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Abstract. We study zero-sum optimal stopping games (Dynkin games)
between two players who disagree about the underlying model. In a Mar-
kovian setting, a verification result is established showing that if a pair
of functions can be found that satisfies some natural conditions, then a
Nash equilibrium of stopping times is obtained, with the given functions
as the corresponding value functions. In general, however, there is no
uniqueness of Nash equilibria, and different equilibria give rise to differ-
ent value functions. As an example, we provide a thorough study of the
game version of the American call option under heterogeneous beliefs.
Finally, we also study equilibria in randomized stopping times.

1. Introduction

There is an extensive literature on zero-sum optimal stopping games
(Dynkin games) under homogeneous beliefs, see [2], [4] and [16] for some
classical references. These games have later found applications for example
in mathematical finance, see [13], which motivated further studies, see for
example [1], [5], [6], [7], [14] and [19]. Other more recent contributions study
various modifications of the zero-sum optimal stopping game. For example,
in [18] it is shown that the game has a value under very general conditions
on the payoff processes if randomized strategies are used. Furthermore,
[8] studies a game with randomized strategies and asymmetric information
about the payoff functions and in [15], a game with asymmetric informa-
tion about the time horizon is studied. Another natural extension is to
nonzero-sum games. Here a classical reference is [3], in which the existence
of a Nash equilibrium in a Markovian setting was reduced to the existence
of a solution of a variational inequality. More recently, [10] provided very
general conditions under which a Nash equilibrium in stopping times exists
for nonzero-sum games in a martingale setting.

A common assumption in all the above references is that the players agree
about the distributional properties of the underlying stochastic process. In
many situations, however, it is natural that the two players disagree about
the model for the underlying. For example, the buyer of a call option would
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typically estimate the drift of the underlying asset higher than would the
seller. Of course, standard hedging arguments show that to avoid arbitrage
possibilities, pricing should be done in a risk-neutral setting. However, if the
players are not interested in hedging the risk away, or even prohibited from
trading in the underlying, then their estimate of the drift is an important
consideration. In the current article we study zero-sum optimal stopping
games under heterogeneous beliefs about the distributional properties of the
underlying stochastic process. More precisely, we study the case in which
the underlying process is a diffusion, and the two players estimate the drift
of the diffusion differently. Such a situation may arise, for example, from the
use of different calibration methods, or simply from different views about
the future (for example due to overconfidence). We also allow the players to
apply different discount rates for valuation, caused, for example, by differing
attitudes towards risk, or by different funding costs. However, an important
assumption we make is that the players agree to disagree in the sense that
each player has full information about the other player’s beliefs. In this
way, we avoid additional technical difficulties associated with the inference
of beliefs.

It should be noted that the impact of heterogeneous beliefs on more gen-
eral asset pricing models has been well studied in the existing literature (see,
for example, the surveys in [9] and [11]). However, such work has almost
exclusively focused on general equilibrium models in which a single asset
price is established via a market clearing condition (i.e., that supply equals
demand). To our knowledge, this is the first paper that considers the effect
of diverse beliefs on the equilibrium outcome of an optimal stopping game.

In general, there will not exist a consensus about the value of the op-
timal stopping game under heterogeneous beliefs. Indeed, given a Nash
equilibrium of stopping times, the seller and the buyer will estimate the dis-
tributional properties of the expected payoff differently, and thus the seller’s
value function and the buyer’s value function will disagree. Moreover, un-
like the case of zero-sum games under homogeneous beliefs, different Nash
equilibria will lead to different value functions. In a Markovian setting, we
provide a verification result that shows that if two given functions satisfy a
set of natural conditions, then a Nash equilibrium is obtained such that the
two functions are the values for the players. We then use the verification
result to determine Nash equilibria for the game version of the American
call option under heterogeneous beliefs when the underlying diffusion is a
geometric Brownian motion. In particular, we show that under some param-
eter regimes there exist multiple equilibria, with different associated value
functions.

We also include a study of optimal stopping games under heterogeneous
beliefs allowing for randomized strategies. A verification result is provided
in this setting, and it is used in a study of the game version of the American
call option to find another Nash equilibrium. While the Nash equlibria in
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terms of stopping times are typically hitting times, the equlibria in random-
ized stopping times may be described as intensity based in the sense that
the players exercise with certain level-dependent intensities. This leads to
potentially non-smooth value functions.

The paper is organised as follows. In Section 2 we introduce the model
for heterogeneous beliefs and the optimal stopping game, and we specify
conditions under which there exists a Nash equilibrium. In Section 3 we
provide the verification theorem, which is used in Section 4 in the study
of the game version of the American call option. Finally, in Section 5 a
verification result for randomized strategies is given, and it is applied to the
game version of the American call option.

