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Abstract. We compare two methods for superreplication of options with convex
pay-off functions. One method entails an overestimation of the unknown covari-
ance matrix in the sense of quadratic forms. With this method the value of the
superreplicating portfolio is given as the solution of a linear Black-Scholes type
equation. In the second method the choice of quadratic form is made pointwise.
This leads to a fully non-linear equation, the so-called Black-Scholes-Barenblatt
equation, for the value of the superreplicating portfolio. In general, this value is
smaller for the second method than for the first method. We derive estimates
for the difference between the initial values of the superreplicating strategies
obtained using the two methods.

1. Introduction

In this article we study and compare two methods for supperreplication of convex
contracts on several underlying assets. In general future volatility is, of course, not
known and the best the hedger of a contract can do is to give estimates of possible
future volatilities. Exact replication of the contract is thus not possible. In this
situation it is of interest for the writer of the option to find a self-financing portfolio
that superreplicates the claim, meaning that if the volatility stays within the given
estimated region, then the value of the hedging portfolio is with probability one at
least the option pay-off at expiry. Of course, given the estimates of future volatility,
the hedger wants the initial value of his portfolio to be as small as possible, but he
also wants his strategy to be as simple as possible to find numerically or perhaps
even explicitly.

The first method is based on finding a matrix overestimating the covariance
matrix in the sense of quadratic forms and is described in Section 2, compare also
for example Ekström et al [3] or El Karoui et al [4]. Once this matrix is found, one
needs to solve a classical Black-Scholes equation. The advantage of this method lies
in the simplicity of the equation, the drawback is the fact that this solution often
is unnecessarily large.

Another method for superreplication is via the so-called Black-Scholes-Barenblatt
equation, see for example Avellaneda et al [1], Lyons [9], Romagnoli and Vargiolu
[12], Vargiolu [13] and Gozzi and Vargiolu [5], [6]. This method is also described
in Section 2. The Black-Scholes-Barenblatt equation is a fully non-linear parabolic
equation of Hamilton-Jacobi-Bellman type. It is of course associated with more
numerical work than the linear method but on the other hand gives a less expensive
superreplicating portfolio.
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In the case of one underlying asset and a convex contract function the Black-
Scholes-Barenblatt equation reduces to a Black-Scholes equation and these two
methods thus agree. The second method, in its full non-linearity, is thus only
used for claims with mixed convexity. However, for several underlying assets the
methods are in general different even for convex claims. The purpose of the present
article is to compare these two methods precisely in this case. In particular we esti-
mate the extra cost associated with the linear method, compare Corollaries 3.5, 3.9,
3.11, 3.14 below. We also provide explicit numerical examples for some standard
contracts.

2. Two Methods for Superreplication

Consider a model for a market consisting of a bank account with price process

B(t) = B(0) exp
{
rt
}
,

where the interest rate r is a non-negative constant, and n risky assets, with the
price Xi of the ith asset satisfying the stochastic differential equation

(1) dXi = rXi(t) dt+
n∑
j=1

σijXi(t) dWj

under some risk neutral probability measure, compare for example [7]. In this
equation W is an n-dimensional Brownian motion on some probability space (we
do not further specify this space since X and W are only used for calculating the
pricing function F below), and the volatility matrix σ = (σij) is a non-singular
n× n-matrix. The process X is generally refered to as an n-dimensional geometric
Brownian motion. We will consider options on X with convex pay-off structures, i.e.
the holder of the option receives at some pre-determined time T the amount g(X(T ))
for some non-negative and convex contract function g of at most polynomial growth.
Standard arbitrage theory yields that the price at time t of the option is calculated
as F (X(t), t), where

(2) F (x, t) = exp
{
− r(T − t)

}
Ex,tg(X(T )).

Here the expected value is taken with respect to a measure under which Xt = x.
Moreover, this pricing function F solves the Black-Scholes parabolic differential
equation

(3)
∂F

∂t
+

n∑
i=1

rxi
∂F

∂xi
+

1

2

n∑
i,j=1

aijxixj
∂2F

∂xi∂xj
= rF

with terminal condition F (x, T ) = g(x). In this equation the coefficients aij are
the entries of the n× n-matrix σσ∗. We will refer to this matrix as the covariance
matrix.

