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Abstract. Motivated by known results for finite tournaments, we define and study
the score functions of tournament kernels and the degree distributions of tournament
limits. Our main theorem completely characterises those distributions that appear as
the degree distribution of some tournament limit and those functions that appear as
the score function of some tournament kernel. We also show that only the uniform
distribution can be realised as the outdegree distribution of a unique tournament limit.
Finally we define self-converse tournament limits and kernels and characterise their
degree distributions and score functions.

1. Introduction and main results

The now established theory of graph limits has a natural translation to tournament
limits, see [3, 11]. In this framework, sequences of tournaments (directed complete
graphs) are said to be convergent if all (di–)subgraph homomorphism densities converge.
The limit objects arise through an embedding of the set T of unlabelled tournaments
into a compact metric space T . The boundary set is the set of tournament limits. The
details of this construction are given in Section 2; see also [3, 11]. Tournament limits
are typically denoted Γ, and each tournament limit can be represented by a tournament
kernel, which is a measurable function W : [0, 1]2 → [0, 1] satisfying W (x, y)+W (y, x) =
1 almost everywhere.

A generalised tournament G = (V (G), α) consists of a set V (G) = {1, 2, . . . , n} of
vertices and a function α : V (G) × V (G) → [0, 1] such that α(u, v) + α(v, u) = 1 for
all distinct u, v ∈ V (G) and α(u, u) = 0 for all u ∈ V (G). If α only takes values in
{0, 1}, then G is called a tournament. If G is a tournament, we will call the set of
(u, v) ∈ V (G)× V (G) such that α(u, v) = 1 the edge set of G. The cardinality of V (G)
is denoted v(G). Given a vertex u ∈ V (G), its outdegree is defined as

∑
v∈V (G) α(u, v)

and its indegree as
∑

v∈V (G) α(v, u). The sequence (di)
n
i=1 of outdegrees of the vertices

of G, listed in some order, is called the score sequence of G.
Our aim is to translate the notions of score sequences and outdegrees to the setting of

tournament limits and kernels, developing a sensible theory in the process. The following
classical result can be seen as our motivating result, and we will later see that there is
a corresponding result for tournament limits and tournament kernels.

Theorem 1.1 ([6, 8]). A sequence (di)
n
i=1 of non–negative integers (respectively reals)

is the score sequence of some tournament (respectively generalised tournament) on n

vertices if and only if
∑

i∈J di ≥
(|J |
2

)
for all subsets J ⊆ {1, 2, . . . , n}, with equality for

J = {1, 2, . . . , n}.

Remark 1.2. One may assume that the sequence in Theorem 1.1 be non–decreasing; in
this case it suffices to check the condition for sets of the type J = {1, 2, . . . , k}.
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2 ERIK THÖRNBLAD

Necessity in Theorem 1.1 is seen as follows. Given any subset of size k of the vertices,
the induced subtournament must have

(
k
2

)
internal edges, contributing this much to the

sum of the score of vertices in that subtournament. Sufficiency is more involved.

1.1. Degree distributions. Given a tournament G, denote by ν+(G) the (normalised)
outdegree distribution; i.e. the distribution of the random variable D/v(G) where D is
the outdegree of a vertex chosen uniformly at random. Analogously let ν−(G) be the
normalised indegree distribution. Denote by ν(G) the joint distribution of ν−(G) and
ν+(G). Since the sum of the indegree and outdegree at a given vertex is always v(G)−1,
any one of these three distributions determine the other.

Remark 1.3. We will not distinguish between a distribution and the corresponding mea-
sure, viewing both as elements in the set of P([0, 1]) of probability distributions on [0, 1],
equipped with the topology of weak convergence. That is, a sequence of probability mea-
sures µn ∈ P([0, 1]) is said to converge (weakly) to a probability measure µ ∈ P([0, 1])
if for all continuous bounded g : [0, 1]→ R we have

∫
[0,1] g(x) dµn(x)→

∫
[0,1] g(x) dµ(x).