2. Heterogeneous beliefs and Nash equilibria

We study an optimal stopping game between two players, Player 1 and
Player 2, in which the players disagree about the distributional properties of
the underlying stochastic process. To describe the setting mathematically,
let (Ω,F ,F,P1) be a filtered probability space, where F = (Ft)t≥0 is the
completion of the filtration generated by a Brownian motion W 1. Player
1 models the underlying stochastic process X as an F-adapted diffusion
process driven by W 1 with drift µ1, i.e.,

dXt = µ1(Xt) dt+ σ(Xt) dW
1
t , X0 = x,

where x is a positive deterministic constant and the two functions µ1 : R →
R and σ : R → (0,∞) satisfy the standard Lipschitz condition so that a
unique, non-exploding, strong solution exists.

Let µ2 be another Lipschitz continuous function, and let

ηt =
µ2(Xt)− µ1(Xt)

σ(Xt)
.

We assume that the process Z defined by

dZt = ηtZtdW
1
t , Z0 = 1(1)

is a (P1,F)-martingale (e.g., if the functions µ1, µ2 and σ are such that η
satisfies the Novikov condition). Player 2 uses a measure P

2 under which
the process

W 2
t = W 1

t −

∫ t

0
ηs ds

is a Brownian motion. Hence Player 2 models X as an F-adapted diffusion
process driven by W 2 with drift µ2, i.e.,

dXt = µ2(Xt) dt+ σ(Xt) dW
2
t , X0 = x.

Remark The existence of a probability space with two probability measures
as described above is guaranteed by [12, Corollary 3.5.2]. The measures P1

and P
2 are equivalent when restricted to FT , T < ∞, but not necessarily as

measures on F . Also note that we assume that the players agree about the
volatility σ. In fact, since the processX is fully observable, the instantaneous
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volatility is also observable, and therefore different views on the volatility
would be in contradiction with the equivalence of the two measures for finite
times.

Player 1 and Player 2 choose stopping times τ1 and τ2, respectively, and
at τ1 ∧ τ2 := min{τ1, τ2} Player 1 receives the amount

(2) G1(Xτ1)1{τ1≤τ2} +G2(Xτ2)1{τ2<τ1}

from Player 2, whereG1 andG2 are two given continuous functions satisfying
G1 ≤ G2. In (2), and in all similar situations below, we use the convention
that, for any function f and any stopping time τ , f(Xτ ) = 0 on the set
{τ = ∞}. Using a constant discount rate ri > 0, today’s value of the future
payoff is, according to Player i,

Ri(τ1, τ2) := E
i
[

e−ri(τ1∧τ2)
(

G1(Xτ1)1{τ1≤τ2} +G2(Xτ2)1{τ2<τ1}

)

]

,

where E
i denotes the expectation under the measure P

i. Naturally, if
Player 2 chooses the stopping time τ2, then the aim of Player 1 is to find a
stopping time τ∗1 such that

R1(τ∗1 , τ2) = sup
τ1

R1(τ1, τ2).

Analogously, if Player 1 chooses the stopping time τ1, then Player 2 aims at
finding a stopping time τ∗2 such that

R2(τ1, τ
∗
2 ) = inf

τ2
R2(τ1, τ2).

Definition 2.1. A pair of stopping times (τ∗1 , τ
∗
2 ) is a Nash equilibrium if

R1(τ1, τ
∗
2 ) ≤ R1(τ∗1 , τ

∗
2 )

and

R2(τ∗1 , τ2) ≥ R2(τ∗1 , τ
∗
2 )

for any stopping times τ1 and τ2. We denote by NE the set of Nash equi-
libria.

The process Z, defined by (1), defines the change of measure from P
1 to

P
2 by

P
2(A) = E

1(ZT 1A) ∀A ∈ FT .

This allows us to transform the zero-sum game under heterogeneous beliefs
into a nonzero-sum game under homogeneous beliefs, and thus the main
result from [10] may be employed to guarantee the existence of a Nash
equilibrium.

Theorem 2.2. Assume that the processes

X1
t := e−r1tG1(Xt),

X2
t := −e−r2tG2(Xt)Zt,

Y 1
t := e−r1tG2(Xt)
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and
Y 2
t := −e−r2tG1(Xt)Zt

are uniformly integrable with respect to P
1, and that limt→∞Xi

t = limt→∞ Y i
t =

0 P
1-a.s., i = 1, 2. Then the set NE is non-empty.

Proof. First note that

R2(τ1, τ2) = E
2
[

e−r2(τ1∧τ2)
(

G1(Xτ1)1{τ1≤τ2} +G2(Xτ2)1{τ2<τ1}

)

]

= E
1
[

e−r2(τ1∧τ2)Zτ1∧τ2

(

G1(Xτ1)1{τ1≤τ2} +G2(Xτ2)1{τ2<τ1}

)

]

.

