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BOUNDARY CONDITIONS FOR THE SINGLE-FACTOR TERM
STRUCTURE EQUATION

BY ERIK EKSTRÖM1,2 AND JOHAN TYSK1

Uppsala University

We study the term structure equation for single-factor models that pre-
dict nonnegative short rates. In particular, we show that the price of a bond or
a bond option is the unique classical solution to a parabolic differential equa-
tion with a certain boundary behavior for vanishing values of the short rate.
If the boundary is attainable then this boundary behavior serves as a bound-
ary condition and guarantees uniqueness of solutions. On the other hand, if
the boundary is nonattainable then the boundary behavior is not needed to
guarantee uniqueness but it is nevertheless very useful, for instance, from a
numerical perspective.

1. Introduction. When calculating prices of different interest rate derivatives,
such as bonds and bond options, stochastic methods seem to be more commonly
used than PDE methods; compare for instance [5]. This is in contrast to the case of
stock option pricing where PDE methods are used extensively, in particular for low
dimensional problems. We believe that one possible explanation for this phenom-
enon is that the correspondence between the risk neutral valuation approach and
the pricing equation (henceforth referred to as the term structure equation) with
appropriate boundary conditions is not fully developed.

For the Black–Scholes equation, the boundary condition is of Dirichlet type
which corresponds to the underlying asset being absorbed if reaching zero; com-
pare [13]. In contrast, for most interest rate models this is not the case since the
short rate typically would not stay zero if the value zero is reached. Consequently,
it is not clear what boundary conditions should be specified for the term struc-
ture equation. In fact, the recent monograph [6] draws attention to this issue in
a section entitled “The thorny issue of boundary conditions.” Moreover, in [12],
two different solutions to the term structure equation are presented in the case of
the CIR-model. They are both bounded and with the same terminal condition, but
naturally they exhibit different boundary behavior for vanishing interest rates. The
authors of that paper take the view that these solutions represent alternative possi-
ble prices. We on the other hand regard only the solution given by the stochastic
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representation as the price, and the purpose of the present paper is to identify the
boundary condition that this stochastic representation satisfies.

We consider the classical case of a single-factor model predicting nonnegative
values of the short rate. More precisely, the rate X(t) is modeled directly under the
pricing measure as

dX(t) = β(X(t), t) dt + σ(X(t), t) dW,

where W is a Brownian motion and σ(0, t) = 0 and β(0, t) ≥ 0. As indicated
above, the option price u corresponding to a payoff function g is given using risk
neutral valuation by

u(x, t) = Ex,t

[
e− ∫ T

t X(s) dsg(X(T ))
]
.

Note that if the payoff g ≡ 1, then bond prices are obtained. Also note that the
set-up covers the case of bond options. The corresponding term structure equation
is

ut (x, t) + 1
2σ 2(x, t)uxx(x, t) + β(x, t)ux(x, t) = xu(x, t)

with terminal condition u(x,T ) = g(x). If the price u is twice continuously dif-
ferentiable up to and including the boundary x = 0, then plugging in x = 0 in the
equation would give the boundary behavior

ut (0, t) + β(0, t)ux(0, t) = 0.(1)

Even though there is extensive literature on equations with degenerating coeffi-
cients, compare the classical reference [14], the C1-regularity of u at the boundary
is not available in the generality that is needed here. In fact, one of the solutions
in the example in [12] referred to above is bounded and continuous, but fails to be
C1 up to the boundary. (This solution, however, is not the one given by stochastic
representation.)

In the present paper, sufficient regularity of the option price u for (1) to hold
is established using the Girsanov theorem and scaling arguments; see Sections 3
and 4. Let us emphasize that (1) is the correct boundary behavior of the option price
regardless if the boundary is hit with positive probability or not. If the boundary
can be reached with positive probability, then this boundary behavior serves as
a boundary condition for the term structure equation and guarantees uniqueness.
On the other hand, if the boundary is reached with probability zero, equation (1)
is not needed to identify the solution given by the stochastic representation, and
the term “boundary condition” is perhaps misleading. However, it is still valid and
certainly useful, for instance, from a numerical perspective. Indeed, the results of
the present paper have already been implemented numerically in [7]. For simplicity
of the exposition, we will refer to (1) as the boundary condition regardless if the
boundary can be reached or not.

In Section 2 the assumptions on the model and our main result, Theorem 2.3,
are presented. In Sections 3, 4 and 5, we establish regularity properties of the value
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function, and use them to prove Theorem 2.3. Finally, in Section 6 we also provide
the link between the stochastic problem and the term structure equation for models
defined on the whole real line.

