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ERIK EKSTRÖM1 AND MARTIN VANNESTÅL

Abstract. Momentum is the notion that an asset that has performed
well in the past will continue to do so for some period. We study the
optimal liquidation strategy for a momentum trade in a setting where
the drift of the asset drops from a high value to a smaller one at some
random change-point. This change-point is not directly observable for
the trader, but it is partially observable in the sense that it coincides
with one of the jump times of some exogenous Poisson process represent-
ing external shocks, and these jump times are assumed to be observable.
Comparisons with existing results for momentum trading under incom-
plete information show that the assumption that the disappearance of
the momentum effect is triggered by observable external shocks signifi-
cantly improves the optimal strategy.

1. Introduction

A momentum trade is a strategy of buying assets that performed well
in the past and selling assets that performed poorly. Such a strategy is
motivated by statistical studies showing that stocks with a certain trend
in the past often continue to drift in the same direction for some time. In
the early reference [10] the authors showed that momentum effects often
remain for periods up to a year. These findings were reinforced in [11],
where the momentum phenomenon was tested on asset prices from another
time period in order to reduce the risk of anomalies in the chosen data. In
[11] the authors noted that momentum effects exist in the sense that stocks
that performed well in the past typically continue to yield positive returns
on a relatively short time horizon, and, somewhat surprisingly, they also
found that the performance on longer time horizons is typically negative.
For a study of momentum in international markets, see [15], and for further
references about the existence of momentum effects, see [7].

An easy model for momentum is a model in which the drift of an asset
drops from one value to a smaller one at some random time. In a setting
with complete information where this random time is fully observable, the
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liquidation problem becomes trivial. For applications, however, it is more
natural to assume incomplete information, i.e. that this change point is
unobservable for the investor. In such a case, even if the change point is
unobservable in itself, observations of the asset price trajectory can be used
to infer a good guess of the current drift. In fact, classical filtering theory
[14] provides the dynamics for the belief process, i.e. for the conditional
probability that the change point has already occurred given observations
of the asset price trajectory.

In [19], the optimal timing for the liquidation of a momentum trade is
studied. In that paper, the asset price is modeled as a linear Brownian
motion with a drift that drops from one constant to a smaller constant at
an unobservable time θ. The optimal liquidation problem for a momentum
trade modeled by a geometric Brownian motion was solved in [7]. Using a
change of measure technique, it was shown that the two-dimensional optimal
stopping problem associated with the liquidation problem can be reduced
to an optimal stopping problem with only one underlying spatial variable,
and thus be solved explicitly. For related studies of stock selling problems,
see [4], [7], [8] and [20], and for studies of optimal stopping problems under
incomplete information, see [6], [13] and [16].

In the present paper we consider a situation intermediate between the
complete information case and the incomplete information setting studied
in [7] and [19]. As in [7] we study a momentum trade modeled as a geo-
metric Brownian motion with a drift that drops from one constant value to
another at an unobservable time. However, the change point is assumed to
coincide with one of the jump times of a Poisson process, and these jump
times are observable. The Poisson process represents external shocks to the
system (an unfavorable political decision, a financial crisis, the release of
bad news, etc.) that possibly cause the momentum effect to disappear. We
refer to this situation intermediate between the complete information case
and the incomplete information setting as a model with partial informa-
tion. It was shown in [16] that the conditional probability that the change
point has already occurred then can be represented as a jump-diffusion, so
the optimal liquidation problem under partial information can be reduced
to a two-dimensional optimal stopping problem with complete information
and jumps in the underlying. One of the main contributions of the cur-
rent paper is to find an appropriate change of measure which transforms the
two-dimensional problem to a one-dimensional optimal stopping problem. A
second contribution is a thorough and rather technical treatment of this one-
dimensional optimal stopping problem with a jump-diffusion as underlying
process. To avoid the use of weak notions of solutions of integro-differential
equations, we follow a scheme where the optimal stopping problem for a
jump-diffusion is proven to be the limit of a recursively defined sequence of
optimal stopping problems for a diffusion. This scheme appears for the first
time in [9], see also [1], [5], and [16]. In comparison with these references,
additional technical difficulties arise in our setting due to the unboundedness
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of the pay-off function. As a third contribution, we also provide compara-
tive static properties of the value function and the optimal liquidation level.
In particular, we show that the optimal liquidation level exhibits monotone
dependencies on the volatility of the asset, on the intensity with which the
momentum disappears, on the initial drift and on the probability that a
given external shock in fact coincides with the change point of the drift.

In Section 2 we set up the model, we formulate the problem of optimal mo-
mentum liquidation under partial information, and we present Theorem 2.1
which describes the optimal strategy. In Section 3 we apply filtering tech-
niques and a change of measure to show that the liquidation problem under
partial information can be reduced to an auxiliary optimal stopping problem
with complete information for a jump-diffusion. This auxiliary problem is
treated in Sections 4-6, where we show that the optimal stopping problem
for the jump-diffusion can be solved by iterating an optimal stopping prob-
lem for a diffusion process, thereby completing the proof of Theorem 2.1. In
Section 7 we show that the rate of convergence in the iterative procedure is
exponential, and, finally, in Section 8 we study parameter dependencies of
the momentum value and of the optimal strategy.

