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ABSTRACT. We study a Pólya–type urn model defined as follows. Start at time 0 with a single
ball of some colour. Then, at each time n ≥ 1, choose a ball from the urn uniformly at random.
With probability 1/2 < p < 1, return the ball to the urn along with another ball of the same
colour. With probability 1 − p, recolour the ball to a new colour and then return it to the urn.
This is equivalent to the supercritical case of a random graph model studied by Backhausz and
Móri [4, 5] and Thörnblad [17]. We prove that, with probability 1, there is a dominating colour,
in the sense that, after some random but finite time, there is a colour that always has the most
number of balls. A crucial part of the proof is the analysis of an urn model with two colours, in
which the observed ball is returned to the urn along with another ball of the same colour with
probability p, and removed with probability 1− p. Our results here generalise a classical result
about the Pólya urn model (which corresponds to p = 1).
Keywords: urn model, largest colour, random graphs, persistent hub.
AMS subject classification: 60G50, 60J80.

1. INTRODUCTION

We study an urn model described as follows. At time 0, start with a single ball of some colour.
At each time step n ≥ 1, choose a ball uniformly at random.

(1) With probability p, return the ball to the urn along with another ball of the same colour.
(2) With probability 1− p, recolour the ball with a new colour and then return it to the urn.

In this paper we will typically consider the case p > 1/2, although the definition or the urn
model makes sense for any 0 ≤ p ≤ 1. This urn model has a (countably) infinite number
of colours. It also allows for the extinction of colours. If the last ball of a certain colour is
recoloured, then this colour will never appear again in the urn. It is equivalent to the following
random graph model studied in [4, 5, 17]. Let G0 be the graph with a single isolated vertex.
Create Gn from Gn−1 by doing one of the following steps.

(1) With probability p, do a duplication step. Select a clique in Gn−1 with probability
proportional to size, and introduce a new vertex to that clique.

(2) With probability 1 − p, do a deletion step. Select a clique in Gn−1 with probability
proportional to size and delete a vertex from the chosen clique. Then introduce a new
clique with a single vertex.

The equivalence of these models is clear once we identify each clique with a colour in the urn.
Let us mention a few known results about the urn model, coming from [4, 5, 17]. These results

were originally proved in the random graph version, but transfer immediately to the urn version.
The degree distribution is known to exhibit a phase transition from exponential decay to power
law in the three regimes 0 < p < 1/2, p = 1/2 and 1/2 < p < 1, referred to as the subcritical,
critical and supercritical case, respectively. Knowledge of the degree distribution of the random
graph model translates to knowing the almost sure limits of the quantities Uj,n

Nn
, where Uj,n is

the number of colours at time n with j balls, and Nn is the number of balls at time n. This was
done for p = 1/2 in [4] and for the remaining cases in [17]. Both exact and asymptotic results
were found. Later Backhausz and Móri [5] revisited the model and determined bounds on the
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logarithmic growth rate of the maximal clique size of the graph, i.e. the number of balls of the
leading colour. In particular, in the supercritical case p > 1/2 they found that

p

β
≤ lim inf

n→∞

logMn

logNn
≤ lim inf

n→∞

logMn

logNn
≤ 1

β
,(1)

where β = p
2p−1 , Mn is the size of the leading colour at time n, and Nn is the number of

balls in the urn at time n. As we shall see later, this result can be strengthened to show that
Mn ∼ µN

1/β
n for some random variable µ > 0, implying that the upper bound in (1) is the

correct one. This was indeed the correct growth rate conjectured in [5]. We remark that this
result was originally put in terms of the maximal degree, which is equal to one less than the
maximal clique size, which by the identification is equal to the number of balls of the leading
colour.

Similar studies have been done for population models. Champagnat and Lambert [6] studied
a population model in which individuals were given i.i.d. lifetime distributions and give birth at
constant rate. Furthermore, individuals then mutate at constant rate and change allelic type. If
the lifetime distribution has a unit point mass as∞, births are at rate p and mutations at rate 1−p,
then this corresponds to a continuous–time version of our model, where colours correspond to
the alleles. Champagnat and Lambert achieved a number of convergence results, in all three
regimes, about the oldest and most abundant families, mainly in expectation and distribution.
By constrast, we shall derive almost sure results, but only in the supercritical regime.

