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Abstract. Pairs trading is a common strategy used by hedge funds.
When the spread between two highly correlated assets is observed to
deviate from historical observations, a long position is taken in the un-
derpriced asset and a short position in the overpriced one. If the spread
narrows, both positions are closed, thus generating a profit. We study
when to optimally liquidate a pairs trading strategy when the difference
between the two assets is modeled by an Ornstein-Uhlenbeck process.
We also provide a sensitivity analysis in the model parameters.

1. Introduction

Consider a pair of assets having price processes with a difference fluctuat-
ing about a given level. A typical example is stocks of two companies in the
same area of business. If the spread between the two price processes at some
point widens, then one of the assets is underpriced relative to the other one.
An investor wanting to benefit from this relative mis-pricing may invest in
a pairs trade, i.e. the investor buys the (relatively) underpriced asset and
takes a short position in the (relatively) overpriced one. When the spread
narrows again, the position is liquidated and a profit is made. Note that
the holder of a pairs trade is not exposed to market risk but instead tries to
benefit from relative price movements, thus making pairs trade a common
hedge fund strategy.

The literature on trading strategies used by hedge funds seems to be
somewhat limited compared to its practical significance. However, there are
a number of recent books that treat the applied aspects of pairs trading, see
[1], [5] and [6]; for a historical evaluation of pairs trading, see also [3]. The
authors of [2] model pair spreads as mean reverting Gaussian Markov chains
observed in Gaussian noise. Our approach is the continuous time analogue
of this since we use mean-reverting Ornstein-Uhlenbeck processes to model
the spread. We thus model the difference X between the two assets as

dXt = −µXt dt+ σ dWt,

where µ and σ are positive constants and W is a standard Brownian motion.
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Note that there is a large model risk associated to the pairs trading strat-
egy. Indeed, if it turns out that the difference between the assets is no
longer mean-reverting, then the investor faces a considerable risk. What
is typically done in practice is that the investor decides (in advance) on a
stop-loss level B < 0, and if the value of the pair trade falls below B then
one liquidates the position and accepts the loss. The stop-loss level B can be
seen as a (crude) model adjustment: if this level is reached then the model
is abandoned and the position is closed. A natural continuation of our work
would be to introduce a continuous recalibration of the model parameters
to decrease the model risk.

In Section 2, we formulate and solve explicitly the optimal stopping prob-
lem of when to liquidate a pair trade in the presence of a stop-loss barrier.
In Section 3 we study the dependence of the optimal liquidation level on the
different model parameters, thus providing a better understanding of the
consequences of possible mis-specifications of the model. More precisely, we
show that increasing the quotient α = 2µ/σ2 increases the optimal liquida-
tion level, and that the optimal liquidation level is between −B/2 and −B
for any choice of parameters µ and σ. In Section 4 we consider the opti-
mal liquidation of a pairs trade in the presence of a discount factor. When
including such a discount factor, the dependence on the model parameters
becomes more delicate, and a numerical study is conducted. Finally, we
also consider the optimal liquidation problem in the absence of a stop-loss
barrier.

2. Solving the optimal stopping problem

If we assume that any fraction of an asset can be traded, then there is
no loss of generality to assume that the difference between the two assets
fluctuates about the level 0. As explained in the introduction, we model the
difference X between the two assets as a mean-reverting Ornstein-Uhlenbeck
process, i.e.

(1) dXt = −µXt dt+ σ dWt.

Here µ and σ are positive constants and W is a standard Brownian motion.
For a given liquidation level B < 0, define the value V of the option spread
by

(2) V (x) = sup
τ≤τB

ExXτ ,

where the supremum is taken over all stopping times that are smaller than

τB = inf{t : Xt ≤ B},

the first hitting time of the liquidation level B. The stop-loss level B is
imposed to have a bound on the possible losses. Of course, if the model
(1) is known to be true, then the spread would vanish eventually since X
has a mean-reverting drift. However, in practice a stop-loss level has to
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be imposed to account for the risk that the model is incorrect. The stop-
loss level B thus makes the risk involved in pairs trading less sensitive to a
possible mis-specification of the model.

If the process X is negative, then the drift is positive so one should not
liquidate the position. If X is positive then the negative drift works against
the owner of the pair. For large values of X, this drift is substantial and
should outweigh the possible benefits of the random fluctuations. This indi-
cates that there exists a boundary x = b above which liquidation is optimal,
and below which the pair should be kept.

General optimal stopping theory then suggests that the pair (V, b) solves

(3)


σ2

2 Vxx − µxVx = 0 if x ∈ (B, b)
V (B) = B
V (b) = b
V ′(b) = 1.

The general solution to the ordinary differential equation σ2

2 Vxx−µxVx = 0
is

V (x) = CF (x) +D.

Here C and D are constants,

F (x) =
∫ x

0
f(y) dy,

f(y) = eαy
2/2,

and α = 2µ/σ2 is the reciprocal of the variance of the stationary distribution
of X. Inserting the general solution into the free boundary problem, the
equation

(4)
F (b)− F (B)

b−B
= f(b)

for the exercise boundary b is derived.