Remark Note that since σ is assumed to be non-singular, the matrix A = σσ∗ =
(aij) is positive definite. Recall that there is a 1-1-correspondence between the set
of quadratic forms on Rn and the set of symmetric n × n-matrices. In this article
we identify the set of quadratic forms with the set of symmetric matrices.

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space, and let W̃ be a Brownian
motion with respect to (Ft)t∈[0,T ]. We emphasize that the filtration generated by

W̃ may be strictly contained in (Ft)t∈[0,T ], thus allowing for an incomplete market.
Assume that an option writer wants to hedge an option using a geometric Brownian
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motion model for the stock price as described above, whereas the true stock price
vector X̃ evolves according to

(4) dX̃i = µ̃i(t)X̃i(t) dt+

n∑
j=1

σ̃ij(t)X̃i(t)X̃j(t) dW̃j

for some Ft-adapted processes µ̃i and σ̃ij . Also assume that∫ T

0
|µ̃i(t)| dt <∞ and

∫ T

0
σ̃2ij(t) dt <∞

P-almost surely (henceforth the measure P is suppressed). The hedger will then
(incorrectly) price an option on the stocks according to (2), or equivalently according
to (3). Moreover, if he tries to replicate the option with the hedging strategy
suggested by his model, then he will form a self-financing portfolio with initial
value F (X(0), 0) and such that it at each instant t contains ∂F

∂xi
(X̃(t), t) numbers of

shares of the ith asset and the remaining amount invested in the bank account. It
is well-known, see Theorem 3.1 in [3] or Theorem 6.2 in [4], that the terminal value
of the strategy described above almost surely exceeds the option pay-off g(X(T )),
provided that σσ∗ ≥ σ̃(t)σ̃∗(t) in the sense of quadratic forms for all t almost surely.
Thus, if the hedger over-estimates the covariance matrix, then he will superreplicate
the option. This we refer to as the first method or the linear method. For clarity
we formulate it as a theorem.

Theorem 2.1. Assume that a hedger over-estimates the covariance matrix, i.e the
volatility matrix σ used by the hedger satisfies σσ∗ ≥ σ̃(t)σ̃∗(t) for all t almost
surely. Then the hedger will superreplicate any convex claim written on X.

Remark For the first method to work it is important that the price of the option,
calculated via the Black-Scholes equation, is convex as a function of the stock price
vector at any time before maturity. It is the somewhat surprising result of [3], that
within a rather large class of models, geometric Brownian motion is the only model
in which the price of a convex claim necessarily is convex in the underlying stock
price.

We now describe the second method. By some a priori estimate the hedger
has determined that the covariance matrix lies in some set A of strictly positive
quadratic forms. We call this set A the set of admissible covariance matrices, and
we assume throughout the article the following hypothesis.

Hypothesis 2.2. The set A of admissible covariance matrices is convex and com-
pact.

Using the set of admissible covariance matrices, the hedger calculates the price
of the option according to the so-called Black-Scholes-Barenblatt equation

(5)
∂H

∂t
+

n∑
i=1

rxi
∂H

∂xi
+ max

A∈A

1

2

n∑
i,j=1

aijxixj
∂2H

∂xi∂xj
= rH

with the same terminal condition H(x, T ) = g(x) as for the equation (3). For
uniqueness, existence and regularity of solutions to this equation see [13]. Now,
consider a hedger who forms a self-financing portfolio with initial value H(X(0), 0)

and such that it at each instant t contains ∂H
∂xi

(X̃(t), t) numbers of shares of the ith
asset and the remaining amount invested in the bank account. Then it is known
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that he will superreplicate the claim g(X̃(T )) provided that the true covariance
matrix σ̃(t)σ̃∗(t) at each instant is in A, compare Theorem 2 in [12].

Theorem 2.3. Assume that an agent hedges a claim according to the Black-Scholes-
Barenblatt equation for some set A of admissible covariance matrices. Then the
agent will superreplicate the claim provided that the true covariance matrix σ̃(t)σ̃∗(t)
is in the admissible set A for all t almost surely. Moreover, the initial value of
the superreplicating strategy calculated via the Black-Scholes-Barenblatt equation is
the smallest possible initial value of a strategy which is superreplicating for any
covariance matrix in A.