The theory of tournament limits is based on homomorphism densities. For this rea-
son, a homomorphism density characterisation of the degree distribution is important.
Denote by Sm,n the digraph with vertex set A1 ∪ A2 ∪ A3, where |A1| = m, |A2| = 1
and |A3| = n and edges (u, v) whenever u ∈ Ai, y ∈ Aj and i < j. The stars operate
as the “test graphs” for the degree distribution and provide a homomorphism density
characterisation of the degree distribution. To be precise, the (m,n):th moment of ν(G)
equals the homomorphism density of Sm,n in G, i.e.∫

[0,1]2
xmyn dν(G)(x, y) = t(Sm,n, G).

Definition 1.4. Let Γ be a tournament limit. The degree distribution, denoted ν(Γ),
of Γ is the unique probability distribution on [0, 1] with (m,n):th moment equal to
t(Sm,n,Γ). The marginals ν−(Γ) and ν+(Γ) of ν(Γ) are called the indegree distribution
and outdegree distribution, respectively.

It is not obvious that the numbers t(Sm,n,Γ) must be the moments of some probability
distribution. To see this, take any sequence (Gk)

∞
k=1 of tournaments converging to Γ and

recall that the numbers t(Sm,n, Gk) in fact are the moments of the degree distribution
ν(Gk). Continuity implies t(Sm,n, Gk) → t(Sm,n,Γ) as k → ∞, which translates to
converge of the moments of the distributions ν(Gk). The method of moments implies
that ν(Gk) converges to some unique distribution with moments t(Sm,n,Γ).

Definition 1.5. Let W be a tournament kernel. The degree distribution, denoted ν(W ),
of W is the distribution of the random variable(∫ 1

0
W (y,X) dy,

∫ 1

0
W (X, y) dy

)
where X ∼ U [0, 1]. The marginals ν−(W ) and ν+(W ) of ν(W ) are called the indegree
distribution and outdegree distribution, respectively.

Remark 1.6. The measure ν(W ) is concentrated on {(x, y) ∈ [0, 1]2 : x+y = 1}. Hence
ν is determined by any one of its two marginals ν− or ν+. For this reason we will state
and prove several results only for ν+.

Each tournament kernel represents some tournament limit, so it is desirable that the
definitions of the degree distributions agree, in the following sense.

Lemma 1.7. If W is a tournament kernel representing some tournament limit Γ, then
ν(Γ) = ν(W ).
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The proof is another application of the method of moments. It follows by this result
that any two equivalent tournament kernels have the same degree distribution.

1.2. Score functions. Interpreting the integral
∫
[0,1]W (x, y) dy as the outdegree at x,

the following definition is natural.

Definition 1.8. The score function of a tournament kernel W is defined as the function

f : [0, 1]→ [0, 1] given by f(x) =
∫ 1
0 W (x, y) dy.

Our aim is to characterise those functions which appear as the score functions of some
tournament kernel. The following condition corresponds to the condition on the score
sequence in Theorem 1.1.

Definition 1.9. A function f : [0, 1] → [0, 1] is said to satisfy condition I if, for all
measurable B ⊆ [0, 1], ∫

B
f(x) dx ≥ µ(B)2

2
,

with equality if µ(B) = 1.

It is easy to check that 1−f satisfies condition I if and only if f satisfies I. Moreover,
if f is the score function of a tournament W and B ⊆ [0, 1] is any measurable set, then∫

B
f(x) dx =

∫
B

∫
[0,1]

W (x, y) dy dx ≥
∫
B

∫
B
W (x, y) dy dx =

µ(B)2

2

where the final equality comes from the fact that W (x, y) +W (y, x) = 1 almost every-
where. This shows that a function can be the score function of some tournament kernel
only if it satisfies condition I. The converse statement is less trivial and is part of our
main theorem.

1.3. Main results on degree distributions and score functions. Our main theo-
rem is the following.

Theorem 1.10. Let f : [0, 1] → [0, 1] be a function. The following statements are
equivalent.

(i) There exists a tournament limit Γ with outdegree distribution f(U), U ∼ U [0, 1].
(ii) There exists a tournament kernel W with score function f .

(iii) The function f satisfies I.

Alternatively, i could be replaced by the equivalent statement that the measure (on
[0, 1]) induced by the outdegree distribution is Leb(f−1).