One of our main results is that, provided p > 1/2, then, with probability 1, there is some
colour that after some random but finite time becomes dominant, i.e. remains the colour with
the most number of balls forever. A similar problem was studied by Khanin and Khanin [12].
They consider an urn model with k colours, with a parameter r > 0. Balls are added sequen-
tially, and the probability of adding a ball of colour 1 is proportional to xr, where x is the
number of balls of colour 1, etc. They show that for r > 1/2 one of the colours will be even-
tually dominant almost surely, but for r ≤ 1/2 the colours change leadership infinitely many
times. Indeed, for r > 1, all but finitely many of the new balls are of the same colour, creating a
monopoly of one of the colours. Similar results were achieved by Chung, Handjani and Jungreis
[7] for an infinite urn model. This model works as follows (slightly rephrased to allow for more
direct comparison to our model). With probability p, add a ball, the colour of which is chosen
like in the Khanin/Khanin–model. With probability 1 − p, add a ball of a new colour. The
difference to our urn model is that colours can never lose balls in the Chung/Handjani/Jungreis–
model. Also, the number of balls in the Chung/Handjani/Jungreis–model grows deterministi-
cally, which makes analysis slightly easier. Although these models appear similar, qualititively
they behave rather differently. For r = 1 it is found that the number of colours of size k in the
Chung/Handjani/Jungreis–model decays like a power–law for all 0 < p < 1. This should be
contrasted with our model, where there is a phase transition from exponential decay to power
law at p = 1/2.

In the random graph interpretation of our model, the notion of a dominant colour should
be seen as a variation of the notion of a persistent hub, a concept considered by Dereich and
Mörters [14] and by Galashin [8]. The latter considered the classical preferential attachment
model and a variation thereof and showed that, almost surely, there is a vertex that after some
random but finite time (and always thereafter) is the vertex of maximal degree in the graph. This
vertex is called the persistent hub. As remarked in [5], our random graph model does not have
a persistent hub on the level of vertices, since all vertices will be selected for deletion infinitely
often, thus pushing their degree down to 0. However, by using the correspondence between
vertices in a clique and balls of a certain colour, we will see that there is a clique that almost
surely is the largest one, i.e. a persistent clique–hub.

The rest of this paper is outlined as follows. We will typically embed the discrete urn model
in a corresponding continuous–time model. First we use the contraction method to determine
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the growth rate of a fixed colour. Then, to show that there is an eventually dominating colour,
we follow the approach taken by Galashin [8]. His methods extrapolate to our setting without
any significant changes. We start by observing the joint behaviour of two fixed colours and
determine exactly the asymptotic distribution of the quantity Bn

Wn+Bn
, where Bn and Wn are the

number of balls of the two colours at time n, respectively. From this distribution we deduce that
two colours can change relative leadership at most finitely many times. Furthermore, we can
determine exactly the probability that one of the colours ever overtakes the other, which allows
us to bound the probability that a colour with only one ball (a new colour) will overtake a colour
with many balls (the leading colour). This probability will turn out to be sufficiently small, in the
sense that we can apply the Borel–Cantelli lemma to show that colours with few balls overtake
the currently leading colour only a finite number of times, with probability 1. This, along with
the fact that two fixed colours overtake each other at most a finite number of times, implies the
existence of a dominating colour. This dominating colour must grow like some fixed colour, so
we are able to determine the asymptotic growth rate of the largest colour of the urn.

In line with [5, 17], let us introduce the notation β = p
2p−1 and γ = 1−p

p . We use the notation

an
a.s.∼ bn for (possibly random) sequences (an)∞n=1 and (bn)∞n=1 to mean limi→∞

an
bn

a.s.
= 1 and

X ∼ F to denote that the random variable X has distribution F .

2. RESULTS

Inspired by Athreya’s embedding scheme, see [3, V.9], we shall embed the discrete urn
scheme in a continuous–time urn scheme. The continuous urn scheme is defined as follow.
Each ball in the urn has two exponential clocks, one ringing at rate 1/2 < p < 1 and the other
at rate 1− p. If the first clock rings, add to the urn another ball of the same colour. If the second
clock rings, remove the ball from the urn and add a ball of a new colour. It is easy to see that
the discrete process has the same transition probabilities as the continuous process. Moreover,
whenever a new colour is created, it behaves like a birth–death process with birth rate p and
death rate 1 − p. We characterise the growth rate of such a birth–death process in the next
lemma.