Remark Theorem 2.3 relies upon the non-degeneracy of the admissible covariances,
which guarantees the regularity of the solution to the Black-Scholes-Barenblatt
equation, see [13]. Non-degeneracy of the covariance matrix is also connected to
absence of arbitrage in the market.

Remark Theorem 2.3 is valid not only for convex claims but also for any continuous
contract function g of at most polynomial growth.

Remark For the existence of a smallest superhedging portfolio in more general
contexts, see Kramkov [8] and Mykland [10]. The Black-Scholes-Barenblatt price,
in the set-up of the present paper, coincides with Kramkov’s superhedging price
and with Mykland’s conservative delta hedging price.

3. Estimates of Solutions of the Black-Scholes-Barenblatt Equation

The initial values of the superreplicating portfolios in Theorems 2.1 and 2.3 (or,
equivalently, the solutions F and H to equations (3) and (5)) will be refered to
as the BS-price and the BSB-price, respectively. We will use the notation BS(A)
for the BS-price computed with a volatility σ satisfying A = σσ∗, and similarly we
denote by BSB(A) the BSB-price corresponding to a set A of admissible covariance
matrices.

In this section we give bounds of the BSB-price in terms of the BS-price.

Definition 3.1. We say that a quadratic form C dominates a set A of quadratic
forms if C ≥ A for all A ∈ A.

The following result is a consequence of Theorem 2.1 and Theorem 2.3.

Theorem 3.2. Assume that the contract function g is convex and that C is a
quadratic form that dominates A. Then

BS(A) ≤ BSB(A) ≤ BS(C)

for any A ∈ A.

Proof. The first inequality follows since BS(A) = BSB(A) and the BSB-price is
increasing in A, and the second one follows since the BSB-price is the smallest
superreplicating price. �

Remark There is a similar result corresponding to subreplication. If D is an
element that is dominated by all elements in A, then BS(D) ≤ BSB(A) ≤ BS(A)
for any convex pay-off and any A ∈ A, where BSB solves equation (5) but with
taking the maximum over A replaced by taking the minimum. The results below
therefore have counterparts for subreplicating portfolios.
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Since the set A of admissible covariance matrices is compact, the eigenvalues of
the elements in A are uniformly bounded by some constant. Thus it is easy to find
an upper bound of A. However, in general there is no smallest upper bound of A.
Different choices of the dominating covariance matrix yields different bounds of the
BSB-price according to Theorem 3.2. Below we discuss some different choices of
dominating strategy for A. Recall that A is assumed to be convex and compact.

Theorem 3.3. Let C be a quadratic form with largest possible determinant in A.
Then nC dominates A.

Proof. Note first that since A is compact, there exists C in A such that

detC = sup
A∈A

detA.

Let A be an arbitrary quadratic form in A. By Lemma 3.4 below we may assume,
without loss of generality, that both A and C are diagonal. Since A is convex
(convexity of A is preserved when diagonalizing A and C), the quadratic form
C(λ) := λA+ (1− λ)C is in A. Using the fact that C has maximal determinant in
A we know that

(6)
d

dλ
detC(λ)

∣∣∣∣
λ=0

≤ 0.

Denoting the diagonal elements of A and C by ai and ci, respectively, straightfor-
ward calculations yield that

d

dλ
detC(λ)

∣∣∣∣
λ=0

=
d

dλ
det

 λa1 + (1− λ)c1 0
. . .

0 λan + (1− λ)cn


∣∣∣∣∣∣∣
λ=0

=
d

dλ

n∏
i=1

(λai + (1− λ)ci)

∣∣∣∣∣
λ=0

.

The product in the above expression is a polynomial in λ of degree n. When
differentiating it and plugging in λ = 0, only the coefficient of the first order term
survives. Thus

d

dλ

n∏
i=1

(λai + (1− λ)ci)

∣∣∣∣∣
λ=0

= c1...cn−1an + c1...cn−2an−1cn + ...+ a1c2...cn − nc1...cn.

