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A model of simple algorithmic &&agents'' acting in a discrete temperature "eld is used to
investigate the movement of individuals in thermoregulating honey bee (Apis mellifera)
clusters. Thermoregulation in over-wintering clusters is thought to be the result of individual
bees attempting to regulate their own body temperatures. At ambient temperatures above 03C,
a clustering bee will move relative to its neighbours so as to put its local temperature within
some ideal range. The proposed model incorporates this behaviour into an algorithm for bee
agents moving on a two-dimensional lattice. Heat transport on the lattice is modelled by
a discrete di!usion process. Computer simulation of this model demonstrates qualitative
behaviour which agrees with that of real honey bee clusters. In particular, we observe the
formation of both disc- and ring-like cluster shapes. The simulation also suggests that at lower
ambient temperatures, clusters do not always have a stable shape but can oscillate between
insulating rings of di!erent sizes and densities.
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1. Introduction

The primary aim of mathematical modelling is
to capture the features of a natural system as
a simple set of rules. Often, these rules take the
form of di!erential equations describing the tem-
poral and spatial evolution of a set of variables
which characterize the state of the system. These
can either be analysed directly or used to create
a computer simulation which re#ects*and pos-
sibly predicts*aspects of the system's behaviour.
So successful has this approach been that it is
sometimes di$cult to see beyond the limitations.
Thus, although di!erential equation models have
been applied to the dynamics of animal societies
since the 1920s (Murray, 1989), they are, by their
nature, restricted to providing information about
*Author to whom correspondence should be addressed.
-mail: sumpter@maths.ox.ac.uk
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averaged quantities such as populations or dens-
ities of populations. Generally, this type of in-
formation fails to capture the contribution of
each individual to the behaviour of the society as
a whole (Drogul & Ferber, 1992; Minar et al.,
1996; Taylor & Je!erson, 1995).

In this paper we propose an agent-based
model. The underlying principle of such a model
is that the rules re#ecting the system's behaviour
are de"ned in terms of the autonomous entities
(agents) which constitute the system. Agent-based
simulations therefore encompass a number of
di!erent modelling paradigms including cellular
automata, object oriented models and certain
discrete event simulations. These models remove
many of the limitations of di!erential equations
by allowing the investigation of how the behav-
iour of individuals*and the rules governing their
interaction*generate patterns of global behav-
iour. This is particularly useful for modelling
animal societies.
( 2000 Academic Press
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Honey bee colonies consist of tens of thou-
sands of individuals all acting autonomously but
as part of a complex society. One example of an
apparently coordinated colony level response to
changing conditions is the formation of spherical
clusters and, thereby, the regulation of nest tem-
perature during cold weather. It has been sugges-
ted that cluster thermoregulation is the result of
the colony acting as a superorganism, capable of
adjusting its shape and size to suit temperature
conditions (Southwick, 1991). However, it has
been demonstrated that in honey bee swarms the
bees in the centre (core) do not communicate with
those on the surface (mantle) (Heinrich, 1981).
This seems to support the hypothesis that the
formation and behaviour of the cluster is the
result of independent actions by individual
bees. The investigation of this hypothesis is a
natural application of the agent-based simulation
technique.

Previous models of temperature distributions
inside winter clusters have used di!erential heat
equations to predict changes in cluster width
and core and mantle temperatures over time
(Basak et al., 1996; Lemke & Lamprecht, 1990;
Myerscough, 1993; Omholt, 1987). Most begin
with the assumption that the metabolic heat pro-
duction at any point in the cluster is a function of
the distance from the centre. This presupposes
spherical symmetry and a given density distribu-
tion of bees within the cluster. The question of
how the bees actually arrange themselves into
such a con"guration*surely an interesting ques-
tion*is thus avoided.

Watmough & Camazine (1995) improved on
this basic model by treating the bee density at
di!erent points inside a spherical cluster as a dy-
namical variable. In this model, heat production
depends on the density of bees at any given
point*heat di!uses in the cluster and bee densit-
ies change according to the local temperature. An
individual bee's behaviour is not expressed ex-
plicitly but is re#ected in density changes as bees
move along the temperature gradient toward the
point where their temperature is ideal. An un-
satisfactory aspect of this model is that it still
assumes that the bees always form a spherical
shape. In this paper, we introduce an agent-based
model which spontaneously produces this global
behaviour as a consequence of simple rules
followed by each individual bee in the colony. An
unexpected consequence of our model is that it
suggests a new dynamical phenomenon: clusters
which are seen to pulsate.

2. Problem Description and Model

2.1. MODEL ASSUMPTIONS

The computer model we use is based on the
following assumptions about the behaviour of
individual bees:

1. Each bee bases her behaviour exclusively on
her local temperature.

2. Bees have a preferred range of temperatures.
Inside this range a bee moves randomly. When
she is outside this range she will move in the
appropriate direction along the temperature
gradient.

3. Below a lower threshold temperature a bee
will go into a &&chill coma'' and will be unable
to move.

4. A bee's heat production is based on her meta-
bolic rate which is an increasing function of
temperature. Bees in a coma generate no heat.