Note that we already proved (ii)⇒ (iii). For the other directions our main ingredients
will be discretisations, weak convergence (of score functions and tournament kernels),
rearrangements and the Hardy–Littlewood inequality.

A natural question to ask is whether the degree distribution uniquely determines a
tournament limit. The examples in Figure 1 demonstrate that this is not always the
case.

The cause of non–uniqueness turns out to be the presence of 3–cycles. Denote by
C3 the digraph with vertex set {1, 2, 3} and edge set {(1, 2), (2, 3), (3, 1)}. The unique
tournament limit Γ satisfying t(C3,Γ) = 0 is called the transitive limit. This can be
represented by the kernel W (x, y) = 1(x ≥ y), see [11] for a full characterisation of the
transitive limit. If Γ is the transitive limit, it is also not difficult to show that Tn → Γ
as n → ∞, where Tn denotes the tournament with vertex set {1, 2, . . . , n} and edges
(i, j) if and only if i < j. The tournament Tn is known as the transitive tournament on
n vertices.
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Figure 1. The three squares show three non–equivalent tournament ker-
nels [0, 1]2 → [0, 1]. (Note that the origin (0, 0) is in the top left corner.)
Each realises the score function f(x) = 1/2 and the degree distribution
with an atom of mass 1 at (1/2, 1/2).

Remark 1.11. The corresponding uniqueness problem for score sequences of tournaments
was posed and answered by Avery [1]. A score sequence that can be realised by a unique
(up to isomorphism) tournament is called simple. A non–decreasing score sequence
(di)

n
i=1 is irreducible if

k∑
i=1

di >

(
k

2

)
, i = 1, . . . , n− 1,

n∑
i=1

di =

(
n

2

)
.

Avery [1] proved that an irreducible score sequence is simple if and only if it is one of
{0}, {1, 1, 1}, {1, 1, 2, 2} and {2, 2, 2, 2, 2}.

Furthermore, a tournament is irreducible if and only if for all pairs of distinct vertices
u, v, there exist directed paths between u and v in both directions. One can show that a
tournament is irreducible if and only if its non–decreasing score sequence is irreducible.
Since any tournament decomposes into a linear order of irreducible subtournaments,
see [9], Avery’s result implies that a tournament is the unique realisation of its score
sequence if and only if the score sequences of each of its irreducible subtournaments are
one of {0}, {1, 1, 1}, {1, 1, 2, 2} and {2, 2, 2, 2, 2}.

If one takes a sequence of simple score sequences ((d
(n)
i )ni=1)

∞
n=1, then the unique

tournaments (Gn)∞n=1 with these score sequences will look macroscopically more and
more like large transitive tournaments (tournaments with no cycles). In fact, a sequence
of tournaments with simple score sequences will always be convergent, and it will always
converge to the transitive limit.This can be seen by changing each of its irreducible
subtournamnets to a transitive subtournament of the same size. In total this changes
O(n) edges, which is not enough to change the limit object.

The main consequence of the next theorem is that almost all degree distributions can
be realised by several different tournament limits, with the one exception (the transitive
limit) outlined above. In light of Remark 1.11, this should not be surprising.

Theorem 1.12. Let Γ be some tournament limit. The following statements are equiv-
alent.

(i) Γ is uniquely determined by its degree distribution ν(Γ).
(ii) Γ is uniquely determined by its outdegree distribution ν+(Γ).

(iii) Γ has outdegree distribution ν+(Γ) = U [0, 1].
(iv) Γ has outdegree distribution ν+(Γ) = f(U [0, 1]), where f : [0, 1] → [0, 1] is a

measure-preserving transformation.
(v) The (1, 1):th moment of the degree distribution of ν(Γ) equals 1/6, i.e. t(S1,1,Γ) =

1/6.
(vi) Γ is the transitive limit, i.e. t(C3,Γ) = 0.