2. Assumptions and the main result. When studying the term structure
equation on the positive real axis, we consider models which are specified so
that the short rate automatically stays nonnegative, that is, there is no need to
impose any boundary behavior of the underlying diffusion process. Throughout
Sections 2–5 we work under the following hypothesis:

HYPOTHESIS 2.1. The drift β ∈ C([0,∞) × [0, T ]) is continuously differ-
entiable in x with bounded derivative, and β(0, t) ≥ 0 for all t . The volatility
σ ∈ C([0,∞) × [0, T ]) is such that α(x, t) := 1

2σ 2(x, t) is continuously differ-
entiable in x with a Hölder continuous derivative, and σ(x, t) = 0 if and only if
x = 0. The functions β , σ and αx are all of, at most, linear growth:

|β(x, t)| + |σ(x, t)| + |αx(x, t)| ≤ C(1 + x)(2)

for all x and t . The payoff function g : [0,∞) → [0,∞) is continuously differen-
tiable with both g and g′ bounded.

Let W be a standard Brownian motion on a filtered probability space (�, F ,

(Ft )t≥0,P ). Since α is continuously differentiable, σ is locally Hölder (1/2) in x.
It follows that there exists a unique strong solution X(t) to

dX(t) = β(X(t), t) dt + σ(X(t), t) dW(3)

for any initial point x ≥ 0; compare Section IX.3 in [15]. Moreover, it follows
from monotonicity results for stochastic differential equations with respect to the
drift coefficient (e.g., Theorem IX.3.7 in [15]), that X remains nonnegative at all
times. Indeed, if β is replaced with β ∧ 0, then the corresponding solution to (3) is
absorbed at zero, so X is nonnegative if β(0, t) ≥ 0. The option price u : [0,∞) ×
[0, T ] → [0,∞) corresponding to a payoff function g : [0,∞) → [0,∞) is given
by

u(x, t) = Ex,t

[
e− ∫ T

t X(s) dsg(X(T ))
]
,(4)

where the indices indicate that X(t) = x. As described in the Introduction, the
corresponding term structure equation is given by

ut(x, t) + 1
2σ 2(x, t)uxx(x, t) + β(x, t)ux(x, t) = xu(x, t)(5)

for (x, t) ∈ (0,∞) × [0, T ), with terminal condition

u(x,T ) = g(x).(6)
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Moreover, by formally inserting x = 0 in the equation we get the boundary condi-
tion

ut (0, t) + β(0, t)ux(0, t) = 0(7)

for all t ∈ [0, T ), since σ(0, t) = 0 by assumption. One of the main efforts in
this paper is to show that the option price u is continuously differentiable up to
the boundary x = 0, and that it indeed satisfies the boundary condition (7) in the
classical sense.

DEFINITION 2.2. A classical solution to the term structure equation is a func-
tion v ∈ C([0,∞) × [0, T ]) ∩ C1([0,∞) × [0, T )) ∩ C2,1((0,∞) × [0, T )) which
satisfies (5), (6) and (7).

Our main result in this article is the following:

THEOREM 2.3. In addition to Hypothesis 2.1, also assume that Assump-
tion 3.1 below holds. The option price u as given by (4) is then the unique bounded
classical solution to the term structure equation.

EXAMPLE. Classical short rate models such as the Cox–Ingersoll–Ross model

dX(t) = (
a − bX(t)

)
dt + σ

√
X(t) dW,(8)

and the Dothan model

dX(t) = aX(t) dt + σX(t) dW,(9)

have boundary conditions at x = 0 that are immediate to write down. These con-
ditions are

ut + aux = 0 and ut = 0,

respectively. We note that the boundary condition ut = 0 for the Dothan model
means that u is constant along the boundary, that is, u(0, t) = g(0). This is the
same type of boundary condition that appears for options on stocks in [13], which
can be explained by the fact that the Dothan model is a geometric Brownian mo-
tion. Theorem 2.3 also covers the Hull–White model

dX(t) = (
a(t) − b(t)X(t)

)
dt + σ(t)

√
X(t) dW(10)

(which is a time-dependent generalization of the Cox–Ingersoll–Ross model), and
models of, for example, the form

dX(t) = (
b − aX(t)

)
dt + σXγ (t) dW, γ ∈ (1/2,1],(11)

which also would be natural to consider for bond pricing.



336 E. EKSTRÖM AND J. TYSK

REMARK. It seems that many of the classical models for the short rate are
proposed for their analytical tractability. In particular, if the drift β and the dif-
fusion coefficient σ 2 are affine, then the model admits an affine term structure. It
is easy to check that known explicit formulas for bond prices and bond options
satisfy the boundary condition (7). In particular, for models admitting an affine
term structure, it is a consequence of the associated Riccati equations (see [4],
equation 22.25) that these boundary conditions are fulfilled.