Assumptions 1 and 4 are similar to those made
in Watmough and Camazine. Assumption 2 is
a small generalization of their model since it
replaces a single preferred temperature with
a preferred temperature range. This allows for
bee activity*other than temperature optimiza-
tion*to take place when the bees are in their
preferred temperature range. In our simulation,
this other activity is modelled by the bees per-
forming random walks.

In this paper, we con"ne our attention to the
behaviour of clusters at ambient temperatures
above 03C. Below this temperature the cluster
diameter reaches a lower limit and some of the
clustering bees adopt a new kind of behaviour;
shivering their wing muscles to generate heat.
Restricting attention to higher ambient temper-
atures allows us to focus on a simpler model
while still producing interesting and realistic
cluster behaviour.

In addition to individual bee behaviour we
must also represent the transport of heat within
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the hive. Following Watmough and Camazine we
introduce the following additional assumptions:

5. Heat transfer through the hive is due to
di!usion.

6. Di!usion is reduced by still bees.

Assumption 6 is a modi"cation of an assumption
of Watmough and Camazine. At temperatures
below 153C it is observed that bees huddle close
together preventing convection through the clus-
ter (Heinrich, 1981), Watmough and Camazine
incorporated this by assuming that all bees have
an insulating e!ect. Here, it is assumed that only
stationary bees have an insulating e!ect. On the
contrary we assume that moving bees can con-
tribute to the heat #ux by causing local mixing of
the air.

2.2 THE FORMAL MODEL

We consider a two-dimensional region which
represents the gap between two honeycomb
layers in, say, a commercial bee hive. In reality,
these gaps are about two or three bee widths wide
(Winston, 1987) but we shall assume that no
more than a single bee may be found at a given
point. Furthermore, we shall assume no heat loss
through the honeycomb.

Each bee agent, labelled b, is a computer
program containing variables (x

b
, y

b
) represent-

ing its coordinates. We shall constrain the bees to
move on the vertices of a "nite square lattice, that
is, x

b
and y

b
are integers which satisfy the condi-

tions: 0(x
b
(x

max
and 0(y

b
(y

max
. It will be

convenient to think of b3B, where B is the or-
dered set of all bee agents in the hive. By writing
b(t) we mean the position of b at time t3Z`. This
agent de"nition implies bees which have no mem-
ory in the sense that all the relevant information
about a bee may be derived from knowledge of
her current position.

Before we de"ne how a bee behaves in time and
space we must specify its environment. The
temperature "eld is de"ned as a real-valued func-
tion on the lattice M(x, y)>¹

xy
: x3M0,2, x

max
N,

y3M0,2, y
max

NN. (Note that this lattice is slightly
larger than the one that the bees inhabit to allow
us to "x the boundary conditions on ¹

xy
.) It will

sometimes be convenient to use the notation
¹
xy

(t) to denote the temperature at position (x, y)
and time t.

2.2.1. Individual Bee Behaviour

The behaviour of a given bee depends on the
position of the other bees and on the temperature
"eld. We let ¹

coma
denote the temperature below

which a bee will enter a chill coma, and ¹
minI

and
¹
maxI

denote, respectively, the lower and upper
bounds of the preferred temperature range of the
bees. We now de"ne bee behaviour which incor-
porates assumptions 1}3. We write a single bee
movement as, b (t)>b (t#q), with the integer
constant q*1, de"ned as a bee time step. Phys-
ically, q can be thought of as the time it takes
a bee to move her own body length when crawl-
ing about the hive. For any b(t)"(x

b
, y

b
), if

¹
xbyb

(t)(¹
coma

then b (t#q)"b(t). Otherwise,
consider the set of all positions, (x, y) such that
Dx

b
!x D)1 and Dy

b
!y D)1, which do not con-

tain another bee and are within the preferred
temperature range (¹

minI
, ¹

maxI
). If this set is not

empty then b (t#q) is a position picked at ran-
dom from this set. Otherwise, b (t#q) is taken to
be one of the positions, (x, y), containing no other
bee, which has ¹

xy
nearest to ¹

meanI
"1

2
(¹

minI
#

¹
maxI

). In order to resolve con#icts which might
arise in the implementation of these rules should
more than one bee attempt to occupy a given site,
the bee movements are considered serially. At
each bee time step the order in which the indi-
vidual bees are considered is randomized.