2. The model and the optimal liquidation problem

Let N be a Poisson process with intensity λ/p, and let T1, T2, ... be the
sequence of jump times of N . Here λ > 0 and p ∈ (0, 1]. Moreover, let
T0 = 0 and θ be a random variable taking values in the set {T0, T1, T2, ...}
such that P(θ = 0) = π and P(θ = Ti|θ > 0) = p(1 − p)i−1, i = 1, 2, ...
for some constant π ∈ [0, 1). Next, let W be a Brownian motion which
is independent of N and θ. The asset price process X is modeled by a
geometric Brownian motion with a drift that drops from µ2 to µ1 at time θ.
More precisely,

(1) dXt = µ(t)Xt dt+ σXt dWt

and X0 = x > 0, where

µ(t) = µ2 − (µ2 − µ1)I(t ≥ θ).

Here µ1, µ2 and σ > 0 are constants with µ1 < µ2. Denote by F =
(Ft)t∈[0,∞) the filtration generated by X and N , and note that F is strictly
contained in the filtration G = (Gt)t∈[0,∞) generated by X, N and θ.

Now, let T be the set of (possibly infinite) F-stopping times. We consider
the optimal stopping problem

(2) V = sup
τ∈T

E
[
e−rτXτ

]
,

where the discount rate r ≥ 0 is a given constant satisfying µ1 < r < µ2.
Here (and in other similar situations below) we use the convention that
e−rτXτ = 0 on the event {τ =∞}.

Before proceeding, we first make a few comments on the model:
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• Without the condition µ1 < r < µ2, the optimal stopping problem
in (2) would degenerate. Indeed, if µ1 < µ2 ≤ r, then V = x
and the supremum would be obtained for τ = 0. If, on the other
hand, r ≤ µ1 < µ2, then the supremum would be obtained along the
sequence τn = n of deterministic stopping times.
• The change point θ satisfies P(θ = Tj+i|θ > Tj) = P(θ = Ti|θ > 0) =
p(1− p)i−1. In particular, P(θ = Tj+1|θ > Tj) = P(θ = T1|θ > 0) =
p. Moreover, the distribution of θ conditional on θ > 0 is exponential
with parameter λ.
• For p = 1 and π = 0 we have a case with complete information. The

change-point θ then satisfies θ = T1, which is an F-stopping time.
Consequently, the value V can be calculated explicitly as

V = E
[
e−rθXθ

]
= x

∫ ∞
0

e(µ2−r)tλe−λt dt

=

{
xλ/(λ+ r − µ2) if µ2 < r + λ
∞ if µ2 ≥ r + λ.

Henceforth we exclude this case and always assume p ∈ (0, 1).
• Consider the other extreme, that is the limit as p↘ 0. Now the fact

that θ coincides with a jump time of N provides no information, and
we obtain a case where the change-point is completely unobservable
and occurs with intensity λ. This is precisely the situation studied
in [7].
• Even though the model is specified so that the change-point only

can take values in the set {0, T1, T2, ...}, there is no such restriction
on the stopping times in (2). In fact, the optimal stopping time will
not take values in this set only, compare Theorem 2.1 below.
• One could also interpret X as the price of a bubble, which bursts at

time θ.
• A straightforward extension of the above model would be to consider

a situation in which the external shocks have different magnitudes,
thus resulting in different probabilities that the change-point hap-
pens at a particular jump time. Mathematically, one could for exam-
ple allow for a dependence on a label z in p, thus replacing the con-
stant parameter p by a function p : [0, 1] → (0, 1), and then replace
the Poisson process Nt with a Poisson random measure N(dt, dz)
on [0,∞) × [0, 1] with intensity measure λdt∫ 1

0 p(y) dy
dz. In this way,

external shocks are labeled by z ∈ [0, 1], and the probability (given
that the drift is still µ2) that an external shock results in a drop of
the drift is p(z). However, for the sake of simplicity we refrain from
this extension.
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Figure 1. A simulated path of the stock price process Xt,
along with the corresponding optimal exercise boundary as
described in (3). In this simulation, the change-point coin-
cides with the third jump of the Poisson process.

To describe the optimal strategy, define random variables {ΦTk}∞k=0 in-
ductively by setting ΦT0 = π/(1− π) and

ΦTk+1
=

p

1− p
+

ΦTk

1− p

(
XTk

XTk+1

e
−σ2+µ1+µ2

2
(Tk+1−Tk)

)ω/σ
,

k ≥ 0. Note that ΦTk is FTk -measurable. Therefore the random time

τB := inf{t ≥ 0 : Xt ≤ XTk(ΦTk/B)σ/ωe
µ1+µ2−σ

2

2
(t−Tk)(3)

and t ∈ [Tk, Tk+1) for some k ≥ 0}

is an F-stopping time for each fixed constant B > 0.

Theorem 2.1. There exists a B > 0 such that τB defined in (3) is an
optimal stopping time in (2).

Theorem 2.1 is proven in Sections 3-6 below. We also show how to deter-
mine B.

3. Filtering techniques and a reduction of dimensions

In this section we apply filtering techniques from [16] to write the one-
dimensional optimal stopping problem under partial information as a two-
dimensional optimal stopping problem with complete information. More-
over, we show that the Girsanov theorem then can be used to reduce the
number of spatial dimensions so that we arrive at a one-dimensional auxil-
iary optimal stopping problem with complete information.
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Define the probability process Π by

(4) Πt = P(θ ≤ t|Ft),

and note that Π0 = π. Then

(5) dΠt = p(1−Πt) dNt − ωΠt(1−Πt) dW̄t,

where

ω := (µ2 − µ1)/σ

and the innovations process W̄t is a P-Brownian motion with respect to Ft
given by

dW̄t =
dXt

σXt
− 1

σ
(Πtµ1 + (1−Πt)µ2) dt(6)

=
1

σ
(µ(t)−Πtµ1 − (1−Πt)µ2) dt+ dWt,

see [16]. In terms of W̄ we have

(7) dXt = (Πtµ1 + (1−Πt)µ2)Xt dt+ σXt dW̄t.