REMARK. The assumption that g is continuously differentiable is satisfied for
bonds, but not in general for bond options. However, using the Markov property,
Theorem 2.3 readily extends to bounded Lipschitz payoffs provided one can show
that the corresponding option price x �→ u(x,T − ε) is continuously differentiable
on (0,∞) for any ε > 0. The regularizing effect of parabolic equations guarantees
continuous differentiability on (0,∞), so the main difficulty is to show that x �→
ux(x, T − ε) is continuous also at 0. If the model is convexity preserving, this is
easily done in certain cases including, for example, call options written on bond
prices. (Note that the corresponding payoff function g is bounded since bond prices
are bounded.) For details on which short rate models are convexity preserving, see
[8]. To our knowledge, all models used in practice belong to this class.

One should note that the differentiability of the option price up to the boundary
x = 0 is not valid without some Lipschitz bound of g at 0. To see this, consider the
contract function g(x) = e−2

√
x . Then, with β(x, t) = 1

2x and σ(x, t) = √
2x, it is

straightforward using the Itô formula to show that the process

Y(s) = e− ∫ s
t X(r) drg(X(s))

is a martingale. Consequently, the option price u is given by u(x, t) = g(x) for all
t , which fails to be a classical solution to the term structure equation since it is
not differentiable at x = 0. One might argue, though, that the boundary condition
ut(0, t) + β(0, t)ux(0, t) = 0 is satisfied in a weak sense.

The proof of Theorem 2.3 is carried out in several steps.

PROOF OF UNIQUENESS. Let v1 and v2 be two bounded classical solutions
to the term structure equation, and define

v(x, t) = v1(x, T − t) − v2(x, T − t).

Then v(x, t) is a bounded solution to⎧⎪⎨
⎪⎩

vt = 1
2σ 2vxx + βvx − xv,

v(x,0) = 0,

vt (0, t) = β(0, t)vx(0, t).

(12)

Now consider the function

h(x, t) = (1 + x)eMt ,
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where M is a positive constant. For M large enough, depending on β(0, t) and the
growth rate of β , h is a super-solution to (12) which tends to infinity at spatial in-
finity. Thus, according to the maximum principle, the function v is bounded above
by εh and below by −εh for any ε > 0. It follows that v ≡ 0, which demonstrates
uniqueness of bounded classical solutions to the term structure equation. �

PROOF OF CONTINUITY. To show that u is continuous, denote by Xx,t the
solution to (3) with initial condition Xx,t (t) = x. Let (x, t) and (y, r) be two points
in [0,∞) × [0, T ]. Then, if r ≤ t , we have

|u(y, r) − u(x, t)| ≤ E
[
e− ∫ T

r Xy,r (s) ds |g(Xy,r (T )) − g(Xx,t (T ))|]
+ E

[
g(Xx,t (T ))

∣∣e− ∫ T
r Xy,r (s) ds − e− ∫ T

t Xx,t (s) ds
∣∣]

≤ E[|g(Xy,r (T )) − g(Xx,t (T ))|](13)

+ C

∫ T

t
E[|Xy,r(s) − Xx,t (s)|]ds

+ C

∫ t

r
E[Xy,r(s)]ds

for some constant C, where we have used that g is bounded. A similar expression
can be derived if r > t . It follows from Remark 1 in Section 8, Chapter 2 in [11]
that Xy,r(t) → x in L2 as (y, r) → (x, t). Therefore, from Theorem 2.1 in [2] we
have

E
[

sup
t≤s≤T

(
Xy,r(s) − Xx,t (s)

)2
]
→ 0

as (y, r) → (x, t). (Theorem 2.1 in [2] also holds in the case of random starting
points.) Since g is assumed continuous and bounded, all three terms on the right-
hand side of (13) tend to 0 as (y, r) → (x, t). Thus u is continuous on [0,∞) ×
[0, T ]. �

PROOF THAT u ∈ C2,1((0,∞)×[0, T )) AND SATISFIES (5). For a given point
(x, t) ∈ (0,∞) × [0, T ), let

R = (x1, x2) × [t1, t2) ⊆ (0,∞) × [0, T )

be a rectangle which contains (x, t), where x1 > 0. Since u is continuous, it follows
from standard parabolic theory, see [9], that there exists a unique solution U ∈
C2,1(R) to the boundary value problem{

Ut + 1
2σ 2Uxx + βUx − xU = 0, in R,

U = u, on ∂pR,

where ∂pR = ([x1, x2]×{t2})∪ ({x1, x2}×[t1, t2]) is the parabolic boundary of R.
From Itô’s formula, the process

Z(s) = e− ∫ s
t Xx,t (r) drU(Xx,t (s), s)
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is a martingale on the time interval [t, τR], where

τR = inf{s ≥ t :Xx,t (s) /∈ R}
is the first exit time from the rectangle R. Therefore,

U(x, t) = E
[
e− ∫ τR

t Xx,t (r) dru(Xx,t (τR), τR)
] = u(x, t),

where the second equality follows from the strong Markov property. Consequently,
u ∈ C2,1((0,∞) × [0, T )). Since u ≡ U on R, we also see that u satisfies (5). �

It remains to show that u is continuously differentiable up to the spatial bound-
ary x = 0, and that it satisfies the boundary condition (7). This is done in Sec-
tions 3–5.