2.2.2. ¹emperature Field

The factors a!ecting the evolution of the
temperature are: the local production of heat by
individual active bees, and di!usion e!ects which
tend to make the temperature "eld more uniform.
To avoid numerical artefacts we determine the
di!usion of the temperature "eld on a "ner
lattice than the one on which bees move. On this
lattice we denote the temperature as M(i, j )>¹g

ij
:

i3M0,2, gx
max

N, j3M0,2, gy
max

NN where g is
a positive integer which denotes the relative
length scales of the lattices. The temperature "eld
experienced by the bees is the local average of the
"ne scale temperature "eld

¹
xy

(t)"
1
g2

(g(x`1)~1)
+

(g(y`1)~1)
+ ¹g

ij
(t).
i/gx j/gy
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The "ne scale temperature "eld is updated using
a discrete form of the di!usion equation with
a non-constant di!usion coe$cient:

¹g
xy

(t#1)"¹g
xy

(t)#D2(x, y, t)#f (x, y, t). (1)

This equation clearly contains a "rst-di!erence
approximation of the time derivative of the tem-
perature "eld and a term, f (x, y, t), which repres-
ents heat sources corresponding to the current
locations of the bees. The remaining term,
D2(x, y, t), is a discrete (second-di!erence) form of
the di!usion operator acting on the temperature
"eld.

D2(x, y, t)"
1
4

+
Dx~x{ D`Dy~y D/1

D(x, y, x@, y@, t)

](¹g
x{y{

(t)!¹g
xy

(t)).

Here D(x, y, x@, y@, t)"j (x, y, t)j(x@, y@, t) is the
non-uniform di!usion coe$cient written in terms
of site-dependent heat transport coe$cients. If
there is a stationary bee on site (x, y) at time t we
assume an insulation e!ect and take j(x, y, t)"
j
bee

, otherwise we just set j (x, y, t)"j
air

, the
heat transport coe$cient of free air. Generally, it
is assumed that j

bee
(j

air
.

The source term of eqn (1) is a nonlinear func-
tion of the local temperature which models the
observation that a bee's metabolic rate is an
increasing function of temperature*see assump-
tion 4. If site (x, y) is empty at time t then
f (x, y, t)"0. Otherwise

f (x, y, t)"h
q20

ec(Tg
xy (t)~20), (2)

where h
q20

is the temperature increase made by
a passive bee at 203C and the exponent, c, has
been determined experimentally to be&ln(2.4)/
10 (Omholt, 1987).

In order to be able to solve eqn (1) we need to
specify boundary conditions on the "ne scale
lattice. The most natural way to do this is to
constrain the temperature at the boundaries of
the region to be some "xed ambient temperature,
¹
A
,

¹g
0y

(t)"¹
A
, t*0, y3M0,2, gy

max
N,

¹g
x0

(t)"¹
A
, t*0, x3M0,2, gx

max
N,

¹g
xmaxy

(t)"¹
A
, t*0, y3M0,2, gy

max
N,

¹g
xymax

(t)"¹
A
, t*0, x3M0,2, gx

max
N.

We have now speci"ed a discrete, stochastic
dynamical system. Given initial data*an initial
temperature "eld and the set B giving the initial
distribution of bees*we can, in principle, follow
the evolution of the temperature "eld and the bee
distribution forward in time. For simplicity, we
shall assume that the initial temperature "eld is
uniform and set to the ambient temperature

¹g
xy

(0)"¹
A
, x3M0,2,gx

max
N, y3M0,2,gy

max
N.

The initial distribution of bees is sampled at ran-
dom from the uniform distribution over the entire
lattice of possible bee positions.

In practice, we use this formalization as a de"ni-
tion of an agent-based computer simulation of the
model. The results which follow in the next section
were obtained by a simulation implemented
using Swarm simulation libraries for Objective-C
(Minar et al., 1996).

2.3. MODEL PARAMETERIZATION

We need to choose model parameters to re#ect
the real behaviour and physiology of individual
honey bees within a cluster. This must necessarily
involve a degree of interpretation of experimental
data to relate, for example, information about the
clusters to parameters characterizing individual be-
haviour. It follows, therefore, that we should avoid
analysing "ne details in the simulations we make,
rather we look for qualitative behaviour which does
not depend sensitively on the actual values of the
parameters used.

The parameters which govern bee behaviour
are ¹

minI
, ¹

maxI
and ¹

coma
. We set ¹

minI
"183C

since this is the value at which bees are seen to
start clustering (Winston, 1987). Below 183C an
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individual bee has di$culty activating her #ight
muscles (Heinrich, 1996). Bees can perform most of
their normal functions at temperatures up to 353C.
However, experimental data on individual bee be-
haviour is unreliable when applied to the social
situation since we must account for the shared
honey resources. A higher body temperature im-
plies a greater metabolic rate and hence greater
energy usage. Keeping a relatively low body tem-
perature will reduce the usage of honey resources.
With this in mind we set ¹

maxI
"233C. In nature

¹
coma

"83C [below ¹
coma

individuals are unable to
move to form any cluster (Winston, 1987)].

It has been observed that a passive bee
generates q

20
"1.2 mW at 203C (Lemke &

Lamprecht, 1990). The temperature increase due to
a single bee at 203C per unit time step, h

q20
, is

dependent on the size of the hive (x
max

and y
max

),
insulation of air and passive bees (j

air
and j

bee
), the

time between bee movements (q) and the volume
associated with an individual bee (g2). Further-
more, in the simulation we use roughly two orders
of magnitude fewer bees than are found in a real
hive. We set h

q20
to produce a global behaviour

which is consistent with a well understood aspect of
hive behaviour. Speci"cally, we ensure that for our
standard colony*which contains 100 bees*the
mean core temperature of the hive is 21.33C at an
ambient temperature of 183C (Southwick
& Mugaas, 1971).