Thus the zero-sum game under heterogeneous beliefs may be written as
a nonzero-sum games under homogeneous beliefs. Under the measure P

1,
the corresponding processes e−r1tG1(Xt), −e−r2tG2(Xt)Zt, e

−r1tG2(Xt) and
−e−r2tG1(Xt)Zt satisfy the conditions A1-A3 from [10], and [10, Theo-
rem 2.2] thus applies (the result in [10] is formulated for a finite time horizon,
but it extends to the present setting of infinite horizon with uniformly inte-
grable payoff processes). �

Remark The connection with nonzero-sum games makes it possible to use
results from the theory of such games. In particular, it gives the existence
of a Nash equilibrium. However, there seems to be little known about ex-
act conditions for uniqueness of equilibria for nonzero-sum stopping games.
Moreover, note that even though we have formulated the zero-sum game
with heterogeneous beliefs in a Markovian setting, the resulting nonzero-
sum game with homogeneous beliefs is non-Markovian, thus making, for
example, the results of [3] not directly applicable.

To a given Nash equilibrium (τ∗1 , τ
∗
2 ) we associate the corresponding value

V
(τ∗1 ,τ

∗
2 )

1 = sup
τ1

R1(τ1, τ
∗
2 ) = R1(τ∗1 , τ

∗
2 )

for Player 1 and the value

V
(τ∗1 ,τ

∗
2 )

2 = inf
τ2

R2(τ∗1 , τ2) = R2(τ∗1 , τ
∗
2 )

for Player 2. In the case when the players agree about the model parameters,
i.e. when P

1 = P
2 and r1 = r2, the existence of a Nash equilibrium (τ∗1 , τ

∗
2 )

implies that

V := inf
τ2

sup
τ1

R2(τ1, τ2) = inf
τ2

sup
τ1

R1(τ1, τ2) ≤ sup
τ1

R1(τ1, τ
∗
2 )

= R1(τ∗1 , τ
∗
2 ) = R2(τ∗1 , τ

∗
2 ) = inf

τ2
R2(τ∗1 , τ2)

≤ sup
τ1

inf
τ2

R2(τ1, τ2) ≤ V .

Consequently, the value for Player 1 and the value for Player 2 agree, and
this common value does not depend on the Nash equilibrium in the sense
that if several Nash equilibria exist, then all the corresponding associated
values coincide. On the other hand, under heterogeneity, different Nash
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equilibria may have different associated values. In fact, this is the case for
the game version of the American call option, see Section 4 below.

3. A verification result

In this section we provide a verification result that shows that if a given
pair of functions (U1(x), U2(x)) satisfies a set of natural conditions, then a
Nash equilibrium of stopping times is obtained such that (U1(x), U2(x)) is
the corresponding pair of values.

Let Ui : R → R, i = 1, 2, be continuous functions such that

(3) U1 ≥ G1

and

(4) U2 ≤ G2.

Also, denote the stopping region of Player i, i = 1, 2, by

Di := {x ∈ R : Ui(x) = Gi(x)},

and denote by
τA := inf{t ≥ 0 : Xt ∈ A}

the first hitting time of a closed set A. For ease of notation, if A = {a}, i.e.
a singleton, then we write τa instead of τ{a}.

Theorem 3.1. Assume that

(i) the functions Ui, i = 1, 2 are continuous and satisfy (3) and (4);

(ii) {e−r1(t∧τD2
)U1(Xt∧τD2

), 0 ≤ t ≤ ∞} is a P
1-supermartingale;

(iii) {e−r2(t∧τD1
)U2(Xt∧τD1

), 0 ≤ t ≤ ∞} is a P
2-submartingale;

(iv) {e−ri(t∧τD1
∧τD2

)Ui(Xt∧τD1
∧τD2

), 0 ≤ t ≤ ∞} is a P
i-martingale, i =

1, 2;
(v) U1 ≡ U2 on D1 ∪ D2.

Then (τD1 , τD2) is a Nash equilibrium of stopping times. Moreover, U1 is
the corresponding value for Player 1 and U2 is the corresponding value for
Player 2.

Remark One way to produce candidate functions U1 and U2 is by solving
the coupled variational inequalities

{

max{L1U1, G1 − U1} = 0 on {U2 < G2}
min{L2U2, G2 − U2} = 0 on {U1 > G1},

where the differential operators Li, i = 1, 2, are defined by

(5) Li :=
1

2
σ2 d2

dx2
+ µi

d

dx
− ri.

However, note that conditions (ii)-(iv) involve martingale properties up to
(and including) time infinity, where, by convention, the processes equal zero.
Thus additional care is needed when checking that a solution of the coupled
variational inequalities indeed provides a Nash equilibrium.
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Proof. From assumption (ii) and the optional sampling theorem we have

E
1
[

e−r1(τ1∧τD2
)U1(Xτ1∧τD2

)
]

≤ U1(x)

for any stopping time τ1. Since U1 ≥ G1 and U1(XτD2
) = G2(XτD2

), we
have

E
1
[

e−r1(τ1∧τD2
)U1(Xτ1∧τD2

)
]

≥ E
1
[

e−r1(τ1∧τD2
)(G1(Xτ1)1{τ1≤τD2

} +G2(XτD2
)1{τD2

<τ1})
]

= R1(τ1, τD2).