3. Continuity of the first spatial derivative. In this section we investigate
regularity of the spatial derivative ux at the boundary x = 0. To do this we study
the stochastic representation of the terminal value problem obtained by formally
differentiating the term structure equation. We show that this stochastic represen-
tation indeed is the derivative of u and that it is continuous.

Recall that αx is assumed to be continuous on [0,∞) × [0, T ], where α(x, t) =
1
2σ 2(x, t). Let the process Y be modeled by the stochastic differential equation

dY (t) = (αx + β)(Y (t), t) dt + σ(Y (t), t) dW.(14)

Rather than specifying precise conditions under which (14) has a unique solution,
we simply assume what we need.

ASSUMPTION 3.1. The coefficients σ and β are such that, path-wise, unique-
ness holds for equation (14).

REMARK. Note that Assumption 3.1 holds for example if α is twice con-
tinuously differentiable in space, since then the drift αx + β is locally Lipschitz
continuous. Moreover, if σ and β are time-independent, then it follows from [1, 3]
and Section IX.3 in [15] that Assumption 3.1 automatically holds. Thus the Cox–
Ingersoll–Ross model (8), the Dothan model (9), the Hull–White model (10) and
the model (11) all satisfy Assumption 3.1.

Also note that since α(0, t) = 0, we have αx(0, t) ≥ 0. Thus Y remains nonneg-
ative since it has the same volatility as X but a larger drift at 0.

Next, define the function v by

v(x, t) = E

[
g′(Y (T )) exp

{∫ T

t
βx(Y (s), s) − Y(s) ds

}]
(15)

−E

[∫ T

t
exp

{∫ s

t
βx(Y (r), r) − Y(r) dr

}
u(Y (s), s) ds

]
,
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where Y is the solution to (14) with initial condition Y(t) = x.
If the term structure equation (5) is formally differentiated with respect to x,

then the derivative ux satisfies

(ux)t + α(ux)xx + (αx + β)(ux)x + (βx − x)ux − u = 0

with terminal condition ux(x, T ) = g′(x). The function v defined in (15) is the
corresponding stochastic representation. In Theorem 3.4 below we show that v

indeed equals the spatial derivative of u.

PROPOSITION 3.2. The function v(x, t) is continuous on [0,∞) × [0, T ].

PROOF. The result follows along the same lines as the continuity of u above.
Indeed, let (xn, tn) converge to (x, t), where tn ≤ t , and let Y and Yn be defined by{

dY (s) = (αx + β)(Y (s), s) ds + σ(Y (s), s) dW,

Y (t) = x

and {
dYn(s) = (αx + β)(Y n(s), s) ds + σ(Y n(s), s) dW,

Yn(tn) = xn,

respectively. Also define

I (s) := exp
{∫ s

t
βx(Y (u), u) − Y(u)du

}

and

In(s) := exp
{∫ s

tn

βx(Y
n(u), u) − Yn(u)du

}
.

Then

|v(xn, tn) − v(x, t)| ≤ E[|In(T )g′(Y n(T )) − I (T )g′(Y (T ))|]
+

∫ T

t
E[|In(s)u(Y n(s), s) − I (s)u(Y (s), s)|]ds

+
∫ t

tn

E[In(s)u(Y n(s), s)]ds.

The first term and the integrand in the second term are similar to the type of terms
treated when proving the continuity of u. Moreover, the integrand of the third term
is bounded. Thus it follows from bounded convergence that v is continuous. �

We also need a continuity result in the volatility parameter. To formulate it, let
{σn(x, t)}∞n=1 be a sequence of functions satisfying Hypothesis 2.1 uniformly in n,
that is, with the same constant C in the bound (2). Moreover, assume that σn(x, t)

converges to σ(x, t) and αn
x converges to αx uniformly on compacts as n → ∞,
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where αn = 1
2(σn)2. Let un and vn be defined as u and v but using the volatility

function σn instead of σ . More explicitly,

un(x, t) = E
[
e− ∫ T

t Xn(s) dsg(Xn(T ))
]

and

vn(x, t) = E

[
g′(Y n(T )) exp

{∫ T

t
βx(Y

n(s), s) − Yn(s) ds

}]
(16)

− E

[∫ T

t
exp

{∫ s

t
βx(Y

n(r), r) − Yn(r) dr

}
un(Y n(s), s) ds

]
,

where Xn and Yn satisfy{
dXn(s) = β(Xn(s), s) ds + σn(Xn(s), s) dW(s),

Xn(t) = x

and {
dYn(s) = (αn

x + β)(Y n(s), s) ds + σn(Y n(s), s) dW(s),

Y n(t) = x,

respectively.