Furthermore, if the likelihood ratio Φ is defined as

Φt :=
Πt

1−Πt
,

then Φ0 = φ := π/(1− π) and Ito’s formula gives that

(8) dΦt =
p

(1− p)
(1 + Φt) dNt + ω2ΠtΦt dt− ωΦt dW̄t.

We let Q be the unique probability measure such that dQ/dP coincides with

Mt := exp

{
−1

2

∫ t

0
(σ + ωΠs)

2 ds+

∫ t

0
(σ + ωΠs) dW̄s

}
exp {λt} (1− p)Nt

on Gt for 0 ≤ t < ∞ (such a measure can be found provided the Brownian
motion W is defined as the coordinate mapping process on C([0,∞)) using
Wiener measure, see [12, Corollary 3.5.2 and the discussion preceding it];
for a similar construction under incomplete information, see Section 3.2 in
[6]). Then the process Z defined by

dZt = (σ + ωΠt) dt− dW̄

is a {Q,F}-Brownian motion. Furthermore, the Poisson process N is inde-
pendent of Z under Q, it has Q-intensity λ(1− p)/p, and

dΦt =
p

1− p
(1 + Φt) dNt − ωσΦt dt+ ωΦt dZt.

Proposition 3.1. Let τ be an F-stopping time. Then

E
[
e−rτXτ

]
=

x

1 + φ
EQ
[
e(µ2−λ−r)τ (1 + Φτ )

]
.
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Proof. Define the process η by ηt = 1/Mt. Then, by Ito’s formula,

dηt
ηt

= −λ dt+ (σ + ωΠt) dZt +
p

1− p
dNt.

Next, consider the process

Kt :=
x(1 + Φt)e

(µ2−λ)t

(1 + φ)Xt
.

Then K0 = η0 = 1, and another application of Ito’s formula yields

dKt

Kt
= −λ dt+ (σ + ωΠt) dZt +

p

1− p
dNt =

dηt
η
.

Consequently, ηt = Kt, and the result follows. �

It follows from Proposition 3.1 that

V =
x

1 + φ
U,

where

(9) U = sup
τ∈T

EQ
[
e(µ2−λ−r)τ (1 + Φτ )

]
.

Moreover, a stopping time is optimal in (9) if and only if it is optimal in (2).
In Sections 4-6 below we show that there exists an optimal stopping time in
(9) (hence also in (2)) of the form

(10) τB = inf{t ≥ 0 : Φt ≥ B}

for some constant B.
We end this section by showing how the likelihood ratio Φ and the stock

price process X are related. As a consequence, the optimal stopping time
τB can be expressed in terms of X.

Proposition 3.2. We have Φ0 = ΦT0 = π/(1− π) and

Φt =


ΦTk

(
XTk
Xt

e
µ1+µ2−σ

2

2
(t−Tk)

)ω/σ
t ∈ [Tk, Tk+1)

p
1−p +

ΦTk
1−p

(
XTk
XTk+1

e
µ1+µ2−σ

2

2
(Tk+1−Tk)

)ω/σ
t = Tk+1.

Proof. Between two jump times Tk and Tk+1 we have

Xt = XTk exp

{∫ t

Tk

(µ2 − σωΠs − σ2/2) ds+ σ(W̄t − W̄Tk)

}
and

Φt = ΦTk exp

{∫ t

Tk

(ω2Πs − ω2/2) ds− ω(W̄t − W̄Tk)

}
by (7) and (8). From this it is straightforward to check the result for t ∈
[Tk, Tk+1).
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Next, note that at a jump time t = Tk+1 we have by (8) that

ΦTk+1
= ΦTk+1− +

p

1− p
(1 + ΦTk+1−).

Consequently, the result for t = Tk+1 also holds. �

Remark. It follows from Proposition 3.2 that τB in (3) and τB in (10)
coincide.

4. The optimal stopping problem with jumps

In this section we study the optimal stopping problem (9). To embed it
into a Markovian framework, let

(11) U(φ) = sup
τ

EQ
φ

[
e(µ2−λ−r)τ (1 + Φτ )

]
,

where

(12) dΦt =
p

1− p
(1 + Φt) dNt − ωσΦt dt+ ωΦt dZt

and where the subindex of the expectation operator indicates that Φ0 = φ,
and N is a Poisson process with Q-intensity λ(1−p)/p. If µ2−λ−r ≥ 0, then
U = ∞ (the supremum is attained along a sequence τn := inf{t : Φt ≥ n}
of hitting times of the level n). In the remainder of this article we treat the
case µ2 − λ− r < 0.

Associated with the optimal stopping problem (11) is the integro-differential
operator L defined by

Lg(φ) =
ω2φ2

2
g′′(φ)− ωσφg′(φ) + (µ2 − r − λ)g(φ)

+λ
1− p
p

(g(S(φ))− g(φ))

=
ω2φ2

2
g′′(φ)− ωσφg′(φ) + (µ2 − r − λ/p)g(φ) + λ

1− p
p

g(S(φ)),

where

S(φ) =
p+ φ

1− p
.