It remains to "x the physical parameters of the
system. As we stated earlier, we associate q with the
time it takes a bee to move its own length. Nom-
inally, we might say that this is of the order of 1 s.
Thus, times from simulations given in bee time
steps can be thought of as being given in seconds.
The rest of the physical parameters concern heat
transport within the hive. We choose units so that
the parameter j

air
"1.0. In line with observations

(Southwick, 1985), we should set j
bee

*

J0.3&0.55 but this does not result in simulated
clusters which can survive at low ambient
temperatures. This is probably because we are
simulating smaller clusters than would be found
in nature. We therefore set j

bee
"0.45. The qualita-

tive aspects of the simulation described in the
next section are similar to those for a higher
value of j

bee
. The complete parameterization of the

simulation described below is summarized in
Appendix B.
3. Cluster Formation

We are particularly interested in the behaviour of
bees when the ambient temperature, ¹

A
, is less than

¹
minI

but greater than ¹
coma

. That is, when the
ambient temperature is too low for the individual
bee to be happy but high enough for her to be able
to move to a more comfortable location. The strik-
ing*but perhaps unsurprising*characteristic of
all our simulations of this situation is that bees
started at random, uniformly distributed locations
tend to move together to form clusters.

In the simulations it is possible to identify three
qualitatively di!erent types of cluster.

1. &&Droplet'' clusters in which the distribution be-
comes separated into many small independent
clusters. In this con"guration very few*if
any*bees are active.

2. The disc cluster, where the bees are distributed
uniformly on a single, roughly circular disc with-
in which many bees are active.

3. The ring cluster, which is similar to the disc
cluster except that there are fewer bees at the
centre than at the circumference of the disc.

These clusters may occur either as transient
structures, or as time independent, equilibrium dis-
tributions representing a "nal, stationary state of
the simulation. An example of each of these is given
in Fig. 1 which shows three equilibrium clusters
produced by varying the ambient temperature and
the total number of bees.

It is useful to specify these di!erent cases more
rigidly in terms of various statistical characteriza-
tions of the bee distribution. In the "rst instance, we
should like to distinguish clustering as some kind of
non-uniformity. To this end we propose the follow-
ing s2 test which allows us to assess if bees are
distributed uniformly on each row of the hive. We
de"ne

X2
U
(t)"

ymax~1
+
y/1

(n
y
(t)!E)2

E
, (3)

where n
y
(t) is the number of bees in row y at

time t, and E is the expected number of bees in
each row*assuming a uniform distribution (i.e.
E"DBD/(y

max
!1)). The statistic X2

U
has a s2 distri-

bution with y
max

!2 degrees of freedom.



FIG. 1. The equilibrium distribution resulting from
simulation runs of 100 or 200 bees at various ambient
temperatures. The bees were initially distributed uniformly
at random. (a) Droplet clusters: 100 bees at ¹

A
"93. All bees

are inactive. (b) Disc cluster: 100 bees at ¹
A
"123C. Over

90% of the bees are active. (c) Ring cluster: 200 bes at
¹
A
"133C. Over 90% of the bees are active.
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3.1. DROPLET CLUSTERS

When starting the simulation with the bees
sparsely distributed and ¹

A
)123C, the bees can

arrange themselves, through some initial activity,
into a equilibrium state in which none of them is
able to move. Applying the X2

U
test to the resulting

distribution of still bees reveals that they are no
longer uniformly distributed across the hive. In fact,
nearby bees have moved together to form the small
groups we call &&droplet'' clusters. This situation
arises when the heat generated by each individual
bee and her immediate neighbours is larger than
the heat detectable from any other source. In clus-
ters such as these every bee is below her range of
ideal temperatures. In nature, if bees are split into
small but relatively close groups outside the hive, it
is observed that these groups will remain separate
and*in cold weather*the bees within them may
enter a chill coma (S. Martin, pers. comm.). This
does not occur inside the hive and we note that in
our simulation if we repeat the experiment with the
bees initially closer together they never appear to
come to equilibrium in the droplet state. We also
observe that, similarly, if we start with a uniform
distribution of bees but reduce the ambient temper-
ature slowly the bees do not end up in the droplet
state. This case is discussed in Section 4.