PROPOSITION 3.3. The functions u and v are continuous in the volatility pa-
rameter. More precisely, un(x, t) → u(x, t) and vn(x, t) → v(x, t) as n → ∞ for
any fixed point (x, t) ∈ [0,∞) × [0, T ].

PROOF. It follows from Theorem 2.5 in [2] that

lim
n→∞E

[
sup

s∈[t,T ]
(
X(s) − Xn(s)

)2
]
= 0.

Therefore,

|un(x, t) − u(x, t)| ≤ E
[∣∣e− ∫ T

t Xn(s) ds − e− ∫ T
t X(s) ds

∣∣g(Xn(T ))
]

+ E
[
e− ∫ T

t X(s) ds |g(Xn(T )) − g(X(T ))|]
≤ C

∫ T

t
E[|X(s) − Xn(s)|]ds + E[|g(Xn(T )) − g(X(T ))|]

→ 0

as n → ∞. Thus u is continuous in the volatility function.
The continuity of v in the volatility function is similar. Indeed, let

I (s) := exp
{∫ s

t
βx(Y (r), r) − Y(r) dr

}
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and

In(s) := exp
{∫ s

t
βx(Y

n(r), r) − Yn(r) dr

}
.

Then

|vn(x, t) − v(x, t)| ≤ E[|In(T )g′(Y n(T )) − I (T )g′(Y (T ))|]
+

∫ T

t
E[|In(s)un(Y n(s), s) − I (s)un(Y (s), s)|]ds

+
∫ T

t
E[I (s)|un(Y (s), s) − u(Y (s), s)|]ds.

The first term and the integrand of the third term are similar to the terms appearing
in the first part of the proof. The integrand of the second term can be dealt with
using the fact that each un is Lipschitz continuous in x, uniformly in n since the
Lipschitz property is inherited by the value function. Thus all terms tend to zero as
n → ∞, so v is continuous in the volatility. �

THEOREM 3.4. We have ux(x, t) = v(x, t) on [0,∞) × [0, T ]. Consequently,
ux is continuous on [0,∞) × [0, T ].

PROOF. It suffices to prove ux(x,0) = v(x,0). We first assume that σ is con-
tinuously differentiable in x with a bounded derivative. It then follows from Sec-
tion 5.5 in [10] or Section 8 in [11] that the derivative

ξ(t) := ∂X(t)

∂x

of X(t) = Xx,0(t) with respect to the initial point x exists and is continuous, and
it satisfies {

dξ(t) = ξ(t)βx(X(t), t) dt + ξ(t)σx(X(t), t) dW(t),

ξ(0) = 1.

Moreover,

ux(x,0) = E

[
g′(X(T ))ξ(T ) exp

{
−

∫ T

0
X(s) ds

}]

− E

[
g(X(T )) exp

{
−

∫ T

0
X(s) ds

}∫ T

0
ξ(s) ds

]
(17)

=: I1 − I2.

We claim that Ii = Ji , i = 1,2, where

J1 = E

[
g′(Y (T )) exp

{∫ T

0
βx(Y (s), s) − Y(s) ds

}]
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and

J2 = E

[∫ T

0
exp

{∫ s

0
βx(Y (r), r) − Y(r) dr

}
u(Y (s), s) ds

]
,

compare (15) above. Here Y is defined as in (14) with initial condition Y(0) = x.
To show that I1 = J1, define a new measure Q on FT by dQ = M(T )dP ,

where the process M is defined by

M(t) = ξ(t) exp
{
−

∫ t

0
βx(Y (s)) ds

}
.(18)

By Itô’s formula,

dM(t) = M(t)σx(X(t)) dW(t),

so M is a martingale since σx is bounded. In particular, E[M(T )] = 1, so Q is a
probability measure. From Girsanov’s theorem it follows that

W̃ (t) = W(t) −
∫ t

0
σx(X(s)) ds

is a Q-Brownian motion, and

dX = (σσx + β)(X(t), t) dt + σ(X(t), t) dW̃ .

Here σσx = αx , so by weak uniqueness, the Q-law of X is the same as the law of
Y under P . Consequently,

I1 = E

[
g′(X(T ))ξx(T ) exp

{
−

∫ T

0
X(s) ds

}]

= EQ

[
g′(X(T )) exp

{∫ T

0
βx(X(s), s) − X(s) ds

}]
= J1.