Lemma 2.1. Let (X(t))t≥0 be a continuous–time birth–death process with birth rates p and
death rates 1− p. Then

X(t)

e(2p−1)(t)
a.s.−−→ U,

where U is a random variable with distribution (1− γ)Γ
(

1, 1β

)
+ γδ0.

Note that δ0 denotes the distribution that places unit mass at 0. The quantity γ is the extinction
probability (which can be found in many different ways). After some work, one can show that
this follows from the results in [3, III.5]. We instead use the contraction method, which exploits
the recursive structure of the process. We sketch the argument here, and refer the reader to
[15, 16] for further details and references.

Proof. Let τ be the first event time in the process X(t). With probability p, this event is a birth,
and with probability 1 − p, it is a death (which then forces X(t) = 0 for all t > τ ). This leads
to the distributional equality

X(t)
d
= 1{τ≤t}Y

(
X ′(t− τ) +X ′′(t− τ)

)
+ 1{τ>t},

where X(t), X ′(t) and X ′′(t) are independent and identically distributed, Y ∼ Ber(p) and
τ ∼ Exp(1). Normalising we obtain

X(t)

e(2p−1)t
d
= e−(2p−1)τ1{τ≤t}Y

(
X ′(t− τ)

e(2p−1)(t−τ)
+

X ′′(t− τ)

e(2p−1)(t−τ)

)
+

1

e(2p−1)t
1{τ>t}.
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Note that 1{τ>t}
a.s.→ 0 as t → ∞; similarly 1{τ≤t}

a.s.→ 1 as t → ∞. It can be shown that
X(t)/e(2p−1)t is a non–negative martingale, so by the martingale convergence theorem it con-
verges almost surely to some random variable U , which then must satisfy the distributional
equality

U
d
= e−(2p−1)τY

(
U ′ + U ′′

)
,(2)

where U,U ′, U ′′ are independent and identically distributed, Y ∼ Ber(p) and τ ∼ Exp(1).
Consider the spaceM of distributions with finite second moment and first moment equal to

1, equipped with the Wasserstein metric

d(λ1, λ2) = inf ‖Z1 − Z2‖2
where the infimum is over all random variables Z1 and Z2 with Z1 ∼ λ1 and Z2 ∼ λ2

and ‖ · ‖2 denotes the L2–norm. Let T : M → M be the distributional operator TZ d
=

e−(2p−1)τY (Z ′ + Z ′′), with τ, Y independent and like above, and Z ′, Z ′′ independent and dis-
tributed like Z. Note in particular that TZ ∈ M for any Z ∈ M, so this operator is well–

defined. It can be shown that E[2e−2(2p−1)τY 2] =
√

2p
4p−1 < 1 is a contracting factor in the

Wasserstein metric for the operator T . By the Banach fixed point theorem, it follows that the
(2) has a unique solution inM, see e.g. [16, Theorem 2.2]. Moreover, it can be verified that
the distribution (1 − γ)Γ(1, 1/β) + γδ0 lies inM and satisfies (2), so this must be the unique
solution. It suffices now to show that the distribution of U lies inM, i.e. that E[U ] = 1 and
E[U2] <∞. It follows from [3, III.4–5] that

Var(X(t)) =
e2(2p−1)t(1− e−(2p−1)t)

2p− 1
,

which implies that Var(X(t)/e(2p−1)t) ≤ 1
2p−1 for all t ≥ 0 and in particular that the second

moment of the limiting random variableU is finite. Therefore the first moment ofU is also finite,
and it follows that E[U ] = 1 since U is the limit of a martingale sequence with expectation one.
Therefore the distribution of the limiting random variable must be in M, so the contraction
method shows that U ∼ (1− γ)Γ(1, 1/β) + γδ0.

�

Using this we can relate the growth rate of a fixed colour to the growth rate of the entire urn.

Theorem 2.2. Let Xn be the size of a fixed colour at time n. Conditional on survival of this
colour, there exists a positive random variable ν such that

Xn
a.s.∼ νN1/β

n .