Thus
R1(τ1, τD2) ≤ U1(x),

so taking the supremum over stopping times τ1 yields

(6) sup
τ1

R1(τ1, τD2) ≤ U1(x).

Similarly, (iii) yields

U2(x) ≤ E
2
[

e−r2(τD1
∧τ2)U2(XτD1

∧τ2)
]

for any stopping time τ2. Since U2 ≤ G2 and U2(XτD1
) = G1(XτD1

), we
have

E
2
[

e−r2(τD1
∧τ2)U2(XτD1

∧τ2)
]

≤ E
2
[

e−r2(τD1
∧τ2)

(

G1(XτD1
)1{τD1

≤τ2} +G2(Xτ2)1{τ2<τD1
}

)]

= R2(τD1 , τ2).

Thus
U2(x) ≤ R2(τD1 , τ2),

so taking the infimum over stopping times τ2 yields

(7) U2(x) ≤ inf
τ2

R2(τD1 , τ2).

Finally, (iv) gives

E
i
[

e−ri(τD1
∧τD2

)Ui(XτD1
∧τD2

)
]

= Ui(x)

for i = 1, 2. Since Ui(XτD1
) = G1(XτD1

) and Ui(XτD2
) = G2(XτD2

), we have
that

E
i
[

e−ri(τD1
∧τD2

)Ui(XτD1
∧τD2

)
]

= E
i
[

e−ri(τD1
∧τD2

)
(

G1(XτD1
)1{τD1

≤τD2
} +G2(XτD2

)1{τD2
<τD1

}

)]

= Ri(τD1 , τD2).

Hence,

Ui(x) = Ri(τD1 , τD2)
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for i = 1, 2, which shows that the inequalities in (6) and (7) are in fact
equalities. Consequently, (τD1 , τD2) is a Nash equilibrium of stopping times,
and U1 and U2 are the corresponding value functions. �

4. The game version of an American call option

In this section we study the game version of an American call option for
a geometric Brownian motion under heterogeneous beliefs. By a logarith-
mic change of variables, it is clear that the results of Sections 2-3 above
(formulated for processes on the whole real line) apply also to this example.
For the convenience of the reader we first recall from [19] (see also [7]) the
results under homogeneous beliefs.

4.1. Homogeneous beliefs. In this subsection we assume that G1(x) =
(x −K)+ and G2(x) = G1(x) + δ for some constants 0 < δ < K. We also
assume that r1 = r2 =: r, and that µ1(x) = µ2(x) = µx for some constant
µ and (by abuse of notation) σ(x) = σx for some constant σ > 0. Now P

1

and P
2 coincide, and we denote it by P. In this case, the value function and

the optimal strategies are determined in [6] if µ = r and in [19] for µ < r.
For µ < r, denote by

vA(x, µ) = sup
τ

E[e−rτ (Xτ −K)+]

the value function of an American call option for a drift µ, and denote by

vB(x, µ) = sup
τ

E[e−r(τ∧τK)((Xτ −K)+1{τ<τK} + δ1{τ≥τK})]

the value function of an American down-and-out call option with rebate δ
at the barrier K. Let c be the solution to

vA(K, c) = δ,

and let d be the solution to

∂+vB
∂x

(K, d) = 1,

where ∂+

∂x
denotes the right derivative. Furthermore, let

(8) A := inf{x ≥ K : vA(x, µ) = G1(x)}

be the optimal stopping boundary for an American call with drift µ, and let

(9) B := inf{x ≥ K : vB(x, µ) = G1(x)}

be the optimal stopping boundary for an American down-and-out call option
with rebate δ at K.

Theorem 4.1. (Yam, Yung, Zhou [19]) Assume that δ < K. Then the
constants c and d are well-defined and satisfy c < d < r. Denote by V the
value function.

• If µ < c, then V (x) = vA(x, µ).
• If c ≤ µ ≤ d, then V (x) = vB(x, µ).
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• If d < µ < r, then

V (x) =

{

G2(x) for x ∈ [K, b1]
G1(x) for x ∈ [b2,∞)

and V solves 1
2σ

2x2 ∂
2V
∂x2 + µx∂V

∂x
− rV = 0 on (0,K) and on (b1, b2)

with the obvious boundary conditions. Here b1 and b2 are found by
solving a coupled pair of equations originating from the smooth-fit
condition.

Moreover, the pair (τD1 , τD2) is a Nash equilibrium, where D1 = {x : V (x) =
G1(x)} and D2 = {x : V (x) = G2(x)}.

Remark Note that in the case when µ = c, we have vA(x, c) = vB(x, c), and
both (τD1 , τD2) and (τD1 ,∞) are Nash equilibria. Also note that if µ = r,
then the process e−rtG2(Xt) is not uniformly integrable, so Theorem 2.2
does not apply. In fact, in this case there is no Nash equilibrium, compare
[6].