Combining this with (6), we find that

c1...cn−1an + c1...cn−2an−1cn + ...+ a1c2...cn ≤ nc1...cn.

In particular, since ai and ci are all positive, it follows that ai ≤ nci for all i =
1, ..., n. Consequently, nC dominates A, which finishes the proof. �

We include the following elementary result.

Lemma 3.4. Two quadratic forms on Rn, one of which is positive definite, can
be diagonalized simultaneously. Moreover, this can be done without changing the
determinants of the representing matrices.
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Proof. Let the two quadratic forms be represented by the matrices A and C in a
given basis, where A is positive definite. Let T be a change of basis matrix. It is
important to note that after performing the corresponding change of basis, the new
representations of the quadratic forms are given by T ∗AT and T ∗CT , respectively.
(If we regard A and C as linear mappings, the new representations are T−1AT
and T−1CT . This distinction disappears if T is an orthogonal transformation since
then T ∗ = T−1.) Now, we first perform an orthogonal transformation so that
T ∗1AT1 = T−11 AT1 is a diagonal matrix with the entries λ1, ..., λn. Next we want
to transform this matrix to the identity matrix. This is accomplished using the
diagonal transformation matrix

T2 =


1√
λ1

0

. . .

0 1√
λn

 .

Then T ∗2 T
∗
1AT1T2 is the identity matrix. Note that in this step it is crucial that we

use the transpose T ∗2 of T2 and not the inverse T−12 . After these two transformations
we are left with the matrices T ∗2 T

∗
1AT1T2 and T ∗2 T

∗
1CT1T2, the first of which is

the identity matrix and the second one is symmetric. Now, finally, we choose
an orthogonal transformation T3 that diagonalizes the second matrix, which can
be done since that matrix is symmetric. Since T ∗3 = T−13 , the identity matrix is
unaffected by this change of basis. Consequently, the change of basis matrix T1T2T3
diagonalizes the two quadratic forms simultaneously.

If, in addition, we want the determinants of the representing matrices to be
preserved, T2 should be replaced by T2 det(A)1/2n. This completes the proof. �

As a consequence of Theorems 3.2 and 3.3 we have the following result.

Corollary 3.5. Let C be a quadratic form with largest possible determinant in A.
Then

BS(C) ≤ BSB(A) ≤ BS(nC).

Remark The assumption about A being convex is essential in Theorem 3.3. For
example, it is easy check that there is no element C in

A :=
{(

a 0
0 1/a

)
: a ∈ [1/3, 3]

}
such that 2C dominates A.

Example 3.6. Corollary 3.5 states that the BSB-price for some given set A always
can be estimated by a BS-price for a multiple of some quadratic form in A. Further,
the constant n cannot be improved upon. To see this, consider the two-dimensional
case, let a > 0 and

A :=
{(

γ 0
0 a− γ

)
: γ ∈ [ε, a− ε]

}
for some small ε > 0. By symmetry, the best choice A ∈ A is the mid-point, i.e.
the quadratic form

A =

(
a/2 0
0 a/2

)
,

and it is easy to see that λ = 2−2ε/a is the smallest constant such that λA majorizes
A. Since ε > 0 is arbitrary, the best constant in general is n = 2.
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Also note that a similar construction works in higher dimensions.

One natural way of expressing an estimate of future volatility is simply to give
upper and lower bounds for each of the entries of the covariance matrix. In this
case Theorem 3.3 can be significantly improved.

Definition 3.7. Let Q be the set of positive quadratic forms in n dimensions. We
say that A is a box if

A =
{
A = (aij)

n
i,j=1 : aij = aji ∈ Iij

}
⊆ Q

for some closed intervals Iij = Iji = [lij , rij ], 1 ≤ i, j ≤ n.

Next we present a method which shows that if all quadratic forms in A are close
to a diagonal quadratic form, i.e. if the correlations between the assets are small,
then the solution to the Black-Scholes-Barenblatt equation can be approximated
very well with solutions to the Black-Scholes equation with a diagonal quadratic
form.

Lemma 3.8. Assume that A is a box. For each position (i, j), let âij := sup{|aij | :
aij ∈ Iij}. Next, let C = (cij) be the diagonal positive quadratic form defined by
cii =

∑n
j=1 âij. Then C majorizes A.