Note that
L(1 + φ) = µ2 − r − (r − µ1)φ

which is positive if φ < B̂ := (µ2 − r)/(r − µ1) and negative if φ > B̂.
This observation, together with the time-homogeneity of the optimal stop-
ping problem (11), suggests the existence of some barrier B ≥ B̂ such that
stopping the first instant the process Φ exceeds B is optimal. In fact, we
have the following verification theorem. The proof follows along standard
lines and is therefore somewhat sketchy.

Theorem 4.1. (Verification result for the problem with jumps.)
Assume that F ∈ C([0,∞)) ∩C1((0,∞)) ∩C2((0,∞) \ {B}) for some point

B ∈ (B̂,∞). Further assume that
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i) φF ′(φ) is bounded on (0, B);
ii) F ≥ 1 + φ, with equality if φ ≥ B;

iii) LF = 0 on (0, B).

Then F = U , where U is defined in (11). Furthermore, τB := inf{t ≥ 0 :
Φt ≥ B} is an optimal stopping time.

Proof. Let τ be a stopping time. By Ito’s formula for jump-diffusions,

e(µ2−λ−r)(t∧τ)F (Φt∧τ ) = F (φ) +

∫ t∧τ

0
e(µ2−λ−r)sLF (Φs)1{Φs 6=B} ds+Mt∧τ ,

where M is a martingale by i). Using ii) and iii) we find that

EQ
φ

[
e(µ2−λ−r)(t∧τ)(1 + Φt∧τ )

]
≤ EQ

φ

[
e(µ2−λ−r)(t∧τ)F (Φt∧τ )

]
≤ F (φ).

It then follows from Fatou’s lemma and the arbitrariness of τ that

U(φ) = sup
τ

EQ
φ

[
e(µ2−λ−r)τ (1 + Φτ )

]
≤ F (φ).

To prove the reverse inequality, note that the inequalities in the analysis
above reduce to equalities if τ = τB (instead of Fatou’s lemma one applies
the bounded convergence theorem), which shows that

F (φ) = EQ
φ

[
e(µ2−λ−r)τB (1 + ΦτB )

]
≤ U(φ).

It follows that U = F , and τB is an optimal stopping time. �

In view of Theorem 4.1, the optimal stopping problem (11) is reduced to
solving a free boundary problem for an integro-differential equation. Due
to the integral term in the equation, there seems to be little hope of finding
an explicit solution. Below we instead find a solution of the free boundary
problem using a fixed point approach.

5. The building block: An optimal stopping problem without
jumps

To treat the optimal stopping problem (11), involving a jump-diffusion
Φ, we use the technique of writing the value function U as the limit of
a sequence of value functions for optimal stopping problems involving a
diffusion process ([9], see also [1], [5] and [16]). In this section we provide a
detailed study of the basic building block in this iterative procedure.

Let Y be a geometric Brownian motion satisfying

dYt = −ωσYt dt+ ωYt dZt.

Given a non-negative function f : [0,∞) → [0,∞), define Jf : [0,∞) →
[0,∞) by
(13)

Jf(y) = sup
τ

EQ
y

[
e(µ2−r−λ/p)τ (1 + Yτ ) +

λ(1− p)
p

∫ τ

0
e(µ2−r−λ/p)sf(S(Ys)) ds

]
,
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where S(y) = p+y
1−p , and the supremum is taken over stopping times with

respect to the filtration generated by the Q-Brownian motion Z.

Remark. According to standard optimal stopping theory, one expects the
value function u(y) := Jf(y) to satisfy the variational inequality

0 = min{−Au− λ(1− p)
p

f(S(y)), u− (1 + y)},

where

Au :=
ω2y2

2
u′′ − ωσyu′ + (µ2 − r − λ/p)u.

Note that if u is a fixed point of J , i.e. if Ju = u, then

0 = min{−Au− λ(1− p)
p

u(S(y)), u− (1 + y)}

= min{−Lu, u− (1 + y)},

which is the variational inequality corresponding to the problem with jumps
of the previous section, compare Theorem 4.1. This observation suggests a
connection between a fixed point of the operator J and the optimal stopping
problem (11).

Definition 5.1. Let F be the set of convex and non-decreasing functions
f : [0,∞)→ [0,∞) such that 1+y ≤ f(y) ≤ C+y, where C = λ/(λ+r−µ2).

Below we study the operator J acting on functions f belonging to the
class F. First note that if f ∈ F, then the function

l(y) := A(1 + y) +
λ(1− p)

p
f(S(y))(14)

= (µ1 − r − λ/p)y + µ2 − r − λ/p+
λ(1− p)

p
f(S(y))

is convex and satisfies

l(0+) = µ2 − r − λ/p+
λ(1− p)

p
f(p/(1− p)) ≥ µ2 − r > 0

and

lim
y→∞

l(y)

y
= µ1 − r < 0.

Consequently, l(y) > 0 if and only if y < b̂, where b̂ is the unique positive

solution of l(y) = 0. This indicates the existence of a barrier b ≥ b̂ such that
the first passage time

τb := inf{t ≥ 0 : Yt ≥ b}

is an optimal stopping time in (13). The following verification result is a
standard result in optimal stopping theory, and it can be proved along the
same lines as Theorem 4.1. We therefore omit the details.
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Theorem 5.2. (Verification result for the problem without jumps.)
Let f ∈ F, and assume that H ∈ C([0,∞)) ∩ C1((0,∞)) ∩ C2((0,∞) \ {b})
for some point b ∈ (b̂,∞). Further assume that

i) yHy is bounded on (0, b);
ii) H ≥ 1 + y, with equality if y ≥ b;

iii) AH + λ(1−p)
p f(S(y)) = 0 on (0, b).

