, and then plot their ranks as a function

of their frequency. Such a plot of rank against frequency

was called by Zipf [2] a rank/frequency plot, and this

name is still sometimes used to refer to plots of the

cumulative distribution of a quantity. Of course, many

quantities we are interested in are not frequencies—they

are the sizes of earthquakes or people’s personal wealth

or whatever—but nonetheless people still talk about

‘rank/frequency’ plots although the name is not techni-

cally accurate.

In practice, sorting and ranking measurements and then

plotting rank against those measurements is usually the

quickest way to construct a plot of the cumulative

distribution of a quantity. All the cumulative plots in this

paper were made in this way, except for the plot of the sizes

of moon craters in figure 4 (g), for which the data came

already in cumulative form.

Appendix B: Maximum likelihood estimate of exponents

Consider the power-law distribution

p xð Þ ¼ Cx�a ¼ a� 1

xmin

x

xmin

� ��a

; ðB1Þ

where we have made use of the value of the normalization

constant C calculated in equation (8).

Given a set of n values xi, the probability that those

values where generated from this distribution is propor-

tional to

P xjað Þ ¼
Yn
i¼1

p xið Þ ¼
Yn
i¼1

a� 1

xmin

xi
xmin

� ��a

: ðB2Þ

This quantity is called the likelihood of the data set. What

we really want to know however is the probability of a

particular value of a given the observed {xi}, which is given

by Bayes’ law thus:

P ajxð Þ ¼ P xjað ÞP að Þ
P xð Þ : ðB3Þ

The prior probability of the data P(x) is fixed—it is 1 for

the set of observations we made and zero for every other—

and it is usually assumed, in the absence of any information

to the contrary, that the prior probability of the exponent

P(a) is uniform, i.e. a constant. Thus P(ajx)!P(xja). For
convenience we typically work with the logarithm of P(ajx),
which, to within an additive constant, is equal to the log L
of the likelihood, given by
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L ¼ lnP xjað Þ ¼
Xn
i¼1

ln a�1ð Þ � ln xmin � a ln
xi
xmin

� �

¼ n ln a� 1ð Þ � n ln xmin � a
Xn
i¼1

ln
xi
xmin

: ðB4Þ

Now we calculate the most likely value of a by maximizing

the likelihood with respect to a, which is the same as

maximizing the log likelihood, since the logarithm is a

monotonic increasing function. Setting dL/da=0, we find

n

a� 1
�
Xn
i¼1

ln
xi
xmin

¼ 0; ðB5Þ

or

a ¼ 1þ n
X
i

ln
xi
xmin

" #�1

: ðB6Þ
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