3.2. FORMATION OF ACTIVE CLUSTERS

An important characteristic of ring and disc clus-
ters which distinguishes them from droplets, is that
they consist of moving bees. In this section we wish
to study the formation of these active clusters. We
do this by computing various statistics which sum-
marize aspects of a simulation run. We have al-
ready mentioned the "rst of these, X2

U
. We now

de"ne N
a
(t), the number of active bees at time t, as

N
a
(t)"DMb3B :b(t)Ob(t!q)ND. (4)

Taken together these statistics allow us to make
a crude distinction between the various clusters
which arise*even transiently*during a simula-
tion:

Initial distribution X2
U
(s2

ymax~2
(0.05) N

a
"0,

Droplet clusters X2
U
's2

ymax~2
(0.05) N

a
(1

2
DBD,



TABLE 1
¹he mean times, over 20 simulation runs, for 100 bees started uniformly at
random to pass to each stage of cluster formation. t

1
is the mean time, in bee

step units, till the bees enter a2possibly transient2droplet cluster. Sim-
ilarly, t

2
is the mean times till the cluster becomes a disc shape. t

2
"R

implies that the cluster remains as an equilibrium droplet cluster. ¹he
¹
A
*163C are su.ciently large that the cluster is spread uniformly across

the hive for the duration of the simulation

¹
A

Mean t
1

¹
C
(t
1
) Percentage Mean t

2
¹
C
(t
2
)

(3C) (3C) t
2
"R (t

2
(R) (3C)

8 73.5 8.28 70 2410 22.18
9 79.1 9.36 50 2091 22.02

10 86.8 10.38 45 1863 18.30
11 70.5 11.36 45 1998 18.78
12 74.5 12.40 25 1265 17.93
13 88.0 13.61 0 1263 18.52
14 67.0 14.39 0 909 17.85
15 72.0 15.52 0 609 18.19
16 0 466 17.97
17 0 275 18.02
18 0 0 18.0
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Disc and ring clusters X2
U
's2

ymax~2
(0.05)

N
a
'1

2
DB D ,

where s2l (a) is the value of the s2 distribution with
l degrees of freedom which is exceeded with
probability a. A cluster is deemed to have
changed from one stage to another when both
conditions are ful"lled for "ve consecutive time
steps.

When the distribution of bees evolves to an
active cluster we observe that the bees are able to
in#uence the temperature of their environment.
As a measure of this we de"ne the core temper-
ature at time t as ¹

C
(t)"¹

xy
where (x, y)3B is

the position of the nearest bee to (x
c
, y

c
), the

mean position of all bees. Table 1 summarizes
the results of a series of experiments to study the
e!ect of the ambient temperature, ¹

A
, on cluster

formation. All the experiments used 100 bees
initially distributed uniformly on a 50]50 lattice.

In the table, t
1

is the mean time*averaged
over 20 runs*for the system to appear to be in
a*possibly transient*droplet state according to
the X2

U
statistic. For ¹

A
(163C, these times are

essentially independent of ¹
A
. Our interpretation

of this e!ect is that these values of t
1
represent the
time it takes for non-uniformities to develop in
the temperature "eld and for the bees to respond
by moving towards each other along the temper-
ature gradients produced. At higher ambient
temperatures, ¹

A
*163C, no transient droplet

clusters are seen.
The process of active cluster development is

associated with the generation of a non-uniform
temperature distribution. In the "nal stages, this
is generally peaked in the centre of the hive.
A measure of how far this process has progressed
is the di!erence between ¹

C
*which represents

the temperature at the centre of mass of the
bees*and the "xed value of the temperature, ¹

A
,

at the boundary. In the case of droplet formation,
we see that ¹

C
(t
1
)+¹

A
indicating that as yet no

global pattern has formed in the temperature "eld.
The rest of table 1 is concerned with passage

to the active cluster stages. The time t
2

is de-
"ned*similarly to t

1
*as the average time until

N
a

exceeds half the total bee population. For
ambient temperatures in the range 83C)

¹
A
)123C, t

2
can sometimes be longer than the

length of the simulation because the bees form an
equilibrium droplet con"guration. Whether or
not this occurs depends on the random starting
con"guration.



FIG. 2. The mean core temperature, ¹
C
, plotted against

the mean D
C
, the measure of the nearest bee to the centre of

the cluster for di!ering numbers of bees. These values were
obtained by varying the number of bees between 70 and 160
at an ambient temperature of 133C then running the simula-
tion until the cluster reached equilibrium. The means were
found over 5000 bee time steps at equilibrium.
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In calculating the average for t
2

we disregard
those runs which resulted in equilibrium droplet
states. An arresting fact is that the core temper-
ature at the time the cluster becomes active is, to
a good approximation, 183C, the lower bound of
the bee's preferred temperature range. Excepting
the lowest values of ¹

A
*where many complica-

tions can arise due to the potential stability of
droplet formations*this result is independent of
the value of ¹

A
. This suggests that the bees can-

not form an active cluster until they have heated
the hive su$cently. Naturally, this takes longer at
lower ambient temperatures and we "nd a rough-
ly linear dependence of t

2
on ¹

A
.

These simulations all show that the "rst active
cluster to form is a disc. When the condition
¹
C
"¹

minI
is met, individual bees aiming to

achieve their local goal*to be within their pre-
ferred temperature range*create the circumstan-
ces whereby the global goal of all the bees*to
move around an area of the hive freely*can be
achieved. Bees inside the disc are within their
preferred temperature range and therefore be-
come uniformly distributed across the disc. We
"nd that for small numbers of bees (between 70
and 120 on the 50]50 lattice) this disc shape is
an equilibrium.