Then H = Jf , where Jf is defined in (13). Furthermore, τb = inf{t ≥ 0 :
Yt ≥ b} is an optimal stopping time.

We now aim at constructing a function H satisfying the conditions of
Theorem 5.2 for a given f ∈ F. To do this, let γ1 < 0 and γ2 > 1 be the
negative and the positive root of the quadratic equation

γ2 − (1 + 2σ/ω)γ + 2(µ2 − r − λ/p)/ω2 = 0,

respectively, and define

ϕ(y) = yγ1 and ψ(y) = yγ2 .

Then ψ and ϕ are solutions of Au = 0. Moreover, ψ (ϕ) is, up to multiplica-
tion with positive constants, the unique increasing (decreasing) and positive
solution, compare pages 18-19 in [3]. For a fixed b ∈ (0,∞), define Hb by

Hb(y) = ϕ(y)

∫ y

0

2λ(1− p)f(S(z))

pω2(γ2 − γ1)zϕ(z)
dz(15)

+ψ(y)

(
1 + b

ψ(b)
+

∫ b

y

2λ(1− p)f(S(z))

pω2(γ2 − γ1)zψ(z)
dz − ϕ(b)

ψ(b)

∫ b

0

2λ(1− p)f(S(z))

pω2(γ2 − γ1)zϕ(z)
dz

)
for y < b and Hb(y) = 1 + y for y ≥ b. It is straightforward to check that
Hb : (0,∞) → (0,∞) is continuous, that it has a finite limit at 0, and that

AHb+
λ(1−p)

p f(S(y)) = 0 on (0, b). To find b so that the smooth fit condition

Hb ∈ C1 is satisfied, note that the left derivative at y = b is given by

H ′b(b) = ϕy(b)

∫ b

0

2λ(1− p)f(S(z))

pω2(γ2 − γ1)zϕ(z)
dz(16)

+ψy(b)

(
1 + b

ψ(b)
− ϕ(b)

ψ(b)

∫ b

0

2λ(1− p)f(S(z))

pω2(γ2 − γ1)zϕ(z)
dz

)
= γ2

1 + b

b
− ϕ(b)

b

∫ b

0

2λ(1− p)f(S(z))

pω2zϕ(z)
dz,

where we in the second equality used ϕψy − ϕyψ = (γ2 − γ1)ϕψ/y. Con-
sequently, Hb satisfies the smooth fit relation H ′b = 1 at y = b precisely
if

γ2 + (γ2 − 1)b− ϕ(b)

∫ b

0

2λ(1− p)f(S(z))

pω2zϕ(z)
dz = 0,

or, equivalently, if

(17)

∫ b

0

l(z)

zϕ(z)
dz = 0,
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where l is defined in (14).

Lemma 5.3. Let f ∈ F. Then the free boundary equation (17) has a unique

solution b ∈ (0,∞). Moreover, this solution satisfies b > b̂ ≥ B̂, where b̂ is

the unique positive solution of l(b̂) = 0.

Proof. First note that

l(B̂) =
λ(1− p)

p
f(S(

µ2 − r
r − µ1

))− (r − µ1 + λ/p)
µ2 − r
r − µ1

−(r − µ2 + λ/p) ≥ 0,

where the inequality follows using f(z) ≥ 1 + z. This proves that b̂ ≥ B̂.
Next, consider the function h : (0,∞)→ R defined by

h(y) =

∫ y

0

l(z)

zϕ(z)
dz,

compare (17). Then h(0+) = 0, and h is strictly increasing on (0, b̂) and

strictly decreasing on (b̂,∞). Moreover,

h′(y) =
l(y)

yϕ(y)
∼ −(r − µ0)

ϕ(y)

for large y, so the slope of h tends to −∞. This proves the existence and
uniqueness of a solution of (17). Moreover, this solution is larger than b̂. �

Remark. Note that the function h is increasing in f , and therefore also b
is increasing in f . Consequently, lower and upper bounds for b are obtained
by plugging in the the lower and upper bounds 1 + y and C + y for f .
Straightforward calculations show that h satisfies

h(y) ≥
∫ y

0
(µ2 − r − (r − µ1)z)

1

zϕ(z)
dz

=

(
µ2 − r
−γ1

− r − µ1

1− γ1
y

)
1

ϕ(y)

and

h(y) ≤
∫ y

0
(µ2 − r + (C − 1)λ(1− p)/p− (r − µ1)z)

1

zϕ(z)
dz

=

(
(µ2 − r)(r + λ/p− µ2)

−γ1(r + λ− µ2)
− r − µ1

1− γ1
y

)
1

ϕ(y)
.

Hence b satisfies the inequalities

(1− γ1)(µ2 − r)
−γ1(r − µ1)

≤ b ≤ (1− γ1)(µ2 − r)(r + λ/p− µ2)

−γ1(r − µ1)(r + λ− µ2)
.

Theorem 5.4. Let f ∈ F be given, let b be the unique solution of (17), and
let H := Hb. Then Jf ≡ H.