To prove I2 = J2, note that

I2 = E

[
g(X(T )) exp

{
−

∫ T

0
X(s) ds

}∫ T

0
ξ(s) ds

]

=
∫ T

0
E

[
exp

{
−

∫ s

0
X(r) dr

}
ξ(s)

× E

[
g(X(T )) exp

{
−

∫ T

s
X(r) dr

}∣∣∣Fs

]]
ds

=
∫ T

0
E

[
exp

{
−

∫ s

0
X(r) dr

}
ξ(s)u(Xs, s)

]
ds

by the Markov property. Define a new measure Q = Qs on Fs by

dQ = M(s)dP,
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where M is defined as in (18). Girsanov’s theorem yields

E

[
exp

{
−

∫ s

0
X(r) dr

}
ξ(s)u(Xs, s)

]

= EQ

[
exp

{∫ s

0
βx(X(r), r) − X(r) dr

}
u(Xs, s)

]

= E

[
exp

{∫ s

0
βx(Y (r), r) − Y(r) dr

}
u(Ys, s)

]
.

Consequently, I2 = J2, which finishes the proof in the case of continuously differ-
entiable σ .

The general case follows by approximation. Let σn, un and vn be as described
before Proposition 3.3, with each σn being continuously differentiable in x with
bounded derivative. From above, we then know that vn(x, t) = un

x(x, t) at all
points. Moreover, by Proposition 3.3, vn(x, t) → v(x, t) point-wise as n → ∞.

On the other hand, since un converges to u point-wise and is uniformly bounded,
it follows from standard parabolic theory that also un

x converges to ux point-wise
for all points (x, t) with x > 0. Consequently, v = ux on (0,∞) × [0, T ]. Since v

is continuous on [0,∞)×[0, T ] by Proposition 3.2, it is easy to check that ux(0, t)

exists and that we have v = ux everywhere on [0,∞) × [0, T ]. The continuity of
ux thus follows. �

4. An estimate of the second spatial derivative. Since the function v defined
in (15) is continuous, it follows that [by a similar argument as in the proof that u

satisfies (5)] it indeed solves the differentiated equation

vt = αvxx + (αx + β)vx + (βx − x)v − u

on (0,∞) × [0, T ). In this section we use interior estimates to show that αvx → 0
as x → 0. Since v = ux by Theorem 3.4, this shows that the term αuxx in (5)
approaches zero close to the boundary.

PROPOSITION 4.1. The function v = ux satisfies

lim
(x,t)→(0,t0)

α(x, t)vx(x, t) = 0

for any t0. Consequently, lim(x,t)→(0,t0) α(x, t)uxx(x, t) = 0.

PROOF. Let {(xn, tn)}∞n=1 ⊆ (0,∞) × [0, T ) be a sequence of points converg-
ing to (0, t0), where t0 ∈ [0, T ). Define new coordinates (y, s) by letting y = kx

and s = k(t − t0), where k is specified more precisely below. Then the function w

defined by

w(y, s) = v(x, t)



344 E. EKSTRÖM AND J. TYSK

satisfies

ws = α̃wyy + β̃wy + γw + h,(19)

where

α̃(y, s) = α

(
y

k
, t0 + s

k

)
k,

β̃(y, s) = (αx + β)

(
y

k
, t0 + s

k

)
,

γ (y, s) = 1

k
βx

(
y

k
, t0 + s

k

)
− y

k2

and

h(y, s) = −1

k
u

(
y

k
, t0 + s

k

)
.

Now consider a region R = Rn which contains the point (xn, tn), and such that

1 ≤ α(x, t)k ≤ 2(20)

in R. Since αx(x, t) is continuous up to the boundary, the region R in (y, s)-
coordinates does not collapse as n → ∞, but it can rather be chosen to consist of a
rectangle of fixed size; the location of the rectangle is not necessarily fixed though.
In this rectangle, the coefficients of the equation (19) satisfy

1 ≤ α̃(y, s) ≤ 2,

|β̃(y, s)| ≤ C,

|γ (y, s)| ≤ C

and

|h(y, s)| ≤ C/k

for some constant C which is independent of n. Since w(y, s) = v(x, t) we have
that w converges to the constant v(0, t0) = ux(0, t0) uniformly on R as n → ∞.
By interior Schauder estimates, wy tends to 0 as n → ∞. Since

α(x, t)vx(x, t) = α̃(y, s)wy(y, s),

and since α̃(y, s) is bounded on R, the conclusion follows. �

5. The time derivative at the boundary. It follows from Proposition 4.1 and
(5) that

lim
(x,t)→(0,t0)

ut (x, t) + β(0, t0)ux(0, t0) = 0(21)

for any t0 ∈ [0, T ). In this section we show that the boundary condition (7) also
holds at the boundary, that is, not merely in the limit.
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PROPOSITION 5.1. The function ut (x, t) + β(x, t)ux(x, t) defines a continu-
ous function on [0,∞) × [0, T ). Moreover, it vanishes for x = 0.