3.3. FROM RINGS TO DISCS

Figure 1(c) shows that 200 bees at 133C form
a ring rather than a disc. A distinguishing feature
of this ring is that the bee nearest to the centre of
the cluster will be signi"cantly further away from
the centre than if the bees were uniformly distrib-
uted on a disc. Let us use this simple observation
to develop a statistic which is sensitive to the
transition between discs and rings.

Imagine a disc of radius R in which there are
DBD bees distributed uniformly. Consider the centre
of the disc and draw the smallest circle needed
o contain at least one bee. Let this circle have
radius r. Since the density is assumed to
be uniform this construction gives us a simple
measure of the density of the bees o+1/nr2.
Another estimate of the bee density comes from
the observation that we have DBD bees in a disc of
radius R so that o+DB D/nR2. Equating these
shows that DB D (r/R)2+1 for bees uniformly dis-
tributed on a disc.
We de"ne our estimate of DB D (r/R)2 at a given
time t as D

C
(t)"

DB D
minM(x@!x

c
)2#(y@!y

c
)2 : (x@, y@ )3BN

(Cluster radius at t)2
. (5)

When the bees are clustered uniformly in a disc,
D

C
should be approximately unity and indepen-

dent of the number of bees. Figure 2 shows the
mean core temperature and the mean value of
D

C
for various numbers of bees once an equilib-

rium state has been reached. For 70)DB D)120,
D

C
is constant and of the order of unity. Observa-

tion of the simulation shows that these sized
clusters are clearly in a disc shape similar to that
shown in Fig. 1(b). As DB D increases beyond 130
the values of D

C
grow rapidly, indicating a signi"-

cant change in the clustering behaviour of the
bees. Rather than being uniformly distributed on
a disc the bees are now found distributed on
a ring. The larger values of D

C
show that radius of

the circle at the centre of the disc which contains
just one bee, r, is an increasing fraction of the
radius of the whole cluster, R. Observing the
evolution of such clusters from an initially uni-
form distribution reveals the bees moving
through both droplet clusters and disc shapes to
"nally come to equilibrium as a ring.
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Clusters with a value of D
C

inconsistent with
a disc shape have a mean core temperature very
close to the ideal maximum for an individual bee,
¹
maxI

"233C. The bees move into a ring rather
than a disc because the centre of the cluster is too
hot. The cluster shape &&adjusts'' to keep bees
within their ideal range of temperatures. It is
interesting to note that real thermoregulating
clusters form both uniform disc shapes and rings
with higher bee densities on the mantle (Winston,
1987). The simulation demonstrates that these
shapes may be formed by individual bees respon-
ding only to their local environment. In this
sense, it is possible that cluster shape adjustments
are entirely self-organized.

4. Low-Temperature Cluster Dynamics

In nature, when a bee's body temperature
drops below ¹

coma
"83C she goes into a chill

coma (Winston, 1987). We cannot, therefore,
FIG. 3. Mean core temperature (¹
C
), mantle temperature (¹

M
against ambient temperatures.
sensibly study the formation of clusters at ambi-
ent temperatures below ¹

coma
. In order to exam-

ine behaviour at these temperatures, we begin a
simulation of 100 bees at a high ambient temper-
ature and gradually lower it to values of ¹

A
be-

tween 0 and 83C. To reduce transient e!ects, we
let each simulation run for 10 000 bee time steps,
for each value of ¹

A
, before making any observa-

tions.
Figure 3 shows the mean mantle and core

temperatures and cluster width plotted against
ambient temperature for clusters presumed to be
at equilibrium. In real bee nests, as ambient tem-
peratures fall, clusters contract reaching a min-
imum size at ¹

A
+03C (Seeley & Heinrich, 1981).

They then exhibit a rise in core temperature
accompanied by continued decrease in mantle
temperature. Our simulation reaches minimum
width at ¹

A
+93C. Below this temperature it

exhibits the increase in core and decrease in
mantle temperatures consistent with observations.
), cluster width (= ) and the mean value of the D
C

test plotted
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Although we see increases in core temperature
which agree qualitatively with observations of
natural bee clusters, our model takes no account
of the wing muscle &&shivering'' mechanism which
individual bees employ at ambient temperatures
below 03C (Seeley & Heinrich, 1981). A similar
heating e!ect to ours is observed in Watmough
and Camazine's model, where core temperatures
begin increasing as ¹

A
drops below 7.53C, well

above the onset of shivering. These results sug-
gest that an increased core temperature need not
be solely a consequence of shivering. Rather we
see that it can be a consequence of a positive
feedback mechanism; the increased insulation
e$ciency of a tight cluster of bees leads to
a warming e!ect which in turn increases the heat
production since the metabolic rate of the bees is
an increasing function of temperature. Indeed,
such a feedback mechanism*reminiscent of neu-
tron-induced radioactive decay*could lead to
catastrophic temperature increases if it were not
for some mitigating mechanism such as, for
example, the bees rearranging the con"guration
of the overheated cluster, thereby allowing it to
cool.