MOMENTUM LIQUIDATION UNDER PARTIAL INFORMATION 13

Proof. To apply the verification result Theorem 5.2 we need to check that
the conditions of that theorem are fulfilled. Note that condition iii) clearly
holds, and that b is chosen so that the C1 assumption is satisfied. It remains
to verify conditions i) and ii).

We have

H ′(y) = ϕ′(y)

∫ y

0

2λ(1− p)f(S(z))

pω2(γ2 − γ1)zϕ(z)
dz

+ψ′(y)

(
1 + b

ψ(b)
+

∫ b

y

2λ(1− p)f(S(z))

pω2(γ2 − γ1)zψ(z)
dz − ϕ(b)

ψ(b)

∫ b

0

2λ(1− p)f(S(z))

pω2(γ2 − γ1)zϕ(z)
dz

)
,

and it is straightforward to check that

(18) |H ′(y)| ≤ D/y

for small y and some constant D, thus verifying condition i).
We next claim that ii) holds, i.e. H = Hb satisfies H(y) ≥ 1 + y. To see

this, note that H ′(b) = 1 and

ω2b2

2
H ′′(b−) = ωσbH ′(b)− (µ2 − r − λ/p)H(b)− λ(1− p)

p
f(S(b))

= −(µ1 − r − λ/p)b− (µ2 − r − λ/p)−
λ(1− p)

p
f(S(b))

= −l(b) > 0

since b > b̂ by Lemma 5.3. Consequently, H(y) > 1 + y in some left neigh-
borhood (b− ε, b) of b. Now, let a ∈ (0, b) be the largest point below b such
that H(a) = 1 + a and H(y) > 1 + y for y ∈ (a, b). Then H coincides with
the function Ha on (0, a]. Therefore H ′(a) = H ′a(a−) < 1 since a < b, which
contradicts H(y) > 1 + y for y ∈ (a, b). Consequently, the point a does not
exist, so H(y) > 1 + y for y ∈ (0, b). Thus H(y) ≥ 1 + y. �

Remark. Alternatively, to prove that H(y) > 1 + y for y ∈ (0, b) one could
try to verify that H is convex by direct computations (it is indeed convex,
compare below). However, this seems technically more demanding.

Proposition 5.5. Assume that f ∈ F. Then also Jf belongs to F.

Proof. It follows by choosing τ = 0 in (13) that Jf(y) ≥ 1 + y. Next, define

f̂(y) = C + y, where C is as in Definition 5.1, and let

û(y) = sup
τ

EQ
y

[
e(µ2−r−λ/p)τ f̂(Yτ ) +

λ(1− p)
p

∫ τ

0
e(µ2−r−λ/p)sf̂(S(Ys)) ds

]
.

Since C ≥ 1 and f ∈ F, Jf ≤ û. On the other hand,

Af̂ +
λ(1− p)

p
f̂(S(y)) = (µ1 − r)y + (µ2 − r − λ)C + λ ≤ 0,

so it is straightforward to show, using similar arguments as when proving the
verification results above, that û(y) = f̂(y). Consequently, Jf(y) ≤ C + y.
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Finally, for a fixed stopping time τ , the expression

EQ
y

[
e(µ2−r−λ/p)τ (1 + Yτ ) +

λ(1− p)
p

∫ τ

0
e(µ2−r−λ/p)sf(S(Ys)) ds

]
is convex and non-decreasing in y since Yt has a linear dependence on the
initial point. Being the supremum of such functions, H is also convex and
non-decreasing. �

6. The fixed point approach

We have shown above (see Theorem 5.4) that, for a given f ∈ F, Jf can
be determined on a semi-explicit form. Moreover, the operator J maps F
into F, i.e. if f ∈ F, then Jf ∈ F (Proposition 5.5). This allows us to define
fn recursively by {

f0(y) = 1 + y
fn+1(y) = Jfn(y) n ≥ 0.

We also let bn, n ≥ 1, be the solution of the free boundary equation (17)
with f = fn−1. First note that the sequence {fn}∞n=0 is increasing in n.
Indeed,

f1(y) = Jf0(y) ≥ 1 + y = f0(y)

by choosing τ = 0 in the definition of Jf0. Moreover, if fn ≥ fn−1, then

fn+1(y) = Jfn(y)

= sup
τ

EQ
y

[
e(µ2−r−λ/p)τ (1 + Yτ ) +

λ(1− p)
p

∫ τ

0
e(µ2−r−λ/p)sfn(S(Ys)) ds

]
≥ sup

τ
EQ
y

[
e(µ2−r−λ/p)τ (1 + Yτ ) +

λ(1− p)
p

∫ τ

0
e(µ2−r−λ/p)sfn−1(S(Ys)) ds

]
= Jfn−1(y) = fn(y).

Consequently, fn is increasing in n by induction. It follows that also bn is
increasing in n.

We denote by f∞ the point-wise limit of the sequence fn, and by b∞
the point-wise limit of bn. Being the supremum of a sequence of convex
functions, f∞ is also convex. Also note that f∞ ∈ F.

Proposition 6.1. The function f∞ is a fixed point for the operator J .