REMARK. Note that Proposition 5.1 finishes the proof of Theorem 2.3.

PROOF OF PROPOSITION 5.1. In view of (21) above, it suffices to show that
ut exists at the boundary and that it equals −βux . To do this, fix a point on the
boundary with coordinates (0, t0). For notational simplicity we assume that t0 = 0.
The time (left) derivative ut at the boundary is defined by

ut(0,0) = lim
k→∞k

(
u(0,0) − u

(
0,−1

k

))
,(22)

provided the limit exists. To determine ut (0,0), we let Xk be defined by{
dXk = β(Xk(t), t) dt + σ(Xk(t), t) dW,

Xk(−1/k) = 0.

However, instead of considering the process X with different starting times, we
perform a change of variables so that the starting time is independent of k. We
thus introduce the process Y k(s) by

Y k(s) = kXk

(
s

k

)
.

With respect to the time variable s, the dynamics of Y k has the form⎧⎪⎨
⎪⎩dY k(s) = β

(
1

k
Y k(s),

s

k

)
ds +

√
kσ 2

(
1

k
Y k(s),

s

k

)
dWk,

Y k(−1) = 0,

(23)

where Wk(s) denotes some Brownian motion. By the Markov property,

u(0,−1/k) = E
[
e
− ∫ 0

−1/k Xk(s) ds
u(Xk(0),0)

]
= E

[
e− ∫ 0

−1 (1/k2)Y k(s) dsu

(
1

k
Y k(0),0

)]
.

Hence,

ut(0,0) = lim
k→∞kE0,−1

[
u(0,0) − e− ∫ 0

−1 (1/k2)Y k(s) dsu

(
1

k
Y k(0),0

)]

= lim
k→∞E0,−1

[
k

(
u(0,0) − u

(
1

k
Y k(0),0

))]
,

where the second equality follows using the inequality e−x − 1 ≥ −x since

E0,−1

[
ku

(
1

k
Y k(0),0

)∣∣e− ∫ 0
−1 (1/k2)Y k(s) ds − 1

∣∣] ≤ C
1

k
E0,−1

[∫ 0

−1
Y k(s) ds

]
→ 0
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as k → ∞. Now, define the process Y by{
dY = β(0,0) ds + √

2αx(0,0)Y dW,

Y (−1) = 0,

and redefine Y k as in (23) above but using the same Brownian motion W (this does
not change the law of Y k). Since

βk(y, s) := β

(
y

k
,
s

k

)
→ β(0,0)

and

σk(y, s) :=
√

kσ 2
(

y

k
,
s

k

)
→

√
2αx(0,0)y

uniformly on compacts as k → ∞ (here we used the assumption that α is con-
tinuously differentiable in space), it follows from [2] that Y k(0) → Y(0) in L2

as k → ∞. From Theorem 3.4 above we know that u is differentiable in x, so
k(u(0,0)−u(

y
k
,0)) converges to −ux(0,0)y. By dominated convergence, we have

kE

[
u(0,0) − u

(
1

k
Y (0),0

)]
→ −ux(0,0)E[Y(0)] = −β(0,0)ux(0,0)

as k → ∞. Moreover, the Lipschitz property of u yields that

kE

[
u

(
1

k
Y (0),0

)
− u

(
1

k
Y k(0),0

)]
≤ CE[|Y(0) − Y k(0)|] → 0

as k → ∞. It follows that

ut(0,0) + ux(0,0)β(0,0) = 0.

As t0 = 0 was chosen only for notational convenience, we have that

ut (0, t) + β(0, t)ux(0, t) = 0

for any t . To be precise, we have shown the result above only for the left t-
derivative. However, this left t-derivative is continuous by the equation above, so
it follows from a simple calculus lemma that in fact u is differentiable in time, thus
finishing our proof. �

6. Models allowing negative interest rates. For models in which the short
rate can fall below zero with positive probability, the connection between the op-
tion price, given by a risk-neutral expected value, and the term structure equation
is more straightforward than for models with nonnegative rates. Nevertheless, we
have not been able to find a precise reference for this case, so for completeness we
provide such a result in this section.

The assumptions needed on the drift and volatility are presented below, where
x+ = max(x,0). These assumptions now replace those of Hypothesis 2.1. To our
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knowledge, all models used in practice that allow negative interest rates satisfy
these requirements. For example, the Vasicek model, in which

dX(t) = (
a − bX(t)

)
dt + σ dW,

where a, b and σ are positive constants, is covered.