It holds that

t(C3,Γ) = t(S0,0,Γ)− 3t(S0,1,Γ) + 3t(S1,1)− t(C3,Γ)
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for any tournament limit Γ, so the C3–density is determined uniquely by the degree
distribution. Moreover, since t(S0,0,Γ) = 1 and t(S0,1,Γ) = 1/2 (the former is the
“vertex density”, the latter the “edge density”), we have that t(C3,Γ) = 0 if and only
if t(S1,1,Γ) = 1/6. Since there is a unique limit (see [11]) with t(C3,Γ) = 0, this shows
that there is a unique limit (i.e. the transitive limit) such that the (1, 1)–moment of its
degree distribution is 1/6. This is the direction (v) ⇔ (vi). The direction (i) ⇔ (ii).
The directions iii ⇔ (iv) and (iii) ⇒ (v) are straightforward. The direction (vi) ⇒ (ii)
follows since the transitive limit can be represented by W (x, y) = 1(y ≤ x), the score
function of which is f(x) = x. The direction (vi) ⇒ (iii) is straightforward. The only
difficult direction is (ii) ⇒ (vi), which we deal with in Section 4.

Theorem 1.12 adds to list of equivalent characterisations of the transitive limit given
in [11]. Furthermore, a consequence of it (and the proof of (ii) ⇒ (vi)) is the following
corollary

Corollary 1.13. Let µ be some distribution on [0, 1]. Then there are either 0, 1 or
infinitely many tournament limits with degree distribution µ.

1.4. Self–converse limits and kernels. The converse of a generalised tournament
G = (V (G), α) is the tournament G′ = (V (G), α′) where α′(i, j) = 1 − α(i, j) for
all i, j ∈ V (G). Intuitively, G′ is obtained by reversing all edges of G. Converses of
digraphs are defined analogously. Two generalised tournaments G1 = (V (G1), α1) and
G2 = (V (G2), α2) are isomorphic if there exists a bijection ρ : V (G1) → V (G2) such
that α1(i, j) = α2(ρ(i), ρ(j)) for all i, j ∈ V (G1). A generalised tournament G is said to
be self–converse if G and G′ are isomorphic. The following lemma gives a few equivalent
definitions of self–converse tournaments.

Lemma 1.14. Let G = (V (G), α) be a tournament. The following are equivalent.

(i) G is self–converse.
(ii) G and G′ are isomorphic.

(iii) tind(F,G) = tind(F
′, G) for any tournament F .

(iv) t(F,G) = t(F ′, G) for any digraph F .
(v) There exists a bijection ρ : V (G)→ V (G) such that α(i, j) + α(ρ(i), ρ(j)) = n− 1

for all distinct i, j ∈ V (G).

The homomorphism conditions above motivate the following definition.

Definition 1.15. The converse of a tournament limit Γ is the unique tournament limit
Γ′ with t(F,Γ′) = t(F ′,Γ) for any digraph F . If Γ = Γ′, then Γ is said to be self–converse.

Equivalently, Γ is self–converse if and only if t(F,Γ) = t(F ′,Γ) for any digraph F .
To see that converses of tournament limits are well–defined, take some tournament

limit Γ and some sequence (Gn)∞n=1 of tournaments converging to Γ as n → ∞. Since
t(F,G′) = t(F ′, G) for any digraphs F,G, the sequence (G′n)∞n=1 must also be a conver-
gent sequence. Say that it converges to some limit Γ′. Then

t(F,Γ′) = lim
n→∞

t(F,G′n) = lim
n→∞

t(F ′, Gn) = t(F ′,Γ),

which shows that converses are well–defined.
The definition of the converse of a kernel mirrors that for generalised tournaments.

Definition 1.16. The converse of a tournament kernel W : [0, 1]2 → [0, 1] is the tour-
nament kernel W ′ : [0, 1]2 → [0, 1] defined by W ′(x, y) := 1 −W (x, y) = W (y, x). If
W and W ′ are equivalent (represent the same tournament limit), then W is said to be
self–converse.
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Converseness is well-behaved under “representation”. To see this, suppose W repre-
sents Γ. Since t(F,Γ′) = t(F ′,Γ) = t(F ′,W ) = t(F,W ′), the converse W ′ represents Γ′.
This implies that also self–converseness is well–behaved under “representation”.

Lemma 1.17. Let Γ be a tournament limit represented by a kernel W . Then Γ′ is
represented by W ′. Furthermore, Γ is self–converse if and only if W is self–converse.