Proof. We make use of the continuous–time embedding described earlier. For this purpose,
let X(t) be the number of balls of a fixed colour at time t in the corresponding continuous
model. Suppose this colour was born at time t0. By Lemma 2.1, conditional on survival, we
have X(t)

a.s.∼ e(2p−1)(t−t0)U , where U ∼ Γ(1, 1/β). Denoting by N(t) the total number of
balls by time t, similarly one can show that N(t)

a.s.∼ eptV where V ∼ Γ(1, 1). This is done in

[5]. Therefore, conditional on survival of the fixed colour, we have X(t) ∼ νN(t)
2p−1
p almost

surely, where ν is a positive random variable (that depends on t0, U and V ).
Now, let Tn be the n:th birth or death of the process (X(t))t≥0. Observing the values

(X(Tn))∞n=1 gives us the discrete urn process, so it suffices to show that Tn
a.s−−→∞ as n→∞.

This is well–known if p = 1, see e.g. [3, III], and is equivalent to showing that the process does
not explode in finite time. But we can couple our birth–death processX(t) for 1/2 < p < 1 to a
pure birth process with p = 1, in such a way that it grows slower. Hence it also cannot explode
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in finite time, so Tn
a.s−−→ ∞ on the event of non–extinction. Recall now that 2p−1

p = 1
β . Then

Xn
a.s.∼ νN

1/β
n . �

As mentioned, a colour survives with probability 1 − γ and goes extinct with probability γ,
so this gives us the following corollary.

Corollary 2.3. Let Xn be the size of a fixed colour at time n. Then there exists a positive
random variable ν > 0 such that

Xn
a.s.∼

{
0, with probability γ,

νN
1/β
n , with probability 1− γ.

Let us now turn to the joint behaviour of two fixed colours. To do this, we consider the
projection of the entire urn onto two colours. That is, we study an urn model with balls of two
colours, black and white say. Initially there are B0 = b black balls and W0 = w white balls.
Sequentially sample balls from the urn, uniformly at random. With probability 1/2 < p < 1,
return the ball to the urn with a ball of the same colour, and with probability 1 − p remove the
urn from the urn with negative probability. To avoid degeneracies we stop the evolution of the
urn if one of the colours disappear from the urn. Conditional on Bn 6= 0,Wn 6= 0, the transition
probabilities are given by

(Bn+1,Wn+1) =


(Bn + 1,Wn) with probability p Bn

Bn+Wn

(Bn,Wn + 1) with probability p Wn
Bn+Wn

(Bn − 1,Wn) with probability (1− p) Bn
Bn+Wn

(Bn,Wn − 1) with probability (1− p) Wn
Bn+Wn

A similar urn model was studied in [9], where the urn came with an additional immigration
procedure to ensure that both colours survive. We mention the paper [10], that to a large extent
solved the case of so–called tenable urn models. Our urn model does not fall into this category
(in particular the condition of irreducibility is not satisfied, i.e. that any configuration of the urn
can be reached from any starting configuration). However, the process (Bn,Wn)∞n=0 can be seen
as a triangular urn scheme with random replacement matrix, allowing for non–negative entries.
Triangular urn schemes with deterministic replacement matrix were considered by Janson [11],
the results of which were extended by Aguech [1] to random triangular replacement matrices.
The latter however imposed that the random variables be non–negative, to ensure the survival
of the urn. Our urn model does not have non–negative entries; however, the condition p > 1/2
implies that the replacement distribution has positive expectation, so the colours (and the urn)
survive with positive probability.

We are interested in the joint behaviour of two colours, or more precisely the proportion

fb,w(n) =
Bn

Wn +Bn
.

As mentioned, we stop whenever fb,w(n) = 0 or fb,w(n) = 1, so these are absorbing states of
the process (fb,w(n))∞n=0. Alternatively, instead of stopping the process here, we could condi-
tion on being on the event of non–extinction, i.e. that not all balls disappear from the urn. The
probability of this event, which is positive, will appear implicitly later on.