4.2. Heterogeneous beliefs. For simplicity, we assume that r1 = r2, and
we denote this common value by r, so heterogeneity only applies to the drift
of X. Let G1 and G2 be defined as above, and assume that (by abuse of
notation) µi(x) = µix and σ(x) = σx for constants µ1, µ2 and σ > 0. Since
it is natural that the buyer of a call option estimates the drift higher than
does the seller, we restrict our attention to the case µ2 < µ1 < r. The case
µ1 < µ2 can be treated similarly and hence this is a rather mild restriction.
We divide the analysis into three separate cases, depending on the value
of µ1. Furthermore, to illustrate our results graphically we choose a set of
base-case parameters to be σ = 0.15, r = 0.05, K = 1, and δ = 0.1. Given
these values we can calculate that c ≈ −0.024 and d ≈ 0.018.

For µ ∈ R, denote by Pµ a measure under which X has drift µ. The
function

H(x, µ,A,B) := Eµ

[

e−r(τA∧τB)
(

G1(XτA)1{τA≤τB} +G2(XτB)1{τB<τA}

)

]

is used in the subsections below. Note that H represents the value of the
game, evaluated by an agent with drift µ, provided that Player 1 stops the
first instant that the process X enters A and Player 2 stops when X enters
B.

4.2.1. The case µ2 < µ1 ≤ c.

Theorem 4.2. If µ2 < µ1 ≤ c, then the pair (τ[A,∞),∞), where A is defined
by (8) with µ = µ1, is a Nash equilibrium.

Proof. It is straightforward to check that the pair (U1, U2), where U1 :=
vA(x, µ1) and U2 := H(x, µ2, [A,∞), ∅), satisfies the assumptions of Theo-
rem 3.1. Therefore, the result follows. �

The value functions of the Nash equilibrium described in Theorem 4.2 are
illustrated in Figure 1.
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Figure 1. The case µ2 < µ1 ≤ c. The parameter values
used above are µ2 = −0.08 < µ1 = −0.04 < c. For these
parameters, A ≈ 1.23, and the value of Player 1 (blue) is
above the value of Player 2 (red).

4.2.2. The case µ2 < µ1 ∈ (c, d). Let A and B be defined as in (8) and (9)
with µ = µ1, respectively. Since µ1 > c, it is straightforward to check that
B < A. Let m1 and m2 be the unique solutions of

H(K,m1, [B,∞), ∅) = δ

and

H(K,m2, [A,∞), ∅) = δ,

respectively. In words, if Player 1 stops at B (i.e. the best response if Player
2 stops at K), and Player 2 never stops, then m1 is the drift that makes
the value for Player 2 equal to δ at x = K. Similarly, if Player 1 stops at
A (i.e. the best response if Player 2 never stops), and Player 2 never stops,
then m2 is the drift that makes the value for Player 2 equal to δ at x = K.
Since H(K,µ, [B,∞), ∅) and H(K,µ, [A,∞), ∅) are strictly increasing in µ,
the thresholds m1 and m2 are well-defined. Moreover, they satisfy m1 < µ1

and m2 < µ1.

Theorem 4.3.
(i) If µ2 ∈ (−∞,m2], then (τ[A,∞),∞) is a Nash equilibrium.
(ii) If µ2 ∈ [m1, µ1), then (τ[B,∞), τK) is a Nash equilibrium.
Furthermore, the inequality m1 ≤ m2 holds.

Proof. First assume that µ2 ∈ (−∞,m2]. Let U1(x) := vA(x, µ1), and define

U2(x) := H(x, µ2, [A,∞), ∅).

Since µ2 ≤ m2, we have U2 ≤ G2 everywhere. Moreover, it is straightforward
to check that U1 and U2 satisfy the remaining conditions of Theorem 3.1, so
(τ[A,∞),∞) is a Nash equilibrium.
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Next assume that µ2 ∈ [m1, µ1). Let U1(x) := vB(x, µ1), and define

U2(x) := H(x, µ2, [B,∞), {K}),

i.e. the value for Player 2 if Player 1 stops at B and Player 2 stops at K.
Then U1 and U2 satisfy the conditions of Theorem 3.1, so (τ[B,∞), τK) is a
Nash equilibrium.

Finally note that the function h(x) := H(x,m2, [A,∞), ∅) is convex and

satisfies h(K) = δ and ∂−h
∂x

(A) > 1. Consequently, there exists a unique

point B̂ > K such that h < G1 on (B̂, A) and h > G1 on (0, B̂). More-

over, L̂2h = 0 on (0, A), where L̂2 is defined as in (5) but with drift m2x.