Lemma 2.1. Equation (4) admits a unique solution b larger than B. More-
over, b ∈ (0,−B).

Proof. Define

(5) g(x) := F (x)− F (B)− (x−B)f(x),

and note that b > B is a solution of (4) if and only if g(b) = 0. We have
g(B) = 0, g′(x) = −α(x−B)xf(x) ≥ 0 if x ∈ [B, 0] and g′(x) < 0 if x > 0.
Moreover,

g(−B) = −2F (B) + 2Bf(B) < 0

since F is convex. Consequently, g has a unique zero x = b larger than B,
and b ∈ (0,−B). �
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Now, given the unique solution b of equation (4), let

(6) V̂ (x) =

{
F (x)
f(b) +B − F (B)

f(b) B ≤ x < b

x x ≥ b

It is easy to check that (V̂ , b) is the unique solution to the free boundary
problem (3). Moreover, it follows from the proof of Lemma 2.1 above that
V̂ (x) ≥ x for all x ≥ B.

Theorem 2.2. The value function V coincides with the function V̂ given
in (6). Moreover, τ∗ = τB ∧ τb is an optimal stopping time in (2).

Proof. Consider the process Yt = V̂ (Xt∧τB ). By (a generalised version of)
Ito’s lemma,

Yt = V̂ (x) +
∫ t∧τB

0

(
σ2

2
V̂xx(Xs)− µXsV̂x(Xs)

)
I(Xs 6= b) ds

+
∫ t∧τB

0
σV̂x(Xs)I(Xs 6= b) dW

= V̂ (x)− µ
∫ t∧τB

0
XsI(Xs > b) ds+

∫ t∧τB

0
σV̂x(Xs) dW.

The Ito integral is a martingale since the integrand is bounded. Therefore,
since b is positive, the process Y is a supermartingale. If τ is a stopping time,
then the optional sampling theorem, see Problem 3.16 and Theorem 3.22 in
[4], gives that

(7) EXτ∧τB ≤ EV̂ (Xτ∧τB ) = EYτ ≤ EY0 = V̂ (x).

Since τ is arbitrary, this yields

V (x) ≤ V̂ (x).

To derive the reverse inequality, note that Yt∧τb is a bounded martingale,
and that Yτb = Xτb∧τB . It follows that the inequalities in (7) reduce to
equalities if τ = τ∗, which finishes the proof. �

3. Dependence on parameters

It is easy to see that the value V and the optimal threshold b are both
increasing as functions of the absolute value |B| of the stop-loss level. Indeed,
this follows since a large |B| increases the set of stopping times smaller than
τB. The dependence on the parameters µ and σ is more delicate, and given
by the theorem below.

Theorem 3.1. The optimal stopping boundary b is increasing as a function
of α = 2µ/σ2, and it satisfies limα↓0 b(α) = −B/2 and limα↑∞ b(α) = −B.

Proof. Define

g(x, α) :=
∫ x

B
eαy

2/2 dy − (x−B)eαx
2/2,
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compare (5). Recall that for a fixed α > 0, the function x 7→ g(x, α)
satisfies g(0, α) > 0, g(−B,α) < 0 and ∂g

∂x(x, α) < 0 for x > 0. Moreover,
the optimal stopping boundary b ∈ (0,−B) is the unique positive value such
that g(b, α) = 0. Let x ∈ (0,−B). Expanding into Taylor series, we have∫ x

B
eαy

2/2 dy =
∫ x

B

∞∑
k=0

(α/2)k

k!
y2k dy

=
∞∑
k=0

(α/2)k

k!(2k + 1)
(x2k+1 −B2k+1)

=
∞∑
k=0

(α/2)k

k!(2k + 1)
x2k(x−B)ak,

where
ak = 1 + (B/x) + ...+ (B/x)2k.

Using

eαx
2/2 =

∞∑
k=0

(α/2)kx2k

k!

we find that

g(x, α) = (x−B)
∞∑
k=1

(α/2)kx2k

k!
(

ak
2k + 1

− 1).

Note that there exists k0 such that ak ≤ 2k + 1 for k ≤ k0 and ak > 2k + 1
for k > k0. Let b be the unique zero of g(x, α) for a given α. Now, if α′ > α,
then

0 = g(b, α) = (x−B)(α/2)k0
∞∑
k=1

(α/2)k−k0x2k

k!
(

ak
2k + 1

− 1)

< (x−B)(α/2)k0
k0∑
k=1

(α′/2)k−k0x2k

k!
(

ak
2k + 1

− 1) ≤ g(b, α′).

It follows that g(b, α′) > 0, so the unique zero x = b′ of g(x, α′) satisfies b′ ≥
b, which proves the claimed monotonicity of the optimal stopping boundary
b as a function of α.

Finally we consider the limits in the statement of the theorem, starting
with α tending to infinity. Recall from above that b(α) < −B. On the other
hand, for a fixed ε > 0 we have

g(−B − ε, α) > 0

for α large enough since the integral term in the definition of g is bounded be-
low by ε

2e
α(−B−ε/2)2/2, whereas the remaining term is O(eα(−B−ε)2/2). Hence

b(α) > −B−ε and the desired conclusion follows. Next we consider the limit
as α tends to zero. The argument here is based on the approximation of
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ex by 1 + x for small x. Thus we replace the exponential functions in the
definition av g by 1 + αy2/2 and 1 + αx2/2, and define

h(x, α) :=
∫ x

B
(1 + αy2/2) dy − (x−B)(1 + αx2/2)

=
α

6
(3Bx2 − 2x3 −B3).