We shall again use the continuous time embedding to evaluate the evolution of the urn. That
is, we consider indepndent black and white birth–death process (Bi(t))

b
i=1 and (Wi(t))

w
i=1

started at Bi(0) = Wi(0) = 1, with birth rates p and death rates 1 − p. It is again easy to
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show that the discrete process (Bn,Wn)∞n=0has the same transition probabilities as the continu-

ous process
(∑b

i=1Bi(t),
∑w

i=1Wi(t)
)
t≥0

, so we will study the quantity

gb,w(t) =

∑b
i=1Bi(t)∑b

i=1Bi(t) +
∑w

i=1Wi(t)

instead of its discrete analogue fb,w(n). Again we stop the process if we ever reach gb,w(t) = 0
or gb,w(t) = 1. Since the processes are equivalent, we will be able to show that almost sure
convergence of gb,w(t) implies almost sure convergence of fb,w(n) to the same limit.

Proposition 2.4. The limit limt→∞ gb,w(t) exists almost surely, and its distribution is given by
the mixture

rb,wδ0 + r∗b,wBeta(Gb, Hw) + rw,bδ1,

where rb,w = γb
(

1− b
b+wγ

w
)

, rw,b = γw
(

1− w
b+wγ

b
)

, r∗b,w = (1−γb)(1−γw), andGb, Hw

are independent discrete random variables with probability mass functions

P[Gb = k] =
1

1− γb

(
b

k

)
(1− γ)kγb−k, k = 1, . . . , b,

P[Hw = k] =
1

1− γw

(
w

k

)
(1− γ)kγw−k, k = 1, . . . , w,

i.e. binomial random variables conditioned on not being zero.

Proof. Let τb = inf{t :
∑b

i=1Bi(t) = 0} and σw = inf{t :
∑w

i=1Wi(t) = 0} be the
extinction times of the two processes. The event that the white process dies out is {τw < ∞},
and similar for the black process. Note in particular that these events are independent.

On the event {τb < σw < ∞} ∪ {τb < σw = ∞} we have gb,w(τb) = 0. The first event
occurs with probability w

w+bγ
b+w, since the probability that one of the w white processes is

the last one to die is w
w+b (conditional on all b + w processes dying), by symmetry, and both

processes die with probability γb+w, by independence. The second event occurs with probability
γb(1−γw), and the sum of these probabilities is rb,w. By symmetry, the probability of the event
{σw < τb <∞} ∪ {τb < σw =∞} is rw,b.

It is clear that gb,w(τb) = 0 on {τb < σw < ∞} ∪ {τb < σw = ∞}. Since 0 is an
absorbing state, this gives a point mass at 0 with relative mass rb,w. Similarly gb,w(σw) = 1 on
{σw < τb <∞} ∪ {τb < σw =∞}, giving a point mass at 1 with relative mass rw,b.

The event that neither process dies out (so at least one white and at least one black process
survives) is the event {τb =∞, σw =∞}. By independence this has probability

P[τb =∞, σw =∞] = (1− γb)(1− γw) =: r∗b,w.

Let Gb, Hw be as in the statement. On the event {τb = ∞, σw = ∞} we have at least one
surviving process of each kind. Conditional on this, since each black process survives with prob-
ability 1− γ independently of the other, the number of surviving black processes is distributed
like Gb. Similarly the number of surviving white processes on this event is distributed like
Hw. Recall the scaling limit in Lemma 2.1, which holds for each surviving process separately.
Therefore, on this event,

gb,w(t) =
e−(2p−1)t

∑Gb
k=1Bki(t)

e−(2p−1)t
∑Gb

k=1Bki(t) + e−(2p−1)t
∑Hw

k=1Wki(t)

a.s.−−→ U

U + V
,

as t→∞, where U ∼ Γ(Gb, 1/β), V ∼ Γ(Hw, 1/β). But then U
U+V ∼ Beta(Gb, Hw). �

Proposition 2.4 immediately transfers to the discrete–time urn model.
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Fig. 1: The left–most figure is a simulation of a single instance of the urn model with (b, w) =
(2, 3) and p = 3/5, with 300 drawings. The second one is a simulation of 30 trials with 20 000
drawings each, and parameters (b, w) = (2, 3) and p = 3/4. In particular, note that diagonal–
crossing and absorption tends to happen early, if at all. The simulations were done in MatLab.