Thus L1h ≥ 0 on (K, B̂) since h is increasing and m2 ≤ µ1. Conse-

quently, vB(·, µ1) ≥ h on (K, B̂), which shows that B ≥ B̂. Therefore,
H(x,m2, [B,∞), ∅) ≥ H(x,m2, [A,∞), ∅) on (0, B], so m1 ≤ m2. �

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

Vi

Figure 2. The case µ2 < µ1 ∈ (c, d), µ2 ∈ [m1,m2]. The pa-
rameter values used above are µ2 = −0.012 < µ1 = 0.015 ∈
(c, d). For these parameters we have m1 ≈ −0.013, m2 ≈
−0.010, A ≈ 2.05 and B ≈ 1.88. The solid lines represent
values associated with the Nash equilibrium (τ[A,∞),∞) and
the dashed lines correspond to the equilibrium (τ[B,∞), τK).
The value for Player 1 (blue) is in both cases higher than the
corresponding value for Player 2 (red).

Remark By Theorem 4.3, the interval [m1,m2] is non-empty (actually, a
closer inspection of the proof above reveals that m1 < m2). Consequently,
if µ2 ∈ [m1,m2], then there are multiple Nash equilibria.

Theorem 4.4. Assume that µ2 ∈ [m1,m2] so that both (τ[A,∞),∞) and
(τ[B,∞), τK) are Nash equilibria. Then

(10) V
(τ[A,∞),∞)

2 ≤ V
(τ[B,∞),τK)

2 ≤ V
(τ[B,∞),τK)

1 ≤ V
(τ[A,∞),∞)

1 .
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Proof. Let µ2 ∈ [m1,m2]. Since vB(·, µ1) is increasing, we find that h(x) :=
H(x, µ2, [B,∞), {K}) satisfies L1h ≥ L1vB = 0 on (0,K) ∪ (K,B). Conse-
quently, a maximum principle argument shows that h ≤ vB(·, µ1), which is
the second inequality in (10).

Next, the function h(x) := H(x, µ2, [A,∞), ∅) is convex and satisfies

h(K) ≤ δ and ∂−h
∂x

(A) > 1. Consequently, there exists a unique point B̂ > K

such that h < G1 on (B̂, A) and h > G1 on (0, B̂). A similar argument as
in the proof of Theorem 4.3 (but with drift µ2 instead of m2) shows that

B̂ ≤ B. Therefore, the first inequality in (10) follows from h(K) ≤ δ and
h(B) ≤ G1(B), and the third inequality follows from δ ≤ H(K,µ1, [A,∞), ∅)
and G1(B) ≤ H(B,µ1, [A,∞), ∅). �

The value functions of the Nash equilibria described in Theorems 4.3 and
4.4 are illustrated in Figure 2. By Theorem 4.4, both players prefer the Nash
equilibrium (τ[A,∞),∞) to (τ[B,∞), τK). In light of this, we refer to a Nash
equilibrium as optimal if it is preferred to any other equilibrium by both
players. Specifying conditions which guarantee the existence of an optimal
equilibrium is an interesting open question.

4.2.3. The case µ2 < µ1 ∈ [d, r). From the point of view of non-uniqueness
of Nash equilibria, this case resembles the one studied in Section 4.2.2 above.

Let vA(x, µ1), vB(x, µ1), A, B, m1 andm2 be defined as before. Moreover,
let m3 be the unique solution of

∂+H

∂x
(K,m3, [B,∞), {K}) = 1.

Theorem 4.5. We have m1 ≤ m2 and m1 ≤ m3. Moreover, the following
statements hold.

(i) If µ2 ∈ (−∞,m2], then (τ[A,∞),∞) is a Nash equilibrium.
(ii) If µ2 ∈ [m1,m3], then (τ[B,∞), τK) is a Nash equilibrium.
(iii) If µ2 ∈ (m3, µ1), then (τ[B1,∞), τ[K,B2]) is a Nash equilibrium, where

Bi, i = 1, 2 satisfy K < B2 < B1 < B and solve the following
free-boundary problem:































L1U1(x) = 0 for x ∈ (B2, B1)
L2U2(x) = 0 for x ∈ (B2, B1)
U ′
1(B1) = 1

U ′
2(B2) = 1

U1(x) = U2(x) = G2(x) for x ∈ [K,B2]
U1(x) = U2(x) = G1(x) for x ≥ B1.