HYPOTHESIS 6.1. The drift β ∈ C(R × [0, T ]) and the volatility σ ∈ C(R ×
[0, T ]) are both Lipschitz continuous in x. Moreover,

0 < |σ(x, t)| ≤ C(1 + x+)

and

|β(x, t)| ≤ C(1 + |x|)(24)

for some positive constant C.

REMARK. The assumption that σ is strictly positive is not a strong assump-
tion. Indeed, let us for simplicity consider a time-homogeneous model dX(t) =
β(X(t)) dt + σ(X(t)) dW(t) with σ(a) = 0 for some a ∈ R. If X(0) ≥ a and
β(a) ≥ 0, then the process X cannot take values smaller than a, so we are essen-
tially in the situation handled in Sections 2–5 (but with the point 0 replaced with
a). If b(a) < 0, then X can take values below a, but if this happens then the process
will stay below a forever, and we are then again back in the previous situation.

The bound on the volatility for negative rates guarantees that bond prices are
finite. For models in which σ grows faster than

√|x| for negative rates, bond prices
can be infinite; compare Theorem 4.1 in [16].

For a given continuous payoff function g : R → [0,∞), define the correspond-
ing option price u : R × [0, T ] by

u(x, t) = Ex,t

[
exp

{
−

∫ T

t
X(s) ds

}
g(X(T ))

]
,

where {
dX(s) = β(X(s), s) ds + σ(X(s), s) dW(s),

X(t) = x.

We require that the payoff function is bounded for positive interest rates and of, at
most, exponential growth for negative rates, that is,

0 ≤ g(x) ≤ K max{1, e−Kx}(25)

for some positive constant K . The corresponding term structure equation is given
by

ut (x, t) + 1
2σ 2(x, t)uxx(x, t) + β(x, t)ux(x, t) = xu(x, t)
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on R × [0, T ), with terminal condition u(x,T ) = g(x). By a classical solution to
this equation we mean a solution which is continuous up to the boundary t = T

and with all derivatives appearing in the equation being continuous functions on
the set t < T . The following is our main result about the term structure equation
on the whole real line.

THEOREM 6.2. Assume Hypothesis 6.1 and the bound (25). Then the option
price u(x, t) satisfies

u(x, t) ≤ K ′ max{1, e−K ′x}(26)

for some constant K ′. Moreover, u(x, t) is the unique classical solution to the term
structure equation satisfying this growth assumption for some constant K ′.

REMARK. Note that the bound (25) is natural for models on the whole real
line. In fact, even if g was bounded, the option price u would be of exponential
growth for negative rates. Also note that, for example, call options on a bond are
covered by Theorem 6.2. Indeed, the payoff of a bond call option with maturity T1
is given by g(x) = (u(x,T1) − K)+, where u is the price of a bond maturing at
T2 > T1. Since u satisfies (26) by Theorem 6.2, the payoff g satisfies (25). Bond
put options are trivially covered since they have bounded payoff functions.

PROOF OF THEOREM 6.2. The bound (26) follows from Corollary 3.3 in [8].
To prove uniqueness of solutions, assume that v is a solution to the term structure
equation with boundary value g = 0 such that |v| ≤ K ′ max{1, e−K ′x} for some
constant K ′. Let

h(x, t) = eM(T −t)(e−f (t)x + x
)

for some large constant M . Here

f (t) = eC(T −t) − 1

C
+ KeC(T −t),

where C is the constant appearing in (24) and K > K ′. Then the set

{(x, t) ∈ R × [0, T ] : εh(x, t) < v(x, t)}
is bounded, and

ht + 1
2σ 2hxx + βhx − xh < 0

at all points provided M is chosen large enough. Standard methods used to prove
the maximum principle yield that v = 0 at all points. Thus we have uniqueness of
solutions to the term structure equation in the class of functions satisfying (26).

To show that u is a classical solution to the term structure equation, we carry
out an approximation argument. We consider the term structure equation but with
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the discount factor x replaced by bounded functions that agree with x inside some
large compact sets. We also replace the payoff function g with functions of, at
most, polynomial growth that agree with g on large compact sets. The correspond-
ing equation is in the standard class and its stochastic solution is known to be
continuous and hence is a classical solution. Now let the functions approximating
the discount factor grow up to x for large positive x and then decrease down to
x for large negative x. By the monotone convergence theorem, the corresponding
stochastic solutions converge to the stochastic solution above denoted u. Interior
Schauder estimates yield interior regularity of the limiting solution and continuity
at the boundary is established using the maximum principle. �
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