Theorem 2.5. With the same notation as in Proposition 2.4, limn→∞ fb,w(n) exists almost
surely, with distribution given by the mixture

rb,wδ0 + r∗b,wBeta(Gb, Hw) + rw,bδ1.

Proof. Let Tn be the time of the n:th birth or death in the process
(∑b

i=1Bi(t),
∑w

i=1Wi(t)
)

,

conditional on survival. Since fb,w(n) = gn,w(Tn), it suffices to show that Tn
a.s.−−→ ∞ as

n→∞. The proof of this is similar to the argument in the proof of Lemma 2.1. �

It is natural to extend the above results to k colours rather than 2. This corresponds to pro-
jecting our infinite urn model onto k fixed colours. Namely, consider an urn with k colours, and
let Xi(n) denote the number of balls of colour i at time n, with initial condition Xi(0) > 0.
At each time step, draw a ball uniformly at random. With probability p, replace it to the urn
along with a ball of the same colour. With probability 1 − p, remove it from the urn. Let
S(n) = X1(n) + · · ·Xk(n). With the same method as above, it is not difficult to show, on the
event of non–extinction of the urn, that

(X1(n)/S(n), . . . , Xk(n)/S(n))
d→ (Y1, . . . , Yk)

where each Yi is distributed as a mixture of Dirichlet distributions (possibly degenerate to sub-
spaces), the parameters of which will be binomially distributed conditioned on not all being
zero. We leave the details for the reader.

We remark that p = 1 gives us the original Pólya urn model. Indeed, for p = 1 we have
γ = 0, and it is readily checked that the limit in Theorem 2.5 reduces to Beta(b, w), which is
a classical result in the literature. We also point out that all birth–death processes go extinct
almost surely in the case p ≤ 1/2, so we would have convergence of gb,w(t) and fb,w(n) to a
convex combination of two point masses at 0 and 1. However, even such urns have been studied
in the literature, see e.g. [13] which studies a class of diminishing urn processes. For instance,
our urn model with p = 0 may be seen as sampling without replacement.

Let us return to the supercritical case p > 1/2 and concentrate on the event that there is an
equal number of black and white balls in the urn. It is easy to show that this occurs at most
finitely many times.

Corollary 2.6. With probability 1, the event Bn = Wn occurs for at most finitely many n.
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Proof. For all possible realisations of Gb, Hw, the distribution Beta(Gb, Hw) is absolutely con-
tinuous on (0, 1), so the mixture in Theorem 2.5 is also absolutely continuous on (0, 1). There-
fore Bn

Wn+Bn
converges almost surely to some constant c 6= 1/2. But this means that the fraction

equals 1/2 at most a finite number of times. �

Knowing that Bn = Wn for at most finitely many n, it is natural to ask what the probability
is that this event occurs at all. Galashin [8] and Antal, Ben–Naim and Krapivsky [2] considered
this problem for p = 1, i.e. the classical Pólya urn model. They view the process (Bn,Wn) as a
random walk on Z2. For p = 1 this process can only go right or up, so it is possible to count the
number of lattice paths from a given starting point to a fixed point on the diagonal. Using the
fact that these paths are exchangeable and summing over all points on the diagonal, it is possible
to bound the probability that the process ever hits the diagonal. For p < 1 there are infinitely
many paths to any point on the diagonal, so this approach is not possible here, but an argument
given by Wallstrom [18] for the case p = 1 can easily be adapted to our setting.

Proposition 2.7. Suppose b > w. Using the same notation as in Proposition 2.4, let Fb,w be the
distribution function of the mixture rb,wδ0 + r∗b,wBeta(Gb, Hw) + rw,bδ1. Let P (b, w) denote the
probability that Bn

Bn+Wn
= 1

2 for some n. Then

P (b, w) = 2Fb,w(1/2).

Proof. Let ϕ be the random limit of fb,w(n) = Bn
Bn+Wn

, and let E = inf{n ≥ 0 : fb,w(n) = 1
2}.