4.1. A PULSATING CLUSTER

Once the cluster width reaches a lower limit
and the core temperature exceeds 233C
(¹

C
'¹

maxI
) the cluster is no longer a uniform

disc (see the mean value of D
C

in Fig. 3). Further
investigation reveals that unlike the ring cluster
observed with larger numbers of bees, the shapes
formed in the present case are no longer stable
(i.e. they change in time). Figure 4 shows four
di!erent shapes observable in a cluster of 100
bees at an ambient temperature of 43C. The clus-
ter is seen to pulsate as it continuously cycles
through these shapes.

The cluster has entered into a behavioural
cycle. This is not caused by any changes in ex-
ternal conditions but by the behaviour of the
individuals in the cluster. Figure 5 shows plots of
core and mantle temperatures, bee activity and
the number of hot, cold and happy bees over
time. Seven complete behavioural cycles can be
observed in the plot. In each cycle, we usually
observe an initial period of activity with up to
50% of the bees active and the cluster shape is
a disc (shape D in Fig. 4). During this period the
core temperature, ¹

C
+¹

maxI
. However, as the

core temperature increases above ¹
maxI

the bees
move into a ring shape (shape A). The density of
bees in the ring is much greater than in the
uniform disc and activity drops. The core temper-
ature continues to climb rapidly while the mantle
temperature climbs more slowly. Once the
mantle temperature rises su$ciently, there is
a second smaller peak in activity as the bees on
the mantle move outward. This leads to a rapid
drop in core temperature since the insulating
shape of the ring is temporarily lost as the struc-
ture changes. The new structure is similar to
shape B in Fig. 4. This shape gives a slower
decrease in core temperature and activity is very
much reduced. The time for this drop is vari-
able*contrast, for example, the fourth and "fth
cycles of Fig. 5*but the rate of heat loss in-
creases as shape B changes to shape C. As the
core temperature nears ¹

maxI
activity in the clus-

ter increases and the behavioural cycle repeats.
The cycles are of various lengths and not

always clearly de"ned. For example, at the begin-
ning of the second and third cycles the core
temperature starts to increase but then decreases
again resulting in another activity spike. It is
di$cult to surmise from the data (or even from
direct observation of the simulation) exactly why
this occurs. However, since there is a random
element in the bee movements it is possible that
the positioning of a few individual bees caused
the cluster to adjust into a shape which begins to
lose heat before a tight ring is formed.
This example serves to show that these simple
individual bee agents can produce an array of
di!erent behaviours, arising both from the
randomness in the model and the inherent com-
plexity of the individuals' interactions.

We know of no observations of such large
temperature #uctuations in natural colonies, but
there is some preliminary evidence to suggest the
possibility of much smaller, regular #uctuations
(between 0.1 and 0.23C) (S. Martin, pers. comm.).
Our simulations also show #uctuations in activ-
ity and there is more evidence for this in natural
colonies. Honey bees are reported to periodically
break the cluster, with bees on the mantle enter-
ing the core (Winston, 1987). This behaviour has
been attributed to the bees in the core allowing



FIG. 4. Cluster shapes found for 100 bees at ¹
A
"43C. The cluster cycles through A, B, C and D. The cluster starts tightly

packed as in A. This shape leads to fast increases in core temperatures until the cluster expands to shape B, where the core
temperatures reach a maximum. In shape B the core temperature falls, falling more rapidly as the cluster expands to shape C.
When the core temperature nears ¹

maxI
the cluster breaks into activity and shape D is seen. The cycle then repeats as bees

become more tightly packed in shape A again.
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bees on the mantle to feed on honey (Heinrich,
1981) and increase their body temperature
(Winston, 1987). Since our simulation includes no
such &&alturistic'' rules, it suggests that some of the
observed breaking and reforming of clusters
could actually be a consequence of the interac-
tion between the geometry of the bee cluster and
the di!usive heat loss mechanism.

4.2. AMBIENT TEMPERATURES BELOW 03C

In the pulsating cluster with 100 bees, we "nd
that as the ambient temperature falls the number
of bees involved in the bursts of activity
decreases. At 83C, during a burst of activity, up to
70% of the bees are active. This activity is distrib-
uted uniformly throughout the disc (i.e. D

C
+1).

At 33C, the activity peaks usually involve only 30
bees. At such low ambient temperatures and ac-
tivities the bees in the cluster are subject to an
extreme range of temperatures: those in the core
get very hot and those on the mantle become very
cold.

Temperatures of 503C are lethal to honey bees
(Heinrich, 1996). If we introduce a maximum
temperature at which a bee can remain alive (say,
503C) then for di!ering values of the bee insula-
tion parameter, j

bee
, the core may overheat with



FIG. 5. Plots of core temperature (¹
C
), mantle temperature (¹

M
) and bee activity (N

a
) as a function of time at 43C obtained

from simulations using 100 bees.
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some bees dying or the mantle may become so
cold that the bees will fall into a &&chill-coma''.
A combination of these may also occur with some
bees overheating and dying, thus generating no
more heat and leading to bees on the mantle
entering &&chill-coma''. Independent of the value
of j

bee
the clustering will cease to keep the bees

alive at ¹
A
+13C.