Proof. Let A = (aij) be a quadratic form in A and let ξ ∈ Rn. Then
n∑
i,j

aijξiξj =
n∑
i=1

aiiξ
2
i +

∑
i 6=j

aijξiξj

≤
n∑
i=1

âiiξ
2
i +

∑
i 6=j

âij
1

2
(ξ2i + ξ2j )

=

n∑
i=1

âiiξ
2
i +

∑
i 6=j

âijξ
2
i =

n∑
i=1

ciiξ
2
i ,

finishing the proof. �

Corollary 3.9. With the notation of Lemma 3.8 we have

BS(A) ≤ BSB(A) ≤ BS(C),

where A is any quadratic form in A.

Remark Lemma 3.8 can be strengthened by using the inequality

2ξiξj ≤ λξ2i +
1

λ
ξ2j

for λ > 0 (this inequality is used in the proof with λ = 1). It follows that given any
matrix (λij) satisfying λij = 1/λji > 0, the quadratic form C can be defined as the
diagonal matrix where the ith diagonal entry equals

∑n
j=1 λij âij .

Theorem 3.10. Assume that A is a box. Then there is an element C ∈ A such
that 2C dominates A.

Proof. Let C be the element in A with off-diagonal elements defined as the mid-
point of the interval and diagonal elements as large as possible. More precisely, in
the notation of Definition 3.7, C = (cij) is given by cii = rii and cij = (lij + rij)/2
for i 6= j. It suffices to check that 2C ≥ A for matrices A in A with maximal
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diagonal entries. This, however, follows from the fact that 2C − A ∈ A for every
such A. �

Corollary 3.11. If A is a box, then there exists C ∈ A such that

BS(C) ≤ BSB(A) ≤ BS(2C).

Next we derive estimates for the case when A is a thin box.

Theorem 3.12. Assume that A is a box. Let C be the “upper center” of the box
(mid-point in the off-diagonal intervals, largest element on the diagonal), and let
εmax be the length of the longest off-diagonal side in the box. Further, let λmin be

the smallest eigenvalue of C. Then (1 + δ)C, where δ = (n−1)εmax

2λmin
, dominates A.

Proof. It suffices to check that (1 + δ)C majorizes all elements A in A having
maximal diagonal entries. Thus, let A be such an element. Writing D = A−C, we
find that D is a quadratic form D = (dij) with dii = 0 and dij ∈ 1

2 [−εmax, εmax] for

i 6= j. Using for example Lemma 3.8 it can be checked that D ≤ (n−1)εmax

2 I, where
I is the identity matrix. Now we need to check that (1 + δ)C ≥ A = C +D, so the
inequalities

δC ≥ δλminI =
(n− 1)εmax

2
I ≥ D

finish the proof. �

The estimate in Theorem 3.12 is not sharp. Indeed, the factor 1 + (n−1)εmax

2λmin
is

in general not the best (smallest) possible factor. In two dimensions we have the
following sharp estimate.

Theorem 3.13. Assume that A is a box, that n = 2 and let ε be the length of the
off-diagonal interval. Then there exists a quadratic form C ∈ A such that (1 + δ)C,
where δ = ε

2
√
r11r22

, dominates A. Moreover, γ = δ is the smallest number such that

(1 + γ)D dominates A for some D ∈ A.

Proof. Define

c :=

√
r11r22(l12 + r12)

r12 − l12 + 2
√
r11r22

.

We claim that C =

(
r11 c
c r22

)
will do. Indeed, to show that C ∈ A we need to

check that
l12 ≤ c ≤ r12,

and this is readily verified using the inequalities r11r22 ≥ l212 and r11r22 ≥ r212.
Moreover, to check that (1 + δ)C dominates A, it suffices to show that (1 + δ)C

dominates the elements in A of the form A =

(
r11 z
z r22

)
for z = l12 and z = r12.