Proof. The fact m1 ≤ m2 and properties (i)-(ii) can be proved similarly as in
Section 4.2.2. To prove thatm1 ≤ m3, note that h(x) := H(x,m1, [B,∞), {K})
satisfies h(K) = δ with h′(K) < 1. Since h is increasing we find that
h(x) ≤ H(x, µ, [B,∞), {K}) if µ ≥ m1 and h(x) ≥ H(x, µ, [B,∞), {K}) if
µ ≤ m1. Consequently, m1 ≤ m3.
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Figure 3. The case µ2 < µ1 ∈ [d, r), µ2 ∈ [m1,m2]. The
parameter values used above are µ2 = 0.0003 < µ1 = 0.03 ∈
[d, r). For these parameters we have m1 ≈ 0.00027, m2 ≈
0.00078, A ≈ 3.31 and B ≈ 3.22. The solid lines represent
values associated with the Nash equilibrium (τ[A,∞),∞) and
the dashed lines correspond to the equilibrium (τ[B,∞), τK).
The value for Player 1 (blue) is in both cases higher than the
corresponding value for Player 2 (red).
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Figure 4. The case µ2 < µ1 ∈ [d, r), µ2 ∈ (m3, µ1). The
parameter values used above are µ2 = 0.022 < µ1 = 0.03 ∈
[d, r). For these parameters we have m3 ≈ 0.0205, B1 ≈ 3.21
and B2 ≈ 1.07. The value for Player 1 (blue) is above the
value for Player 2 (red).

The proof of (iii) follows along similar lines as in the proof of [1, Theo-
rem 4.4]. Let L be the unique point above K such that vB(L, µ1) = G2(L),
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and let B̃ be defined as the smallest point above K such that

H(K,µ2, [B̃,∞), ∅) = δ.

Then K < B̃ < B and K < L < B. Now, given a point y ∈ [K,L], there
exists a unique point b(y) such that if Player 2 uses τ[K,y], then τ[b(y),∞) is the

best response for Player 1. Moreover, b(y) ∈ [B̃, B], and b(K) = b(L) = B.

Similarly, given a point z ∈ [B̃, B], there exists a unique point a(z) ≥ K such
that if Player 1 uses τ[z,∞), then the best response for Player 2 is τ[K,a(z)], and
a(B) ∈ (K,L). Thus a(b(K)) −K > 0 and a(b(L)) − L < 0. By continuity
of the functions a and b, there exists a point B2 such that a(b(B2))−B2 = 0.
It is then straightforward, using Theorem 3.1, to check that this point B2

together with B1 = b(B2) have the desired properties. �

Remark We have not been able to establish a relation between m2 and m3.
However, numerical experiments indicate that m2 ≤ m3 at least for a wide
range of parameter values.

The value functions of the Nash equilibria described in Theorem 4.5 are
illustrated in Figures 3 and 4. Figure 3 shows the multiple equilibria when
µ2 ∈ [m1,m2] and Figure 4 the equilibrium (τ[B1,∞), τ[K,B2]) which exists
when µ2 ∈ (m3, µ1).

5. Randomized strategies

When considering Dynkin games, a natural extension of stopping times
(corresponding to pure strategies in game theory) is the concept of random-
ized stopping times (corresponding to mixed strategies). In this section we
study such games under heterogeneous beliefs where the admissible strate-
gies are randomized stopping times, compare [8] and [18]. Our definition
of randomized stopping times is equivalent to the one in [18], but the de-
scription is slightly changed in order to emphasize an interpretation using
intensities of stopping.

To model randomized stopping times, let θ be a random variable which is
exponentially distributed with parameter 1 and independent of X. Given an
adapted, non-decreasing and right-continuous [0,∞]-valued process Γ with
Γ0− = 0, define the associated randomized stopping time by

γ := γΓ := inf{t ≥ 0 : Γt > θ},

and denote by

T := {γΓ : Γ adapted, non-decreasing, right-continuous with Γ0− = 0}

the set of randomized stopping times. In this way, the set of randomized
stopping times contains the set of stopping times. Indeed, given a stopping
time τ , define

Γt :=

{

0 t < τ
∞ t ≥ τ.

Then γΓ = τ .
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One natural class of randomized stopping times is the one constructed as
follows. Let Λ be a non-negative measure on (0,∞), and define an adapted

and non-decreasing process Γ̃Λ by

Γ̃Λ
t :=

∫

R

Lt(z)

σ2(z)
Λ(dz),

where Lt(z) is the local time of X at time t at the point z. Then Γ̃ is
left-continuous everywhere, and continuous everywhere but possibly at one
time-point, at which it jumps to infinity. The process ΓΛ

t := lims↓t Γ̃
Λ
s is

adapted, right-continuous and satisfies ΓΛ
0− = 0. The corresponding ran-

domized stopping time γ = γΓΛ is then Markovian in the sense that the
intensity of stopping only depends on the current level of X.

Example Consider the special case when the measure Λ has a continuous
density so that Λ(dz) = λ(z) dz for some continuous function λ. Then, by
the occupation time formula, see [17, Corollary 1 on p. 219],

ΓΛ
t =

∫ t

0
λ(Xs) ds.

Therefore λ(z) is the intensity with which γ happens given that the current
value of X is z.

Example As another illustrative example, suppose that Λ = δx0 , where δx0

denotes a point mass at some point x0. Then ΓΛ
t = Lt(x0)/σ

2(x0), so Γ
only increases at times when the value of X is x0. Thus the corresponding
randomized stopping time γ = γΓΛ satisfies Xγ = x0 on the event {γ < ∞}.