Proof. We have

f∞(y) = sup
n
fn(y)

= sup
τ,n

EQ
y

[
e(µ2−r−λ/p)τ (1 + Yτ ) +

λ(1− p)
p

∫ τ

0
e(µ2−r−λ/p)tfn−1(S(Yt)) dt

]
= sup

τ
EQ
y

[
e(µ2−r−λ/p)τ (1 + Yτ ) +

λ(1− p)
p

∫ τ

0
e(µ2−r−λ/p)tf∞(S(Yt)) dt

]
= Jf∞(y),
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Figure 2. The convergence of the value functions f0 − f20,
with parameters µ1 = −0.8, µ2 = 0.8, r = 0.05, λ = 1, σ = 1
and p = 0.3.

where the third equality follows by monotone convergence. Thus f∞ is a
fixed point for J . �

Lemma 6.2. The limit b∞ = limn→∞ bn is the unique solution of (17) for
f = f∞.

Proof. Let ln be as in (14) for f = fn−1. We have∫ b∞

0

ln(z)

zϕ(z)
dz =

∫ bn

0

ln(z)

zϕ(z)
dz +

∫ b∞

bn

ln(z)

zϕ(z)
dz =

∫ b∞

bn

ln(z)

zϕ(z)
dz → 0

as n→∞ since 0 ≤ b∞ − bn → 0 and ln is bounded on compacts uniformly
in n. On the other hand, by monotone convergence,∫ b∞

0

ln(z)

zϕ(z)
dz →

∫ b∞

0

l∞(z)

zϕ(z)
dz,

where l∞ is defined as in (14) with f = f∞. Consequently,∫ b∞

0

l∞(z)

zϕ(z)
dz = 0,

which finishes the proof. �

Corollary 6.3. The value function U defined in (11) satisfies U = f∞.
Moreover, let B := b∞. Then τB is an optimal stopping time in (11).

Proof. This follows from the verification result Theorem 4.1. �

Remark. In view of Proposition 3.1, τB is an optimal stopping time for the
liquidation problem (2). Moreover, the value V satisfies V = x

1+φf∞(φ).
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Figure 3. The process Φt corresponding to the simulated
path in Figure 1. The parameters are µ2 = 0.25, µ1 = −0.15,
r = 0, λ = 1.5, p = 0.3 and σ = 0.4, which yield B = 2.48.

Remark. It is straightforward to check that the operator J is a contraction
on the space of continuous functions f such that 1 + y ≤ f(y) ≤ C + y
equipped with the supremum distance. Consequently, the fixed-point f∞
is unique by the Banach fixed point theorem, and we could start the iter-
ation with any element f0 ∈ F. The choice f0 = 1 + y (or f0 = C + y)
seems convenient since fn then forms an increasing (decreasing) sequence.
Moreover, the choice f0 = 1 + y is natural since fn in that case equals the
value function in the optimal stopping problem if stopping is restricted to
the time interval [0, Tn].

7. Rate of convergence

In this section we study the rate of convergence for the iterative procedure
above. We show that both the convergence fn → f∞ and bn → b∞ are
exponential.

Theorem 7.1. We have

0 ≤ fn+1 − fn ≤
µ2 − r

λ/p+ r − µ2
εn(19)

for all n ≥ 0, where ε = λ(1−p)
λ+rp−µ2p . Consequently,

fn ≤ f∞ ≤ fn +
µ2 − r

λ+ r − µ2
εn(20)

holds for all n ≥ 0.
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Proof. To prove (19) we use an induction argument. First note that

A(D + y) +
λ(1− p)

p
f0(S(y)) = (µ1 − r)y +D(µ2 − r − λ/p) + λ/p ≤ 0

holds for D = λ
λ+rp−µ2p . From similar arguments as in the verification

results above it then follows that f1(y) = Jf0(y) ≤ λ
λ+rp−µ2p + y and hence

f1(y)− f0(y) ≤ µ2−r
λ/p+r−µ2 . Consequently (19) holds for n = 0. Now assume

(19) holds for some n ≥ 0. Then

fn+2(y)− fn+1(y)

≤ sup
τ

Ey
[
λ(1− p)

p

∫ τ

0
e(µ2−r−λ/p)t (fn+1 − fn) (S(Yt)) dt

]
≤ µ2 − r

λ/p+ r − µ2
εn
λ(1− p)

p

∫ ∞
0

e(µ2−r−λ/p)t dt

=
µ2 − r

λ/p+ r − µ2
εn+1,

so (19) holds for all n ≥ 0 by induction.
Finally, note that

f∞ − fn =
∞∑
k=n

fk+1 − fk ≤
∞∑
k=n

µ2 − r
λ/p+ r − µ2

εk =
µ2 − r

λ+ r − µ2
εn,

so (20) is a consequence of (19). �

Remark. Note that ε = λ(1−p)
λ+rp−µ2p < 1. Consequently, the sequence fn

converges uniformly to f∞, and the rate of convergence is exponential.

We now prove a corresponding result for the optimal boundaries bn.

Theorem 7.2. (Rate of convergence of bn to b∞.) The inequality

0 ≤ bn+1 − bn ≤ Kεn(21)

holds for all n ≥ 1, where K = (1−γ1)(µ2−r)(r+λ/p−µ2)
−γ1(r−µ1)(r+λ−µ2) . Consequently,

(22) bn ≤ b∞ ≤ bn +
Kεn

1− ε
.

Proof. For n ≥ 1, define (compare the proof of Lemma 5.3)

ln(z) = (µ1 − r − λ/p)z + µ2 − r − λ/p+
λ(1− p)

p
fn−1(S(z)),

and

hn(y) =

∫ y

0

ln(z)

zϕ(z)
dz.