One finds that h(−B/2, α) = 0 for all α. The derivative ∂h
∂x(x, α) = α(Bx−

x2) is negative and is bounded above and below by positive multiples of
α in a neighborhood of −B/2. Since the error in the approximation of
the exponential function with the linear function is of order α2, the result
follows. �

Remark In the absence of a stop-loss level (and a discount factor), i.e. if
B = −∞ in the above set-up, it follows from Theorem 3.1 that the optimal
liquidation level b = ∞. Thus the problem degenerates and it is never
optimal to liquidate the pairs trade.

4. Including a discount factor

It may be of interest to include a discounting factor in the analysis above,
thus instead considering the optimal stopping problem

(8) V (x) = sup
τ≤τB

Exe
−rτXτ ,

where r > 0 is a constant. This optimal stopping problem can, in principle,
be studied using similar techniques as in the problem with no discounting.
However, it turns out that the solution is slightly less explicit, and the
parameter dependences are more involved.

Again, it is natural to expect that the optimal stopping time takes the
form of the first hitting time of a level b. The same arguments as in Section 2
suggest that the pair (V, b) solves

(9)


σ2

2 Vxx − µxVx − rV = 0 if x ∈ (B, b)
V (B) = B
V (b) = b
V ′(b) = 1.

The general solution to the ordinary differential equation σ2

2 Vxx − µxVx −
rV = 0 is

V (x) = CF (x) +DG(x).

Here C and D are constants and

F (x) =
∫ ∞

0
uβ−1e

√
αxu−u2/2 du,

G(x) = F (−x)
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and α = 2µ/σ2 and β = r/µ. Inserting the general solution into the free
boundary problem, it is easily seen that

(10) C =
BG(b)− bG(B)

G(b)F (B)−G(B)F (b)

and

(11) D =
bF (B)−BF (b)

G(b)F (B)−G(B)F (b)
,

where b satisfies
(12)
(BG(b)− bG(B))F ′(b) + (bF (B)−BF (b))G′(b) = G(b)F (B)−G(B)F (b).

Arguing as in the proof of Theorem 2.2, it is straightforward to check that
the value function derived above coincides with the value of the optimal
stopping problem (8).

Theorem 4.1. Let b be the unique solution of (12) in (0,−B), and define
C and D as in (10) and (11), respectively. The value function of the optimal
stopping problem (8) is given by

V (x) =
{
CF (x) +DG(x) x ∈ (B, b)
x x ≥ b.

Moreover, τ∗ = τB ∧ τb is an optimal stopping time in (8).
In the absence of a stop-loss level, i.e. if B = −∞, then

V (x) =
{ b

F (b)F (x) x < b

x x ≥ b,

where b is the unique positive solution of F (b) = bF ′(b).

Proof. The proof of the optimality follows along the same lines as in the
proof of Theorem 2.2, and we omit the details. To prove the uniqueness of
solutions to (12), define

f(x) = (BG(x)− xG(B))F ′(x) + (xF (B)−BF (x))G′(x)
+G(B)F (x)−G(x)F (B).

Then f(b) = 0 if and only if b solves equation (12). First note that

f(0) = F (0)(2BF ′(0) + F (−B)− F (B)).

Since

F (−B)− F (B) =
∫ ∞

0
uβ−1(e−

√
αBu − e

√
αBu)e−u

2/2 du

> −
∫ ∞

0
uβ2
√
αBe−u

2/2 du = −2BF ′(0),

we find that f(0) > 0. Similarly,

f(−B) = (F (B) + F (−B))(BF ′(B) +BF ′(−B) + F (−B)− F (B)).
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It is easy to check that g(x) := −xF ′(−x)−xF ′(x)+F (x)−F (−x) satisfies
g(0) = 0 and g′(x) < 0 for x > 0. Consequently, f(−B) < 0, so there exists
a zero of f in the interval (0,−B). Moreover,

f ′(x) = (BF (−x)− xF (−B))F ′′(x) + (xF (B)−BF (x))F ′′(−x).

Since F ′′(x) > F ′′(−x) and xF (B) − BF (x) > BF (−x) − xF (−B) for
x ∈ (0,−B), we have f ′(x) < 0 in that interval. Thus the function f has a
unique zero in (0,−B), so there exists a unique solution b to (12). �

Remark As indicated above, the parameter dependencies are more involved
in the presence of a discount factor, compare Figure 1. If the stop-loss
level satisfies B = −∞, however, then it is straightforward to check that
the optimal liquidation level b is decreasing in the parameter α and in the
parameter β.
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Figure 1. The graph shows the optimal threshold b as a function
of the parameter α for three different values of β. The values of
β are 0.01 (top), 0.05 (middle) and 0.09 (bottom). In all three
examples we used B = −1.
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