Example Finally, assume that Λ = ∞δx0 , i.e. an infinite point-mass at x0.
Then

ΓΛ
t =

{

0 t < τx0

∞ t ≥ τx0 .

Consequently, the corresponding randomized stopping time satisfies γ = τx0 .

In order to introduce a random device for each player, we extend the
probability space as ([0,∞)2 ×Ω, λ1⊗λ2⊗P

1), where λ1 and λ2 denote the
law of independent exponentially distributed random variables θ1 and θ2.
By abuse of notation, we use P

i instead of λ1 ⊗ λ2 ⊗ P
i.

We may now define Nash equilibria as in Definition 2.1, but where stop-
ping times are replaced by randomized stopping times, and for a given Nash
equilibrium there are the corresponding value functions of Player 1 and
Player 2, respectively. We then have the following verification result. The
proof follows along the same lines as the proof of Theorem 3.1, and is there-
fore omitted.

Theorem 5.1. Assume that Ui : (0,∞) → [0,∞), i = 1, 2 are continuous
functions such that U1 ≥ G1 and U2 ≤ G2. Furthermore, assume that
(γ1, γ2) is a pair of randomized stopping times such that for any randomized
stopping time γ we have

(i) E
1
[

e−r1(γ∧γ2)
(

U1(Xγ)1{γ≤γ2} +G2(Xγ2)1{γ2<γ}

)]

≤ U1(x);
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(ii) E
2
[

e−r2(γ∧γ1)
(

G1(Xγ1)1{γ1≤γ} + U2(Xγ)1{γ<γ1}

)]

≥ U2(x);

(iii) E
i
[

e−ri(γ1∧γ2)
(

G1(Xγ1)1{γ1≤γ2} +G2(Xγ2)1{γ2<γ1}

)]

= Ui(x), i =
1, 2.

Then (γ1, γ2) is a Nash equilibrium in randomized stopping times. More-
over, U1 and U2 are the corresponding values for Player 1 and Player 2,
respectively.

We now illustrate Theorem 5.1 in the same example of a game version of
the American call option as studied in Section 4.

Example With the notation as in Section 4 above, assume r1 = r2 and that
µ1 and µ2 are such that µ1 ∈ (c, d) and m1 < µ2 < m2. For Player 2 we
will consider randomized stopping times constructed from point-masses lδK
at K, where l ∈ [0,∞], and we will denote the corresponding randomized
stopping time by γl2.

If l = 0, then γl2 = ∞, and the best response for Player 1 is γ1 = τA.
The corresponding value for Player 2 is therefore H(x, µ2, [A,∞), ∅), which
at x = K satisfies H(K,µ2, [A,∞), ∅) < δ since µ2 < m2.

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

Vi

Figure 5. The value functions corresponding to the Nash
equilibrium in randomized strategies. The parameters used
are the same as in Figure 2. For these parameters we have
l0 ≈ 0.113 and b(l0) ≈ 1.94 ∈ (B,A). Note that the value
function for Player 1 (blue) has a kink at x = K.

If l = ∞, then γl2 = τK , and the best response for Player 1 is γ1 = τB.
Note that the function H(x, µ2, [B,∞), ∅) satisfies H(K,µ2, [B,∞), ∅) > δ
since µ2 > m1.

For l ∈ (0,∞), the value

U1 := U l
1 := sup

γ1∈T

R1(γ1, γ
l
2)
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for Player 1 is given by solving the free-boundary problem














L1U1 = 0 x ∈ (0,K) ∪ (K, b)
1
2σ

2K2(d
+

dx
U1 −

d−

dx
U1) = l(U1 − δ) x = K

U1(x) = x−K x ≥ b
U ′
1(b) = 1.

Note that U1 has a kink at x = K, and that the size of the kink is cho-

sen so that the process e−r(t∧γl
2)(U1(Xt)1{t≤γl

2}
+ G2(Xγl

2
)1{γl

2<t}) is a P
1-

martingale for t ≤ τb. As l increases from 0 to ∞, the boundary b = b(l)
decreases from A to B. By continuity, there exists a value of l0 such that
H(K,µ2, [b(l0),∞), ∅) = δ. Applying Theorem 5.1 with the candidate func-

tions U1 and U2(x) := H(x, µ2, [b(l0),∞), ∅) shows that the pair (τb(l0), γ
l0
2 )

is a Nash equilibrium in randomized stopping times. The corresponding
value functions are plotted in Figure 5.

Finally, we note that the equilibrium in randomized strategies is not op-
timal since, using similar methods as in the proof of Theorem 4.4, it can be
shown that

V
(τ[B,∞),τK)

1 ≤ V
(τb(l0),γ

l0
2 )

1 ≤ V
(τ[A,∞),∞)

1

and

V
(τ[A,∞),∞)

2 ≤ V
(τb(l0),γ

l0
2 )

2 ≤ V
(τ[B,∞),τK)

2 .
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