With this notation we have hn(bn) = hn+1(bn+1) = 0, and by the properties
of hn we have bn+1−bn ≥ 0 so the first inequality in (21) follows immediately.
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Figure 4. The convergence of the optimal boundaries b1 to
b20, for the same parameter values as in Figure 2.

Take y ∈ [bn, bn+1] and observe that for such a y we have fn(S(y)) =
1 + S(y) = (1 + y)/(1− p). Therefore

ln+1(y) = (µ1 − r)y + µ2 − r,
so

ln+1(y) ≤ ln+1(bn) = (µ1 − r)bn + µ2 − r ≤ 0

since bn ≥ B̂. Consequently,

h′n+1(y) =
ln+1(y)

yϕ(y)
≤ −(r + (r − µ1)bn − µ2)

bn+1ϕ(bn)
.(23)

Furthermore,

0 ≤ hn+1(bn) = hn+1(bn)− hn(bn)

=
λ(1− p)

p

∫ bn

0

fn(S(y))− fn−1(S(y))

yϕ(y)
dy

≤ λ(1− p)
p

µ2 − r
λ/p+ r − µ2

εn−1

∫ bn

0
y−1−γ1dy

=
(µ2 − r)εn

−γ1

1

ϕ(bn)
,

where the second inequality follows from (19). This, combined with (23)
and the bounds for bn and bn+1 determined in the remark after Lemma 5.3,
yields

0 ≤ bn+1 − bn ≤
(µ2 − r)εn

−γ1

bn+1

−(r + (r − µ1)bn − µ2)
≤ Kεn.

This finishes the proof of (21).
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Finally,

b∞ − bn =

∞∑
k=n

bk+1 − bk ≤ K
∞∑
k=n

εk = K
εn

1− ε
,

which proves (22). �

8. Parameter dependencies

It is intuitively clear that the value V is decreasing in the initial proba-
bility π, in the jump rate λ and increasing in the parameter p. Moreover, a
large volatility σ gives large (trendless) fluctuations of X, thereby making
inference about the drift more noisy, so V should be decreasing in σ. Sim-
ilarly, increasing µ2 gives a larger drift as well as widens the gap between
the drifts, so inference is faster and the value should then be increasing in
µ2. Finally, increasing µ1 gives on one hand a larger drift, but on the other
hand a slower inference, so the dependence on µ1 is not a priori clear.

In the current section we confirm the above intuitive statements about
π, λ, p, σ and µ2. As indicated above, we do not know whether there is a
monotone dependence on µ1.

Theorem 8.1. The value V is non-increasing in π, in the volatility σ and
in the jump rate λ, and it is non-decreasing in the initial drift µ2 and in the
parameter p. Consequently, the optimal liquidation level B is non-increasing
in σ and λ and non-decreasing in µ2 and p.

Proof. First note that U ≥ 1+φ and U ′ ≤ 1 imply (1+φ)U ′(φ)−U(φ) ≤ 0.
Therefore it follows from the relation V = x

1+φU that

∂V

∂φ
= x

∂

∂φ

U(φ)

1 + φ
= x

(1 + φ)U ′(φ)− U(φ)

(1 + φ)2
≤ 0.

Since π = φ
1+φ is increasing in φ, V is non-increasing also as a function of π.

Now, let σ2 ≥ σ1 > 0, λ1 ≤ λ2, µ2,1 ≥ µ2,2 and p1 ≥ p2, and let
Ui, Bi,Li, i = 1, 2 be the corresponding value functions, optimal exercise
boundaries and linear operators, respectively. Also let ωi = (µ2,i − µ1)/σi,
and note that ω1 ≥ ω2. For φ < B2 we have

L1U2(φ) = L2U2(φ) + L1U2(φ)− L2U2(φ)

=
(ω2

1 − ω2
2)

2
φ2U ′′2 (φ) + (µ2,1 − µ2,2)(U2(φ)− φU ′2(φ))

+(
λ2

p2
− λ1

p1
)U2(φ) + λ1

1− p1

p1
U2(

p1 + φ

1− p1
)− λ2

1− p2

p2
U2(

p2 + φ

1− p2
)

≥ 0,

where we used L2U2(φ) = 0, the convexity of U2, U ′2 ≤ 1 and U2 ≥ 1 + φ.
Now, let Φ be the solution of (12) with σ = σ1, λ = λ1, µ2 = µ2,1 and

p = p1, and let τB2 = inf{t ≥ 0 : Φt ≥ B2} be the first passage time over
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Figure 5. U(0) plotted as a function of p. The other pa-
rameter values are as in Figure 2. In the limit as p→ 0, the
case of incomplete information, as studied in [7], is obtained.

B2. By Ito’s formula,

e(µ2,1−λ1−r)(t∧τB2
)U2(Φt∧τB2

) = U2(φ)+

∫ t∧τB2

0
e(µ2,1−λ1−r)sL1U2(Φs) ds+Mt,

where Mt is a martingale (compare the proof of Theorem 4.1). It follows
that

U2(φ) ≤ EQ
φ

[
e(µ2,1−λ1−r)τB2U2(ΦτB2

)
]

= EQ
φ

[
e(µ2,1−λ1−r)τB2 (1 + ΦτB2

)
]
≤ U1(φ).

Consequently, U (hence also V ) exhibits the claimed monotone dependen-
cies.

The indicated dependencies for the optimal liquidation level B now follow
immediately since B = inf{φ > 0 : U(φ) = 1 + φ}. �
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