5. Discussion

Partial di!erential equation models of thermo-
regulation, which are based on the assumption
that bee clusters are spherical, show that the bees
may arrange themselves into rings as well as discs
(Watmough & Camazine, 1995). Our model here
exhibits ring and disc formation without the need
to assume an initially spherical cluster. Further-
more, we are able to identify a condition*that
the core temperature exceeds the ideal minimum
individual bee temperature, ¹

minI
*which the bee

colony must ful"ll in order to spontaneously gen-
erate a single disc of active bees. When the core
temperature exceeds the ideal maximum indi-
vidual bee temperature, ¹

maxI
, our model shows

that the bees form a ring rather than a disc. These
parameters, ¹

minI
and ¹

maxI
, are therefore of great

signi"cance and it would be of interest to see if
they can be estimated experimentally. We might
expect that these parameters represent some kind
of optimum working range determined at the
colony level and that they lie well within the
range of temperatures at which an individual bee
can survive. Considering the essential role that
thermoregulation plays in the survival of the col-
ony, the actual values of these temperatures
should be understood in the light of natural selec-
tion at colony level (Seeley, 1995).

A notable feature of our simulations is that it is
possible for clusters to pulsate. In this paper, we
have focused on describing a single set of com-
puter experiments; however, we see pulsation
over a wide range of parameter values. In par-
ticular, provided that the density of bees on the



THERMOREGULATION IN HONEY BEE CLUSTERS 13
lattice is relatively low, our preliminary studies
indicate that increasing the number of bees in the
simulation (we have used up to 2000 bees) does
not suppress pulsation. Our understanding of
this phenomenon, which is based on bee move-
ments changing the surface area of the cluster,
leads us to think that it is something that could
be reproduced in continuum models. It would be
interesting, therefore, to investigate the possibili-
ty of Hopf bifurcations in existing di!erential
equation models of thermoregulation. Such an
investigation might give us insight into the role
played by the discrete nature of bees in the ther-
moregulation mechanism.

The experimental observation that bees on the
mantle are periodically allowed into the centre of
the cluster does indicate the possibility of pulsat-
ing clusters. Previously, it has been suggested
that cluster breaking is due to the bees feeding
and is accompanied by a small rise in ambient
temperature. It would be interesting to see ex-
periments at "xed ambient temperatures which
measured pro"les of cluster temperature and re-
lated them to the movement of individual bees.
Observations of periodic #uctuations in core and
mantle temperatures without corresponding cha-
nges in ambient temperatures would provide sup-
port for our model. We would hope that such
experiments*whatever the outcome*would in-
crease understanding of thermoregulation and
provide impetus for new models.

This work is jointly funded by EPSRC and the
DERA, Malvern. Thanks to Christopher Booth for
taking a genuine and helpful interest in the problem.
The simulation was written in Swarm, which was
developed at the Santa Fe Institute. Thanks to Glen
Ropella, other members of the Swarm team and user
community who helped DJTS develop his Swarm
programming skills. The original inspiration for an
agent-based model of thermoregulation came from the
Heatbugs example in Swarm. We are especially grate-
ful to Dr S. Martin for his experimental work, his
useful comments and boundless enthusiasm.
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APPENDIX A

Summary of Symbols

From the Formal Model in Section 2

t time
(x

max
, y

max
) size of the temperature "eld or

hive
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B set of all bees ( DB D denotes the
number of bees in B)

b(t)3B pair (x
b
, y

b
) of bee coordinates

¹
coma

lowest temperature at which
a bee can move

(¹
minI

, ¹
maxI

) range of temperatures within
which each bee wishes to remain

¹
maxI

1
2
(¹

minI
#¹

maxI
)

q time it takes for a bee to make
a single discrete movement

¹
xy

(t) temperature "eld from which
a bee ascertains her temperature

¹g
xy

(t) temperature "eld from which
heat di!usion is updated

g granularity of di!usion
j
bee

insulation factor for a single bee
j
air

insulation factor for air
D2(x, y, t) Laplacian di!erence operator for

di!usion
f (x, y, t) heat generated by bee per time step
h
q20

temperature increase made by
a passive bee at 203C
¹
A

ambient temperature

From the Statistical ¹ests in Sections 3 and 4
X2

U
s2 test for the uniform distribu-
tion of bees across the hive

N
a

number of active bees
¹
C

temperature in the cluster core
D

C
distance to the cluster core to the
nearest bee

¹
M

temperature in the cluster mantle
= cluster width

APPENDIX B

Standard Simulation Parameter Values

Hive and colony (x
max

, y
max

)"(50, 50) and
DB D"100

Bee behaviour ¹
coma

"8, ¹
minI

"18 and
¹
maxI

"23
Di!usion rate q"8 and g"2
Bee insulation j

air
"1.0 and j

bee
"0.45

Heat generation h
q20

"0.0037
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