Since the diagonal elements of (1 + δ)C − A are clearly positive, we only need to
check that the determinant of (1 + δ)C −A is non-negative. Thus

(7) det((1 + δ)C −A) = det

(
δr11 ± ε

2
± ε

2 δr22

)
= 0

which finishes the first part of the theorem.
To see that δ = ε

2
√
r11r22

is the best constant, let D ∈ A. Without loss of

generality we may assume that the diagonal elements are r11 and r22, respectively.
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Now, if the off-diagonal element of D is different from c, then the determinant
det((1 + γ)D−A), compare (7), is negative for either z = l12 or z = r12 unless γ is
chosen strictly larger than δ. This finishes the proof. �

Corollary 3.14. Assume that A is a box. Then there exists C ∈ A such that, with
the notation of Theorem 3.12 (Theorem 3.13, respectively),

BS(C) ≤ BSB(A) ≤ BS((1 + δ)C).

Remark If the interest rate r = 0, then the notions ”volatility” and ”time to
maturity” are equivalent. More precisely, BS((1+δ)C, τ) = BS(C, (1+δ)τ), where
BS(C, τ) is the Black-Scholes price when using a covariance structure C and the
time to maturity is τ . (This can be seen for example by inserting r = 0 in equation
(3).) Thus the bounds above can be re-expressed as

BS(C, τ) ≤ BSB(A, τ) ≤ BS(C, (1 + δ)τ).

Consequently, the bounds are expressed in terms of Black-Scholes prices with the
same volatility structures but with different times to maturity.

4. Numerical examples

In this section we illustrate our results by means of three explicit examples. In
a market consisting of two different risky assets we consider the spread call option,
the call option on the sum of the two assets, and a call option on the maximum
of the two assets. The value of the model parameters are chosen in line with the
results of many statistical studies, see for example pages 912-914 in [2] and Table 3
in [11].

We assume that the volatility matrix σ is uncertain, but that the covariance
matrix σσ∗ stays within a box

A =
{
A = (aij)

2
i,j=1 : aij = aji ∈ Iij

}
for some closed intervals I11 = [l11, r11], I22 = [l22, r22] and

I12 = I21 = [(ρ− ε)
√
r11r22, (ρ+ ε)

√
r11r22].

Here ρ ∈ (−1, 1) and ε > 0 are constants satisfying ε <
√

r11r22
l11l22

−|ρ| (this inequality

guarantees that the box A consists of positive quadratic forms).
Consider an option with a convex pay-off function g. According to Theorem 3.13

and Corollary 3.14, the BS-price corresponding to the covariance matrix

C =

(
r11 ρ

√
r11r22/(1 + ε)

ρ
√
r11r22/(1 + ε) r22

)
and the Black-Scholes-Barenblatt price satisfy

BS(C) ≤ BSB(A) ≤ BS((1 + ε)C).

In Table 1 below we provide the BSB-price and the corresponding price bounds of
a spread call option for some different values of the model parameters. The pay-off
of a spread call option is g(X1(T ), X2(T )) = (X1(T )−X2(T )−K)+ .

Similarly, in Tables 2 and 3 we give the prices and bounds for call options on
the sum and on the maximum, respectively. The corresponding pay-off functions are
g(X1(T ), X2(T )) = (X1(T )+X2(T )−K)+ and g(X1(T ), X2(T )) = (max{X1(T ), X2(T )}−
K)+.
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ε = 0.05 ε = 0.1 ε = 0.2
ρ = 0 [1.48, 1.50, 1.50] [1.48, 1.51, 1.51] [1.48, 1.55, 1.55]
ρ = 0.3 [1.38, 1.39, 1.39] [1.38, 1.41, 1.41] [1.39, 1.45, 1.45]

Table 1. Price bounds for the BSB-price of a spread call option.
The first entry is the BS(C)-price, the middle entry is the BSB(A)-
price, and the third one is the BS((1 + ε)C)-price. The parameters
used are T = 0.5, r = 0.06, x1 = 11, x2 = 6, K = 4, r11 = 0.04 and
r22 = 0.09.

ε = 0.05 ε = 0.1 ε = 0.2
ρ = 0 [1.50, 1.52, 1.53] [1.50, 1.55, 1.56] [1.50, 1.59, 1.63]
ρ = 0.3 [1.64, 1.67, 1.67] [1.63, 1.69, 1.70] [1.62, 1.73, 1.76]

Table 2. Price bounds for the BSB-price of a call option on the
sum of the two assets. The first entry is the BS(C)-price, the middle
entry is the BSB(A)-price, and the third one is the BS((1 + ε)C)-
price. The parameters used are T = 1, r = 0.03, x1 = 4, x2 = 6,
K = 10, r11 = 0.16 and r22 = 0.25.