Since P[ϕ = 1/2] = 0, we have {E < ∞} = {E < ∞, ϕ > 1/2} ∪ {E < ∞, ϕ < 1/2}.
The process (Bn,Wn)∞n=E+1 is Markovian, so it depends only on (BE ,WE). Thus, on the
event E < ∞, the limit ϕ is chosen according to FBE ,BE , which is symmetrical around 1/2.
Therefore P[E < ∞, ϕ < 1/2] = P[E < ∞, ϕ > 1/2]. But since b > w we have that
{ϕ < 1/2} ⊆ {E <∞}, so P[E <∞, ϕ < 1/2] = P[ϕ < 1/2]. Thus

P (b, w) = P[E <∞] = 2P[ϕ < 1/2] = 2Fb,w(1/2).

�

Later on it will be useful to have a bound on the probability P (b, 1) for large b. This will
gives us the probability that a new colour (which starts with a single ball) in the infinite–colour
urn model ever catches up with an old colour. In the next lemma we show that this probability
decreases at least exponentially in b.

Lemma 2.8. The equalisation probability P (b, 1) satisfies the inequality

P (b, 1) ≤ 2

(
1

2p

)b
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Proof. By Proposition 2.7 we have

P (b, 1) = 2Fb,1(1/2)

= 2γb
(

1− b

b+ 1
γ

)
+ 2(1− γb)(1− γ)

b∑
k=1

k

∫ 1/2

0
xk−1(1− x)1−1dx

(
b

k

)
(1− γ)kγb−k

1− γb

≤ 2γb + 2
b∑

k=1

1

2k

(
b

k

)
(1− γ)kγb−k

= 2

b∑
k=0

(
b

k

)(
1− γ

2

)k
γb−k

= 2

(
1− γ

2
+ γ

)b
= 2

(
1

2p

)b
.

�

We now finally return to the urn model with an infinite number of colours. The bound on
P (b, 1) gives us good enough control over the probability that a small colour ever overtakes a
large colour. Using this bound and the Borel–Cantelli lemma, we show now that there can have
been at most a finite number of colours that were ever the leader. The proof relies on Lemma
2.8 and the growth rate in Lemma 2.1.

Proposition 2.9. Almost surely there can have been at most finitely many leading colours.

Proof. Let (Tn)∞n=1 be the birth times of new colours. Let Hn be the event that the colour born
at time Tn ever becomes as large as the leading colour at time Tn. The joint behaviour of the
sizes of a new colour and the currently leading colour is described by the 2–dimensional urn
model above started from (Mn, 1). Now, for any r ∈ N, we let Cr be the event that Mn ≥ n1/2β
for all n > r. Note that this implies that Mn ≥ r−1/2βn1/2β for all n ≥ 1. For each fixed r, we
have

P[Hn ∩ Cr] ≤ sup
A≥r−1/2βn1/(2β)

P (A, 1) ≤ 2

(
1

2p

)r−1/2βn1/2β

.

∞∑
n=1

P[Hn ∩ Cr] ≤ 2

∞∑
n=1

(
1

2p

)r−1/2βn1/2β

<∞,

where the sum converges by e.g. integral comparison. The Borel–Cantelli lemma implies that
Hn ∩ Cr occurs for infinitely many n with probability 0. Recall Theorem 2.2, i.e. that the
number of balls of any fixed colour, conditional on survival, grows like νN1/β

n , where ν is some
positive random variable. Therefore P[Cr] → 1 as r → ∞, which implies that Hn occurs for
infinitely many n with probability 0. Therefore, with probability 1, only finitely many colours
can have been leaders. �

Theorem 2.10. Almost surely there is a dominating colour.

Proof. By Proposition 2.9 there can have at most a finite number of colours of maximal size,
and by Corollary 2.6 these can have changed leader at most finitely many times. Therefore, with
probability 1, there is a colour that is always the largest after some random but finite time. �
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In the corresponding random graph model, this says that almost surely there is a persistent
clique–hub. Recall that Mn denotes the size of the leading colour at time n and Nn the total
number of balls in the urn at time n. Since there almost surely is a dominating colour and we
know the growth rate of any fixed colour by Theorem 2.2 (in particular that of the dominating
colour), we obtain the following theorem.

Theorem 2.11. There is a random variable µ > 0 such that

Mn
a.s.∼ µN1/β

n .

By taking logarithms, this also implies the strengthening of the result of Backhausz and Móri
mentioned in the introduction.
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