ε = 0.05 ε = 0.1 ε = 0.2
ρ = 0 [2.40, 2.42, 2.46] [1.23, 1.25, 1.29] [1.23, 1.27, 1.36]
ρ = 0.3 [2.25, 2.27, 2.31] [2.26, 2.30, 2.38] [2.27, 2.35, 2.51]

Table 3. Price bounds for the BSB-price of a call option on the
maximum of the two assets. The first entry is the BS(C)-price, the
middle entry is the BSB(A)-price, and the third one is the BS((1 +
ε)C)-price. The parameters used are T = 0.5, r = 0.03, x1 = 10,
x2 = 9, K = 10, r11 = 0.25 and r22 = 0.36.

For the spread call and for the call on the sum, the BSB-price is very close to the
upper bound BS((1 + ε)C). This suggests that the simple model with a constant
covariance matrix (1+ε)C can be used for super-replication at a small additional cost
compared to the BSB-price. However, for the call on the maximum of two assets,
the BSB-price is closer to the lower bound. It remains a delicate open problem to
determine for what contracts the upper bound gives a good approximation of the
BSB-price.

5. Concluding Remarks

In this paper we compare two different approaches to superreplication of convex
claims in the presence of model uncertainty. One method is based on overestimation
of the covariance matrix, and it boils down to solving a linear partial differential
equation. The second method gives a less expensive superreplicating portfolio, but
is more complex since a fully non-linear differential equation needs to be solved. We
provide different bounds for the solution to this non-linear BSB-equation in terms
of solutions to the simpler BS-equation.

It is reasonable to assume that the set A of admissible covariance matrices is
convex. In Theorem 3.3 we present a general method for finding a matrix C ∈
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A such that nC dominates A. As Example 3.6 shows, the factor n cannot be
improved in general. Consequently, the bounds for the solution to the Black-Scholes-
Barenblatt equation provided in Theorem 3.3 and Corollary 3.5 are typically rather
coarse. Especially in high dimensions, the bounds have no practical applications.

On the other hand, if the set A of admissible covariance matrices is small, then
the bounds can be improved significantly. Theorems 3.12 and 3.13 provide the
bounds

BS(C) ≤ BSB(A) ≤ BS((1 + δ)C)

for some C ∈ A and some δ which is small if A is a small box. Moreover, for some
options, the BSB-price appears to be close to the upper bound. In such cases, the
method in which the covariance matrix is over-estimated could be used, at a small
additional cost, to avoid the numerical complexity of the BSB-equation. However,
as Table 3 shows, this does not hold for all contracts. To determine for which
options the upper bound is a close approximation of the BSB-price is a challenging
open question.

References

[1] Avellaneda, M., Levy, M. and Parás, A. Pricing and hedging derivative securities in markets
with uncertain volatilities. Appl. Math. Finance 2 (1995), 73-88.

[2] Barndorff-Nielsen, O. E. and Shephard, N. Econometric analysis of realized covariation:
high frequency based covariance, regression, and correlation in financial economics. Econo-
metrica 72 (2004), 885-925.

[3] Ekström, E., Janson, S. and Tysk, J. Superreplication of options on several underlying
assets. J. Appl. Probab. 42 (2005), 27-38.

[4] El Karoui, N., M. Jeanblanc-Picque, M. and Shreve, S. Robustness of the Black and Scholes
Formula. Math. Finance 8 (1998), 93-126.

[5] Gozzi, F. and Vargiolu, T. Superreplication of European multiasset derivatives with
bounded stochastic volatility. Math. Methods Oper. Res. 55 (2002), 69-91.

[6] Gozzi, F. and Vargiolu, T. On the superreplication approach for European interest rate
derivatives. Proceedings of the Ascona ’99 Seminar on Stochastic Analysis, Random Fields
and Applications, R.C. Dalang, F. Russo, 173-188, Progress in Probability 52, Birkhäuser,
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