It is easy to show that any convergent sequence of self–converse tournaments must
converge to a self–converse tournament limit. However, we have not been able to show
that any self–converse tournament limit is the limit of a sequence of self–converse tour-
nament, except in some special cases outlined below. The difficulty stems from the fact
that a sequence (Gn)∞n=1 converging to some self–converse tournament limit Γ need only
be approximately self–converse, in the sense that |t(F,Gn)−t(F,G′n)| → 0 as n→∞, for
any digraph F , so the usual construction via random tournaments G(n,W ) will not suc-
ceed. Instead we will define a new type of random tournaments which are self–converse
while still being comparable to G(n,W ). For our definitions to make sense, we need to
restrict ourselves to a subclass of self–converse kernels.

Definition 1.18. A tournament kernel is said to be strongly self–converse if there exists
a measure–preserving transformation σ : [0, 1] → [0, 1] satisfying σ2(x) = x for almost
every x ∈ [0, 1] and W (x, y) = W (σ(y), σ(x)) for almost every (x, y) ∈ [0, 1]2.

Any strongly self–converse tournament kernel is self–converse, since W ′(x, y) :=
W (y, x) is equivalent to W (σ(y), σ(x)) = W (x, y). However, we do now know if the
converse holds, even in the weaker sense of “equivalence”.

Question. Is every self–converse tournament kernel equivalent to a strongly self–converse
tournament kernel?

The answer is positive if the score function of W is assumed to be almost everywhere
injective. Strongly self–converse kernels are easier to handle and we are able to prove
the following result.

Proposition 1.19. If W is a strongly self–converse tournament kernel, then there exists
a sequence (Gn)∞n=1 of self–converse tournaments which converges to W .

However, we do not know of any example of a (non-strongly) self–converse tournament
kernel for which there is no sequence of self–converse tournaments converging it, nor of
any example of (non-strongly) self–converse tournament kernels for which there is a
sequence of self–converse tournaments converging to it.

The following result is the kernel version of Lemma 1.14.

Lemma 1.20. Let W be a tournament kernel. The following are equivalent.

(i) W is self–converse.
(ii) W and W ′ are equivalent.

(iii) tind(F,W ) = tind(F
′,W ) for any tournament F .

(iv) t(F,W ) = t(F ′,W ) for any digraph F .

If Conjecture 2.3 is true, then the following condition is equivalent to the above.

(v) There exist measure–preserving transformations σ1, σ2 : [0, 1] → [0, 1] such that
W (σ1(x), σ1(y)) +W (σ2(x), σ2(y)) = 1 almost everywhere.

Most of the directions follow either by definition or by Lemma 1.14 and continuity,
so we prove only (ii) ⇔ (v). Note the slight difference between Lemma 1.14 (v) and
Lemma 1.20 (v). Under the assumption that W be strongly self–converse, then we may
assume in Lemma 1.20 (v) that σ1(x) = x and σ22(x) = x almost everywhere.
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The above forms the basis of the theory of self–converse tournaments; our goal is now
to characterise the degree distributions of the set of self–converse tournament limits;
equivalently the score functions of the set of self–converse tournament kernels. The
corresponding results for tournaments and generalised tournaments were worked out in
[4, 12].

Theorem 1.21 ([4, 12]). A non–decreasing sequence (di)
n
k=1 of non–negative integers

(respectively reals) is the score sequence of some self–converse tournament (respectively
generalised tournament) if and only if∑

i∈J
di ≥

(|J |
2

)
for all J ⊆ {1, 2, . . . , n} with equality for J = {1, 2, . . . , n}, and moreover di + dn+1−i =
n− 1 for i = 1, . . . , n.

With this result in mind, we define the corresponding score function condition and
state our main result regarding self–converse limits and kernels.

Definition 1.22. A measurable function f : [0, 1]→ [0, 1] is said to satisfy condition II
if f(x) + f(1− x) = 1 for almost all x ∈ [0, 1].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f
(x
)

Figure 2. A function f (in black) satisfying condition I and II. Any
non–decreasing function satisfying I must also satisfy x/2 ≤ f(x) ≤
(x+1)/2 and hence lie inside the gray box. The dotted lines corresponds
to the two extreme cases f(x) = x and f(x) = 1/2. Condition I says
that

∫
[0,r](f(x) − x) dx ≥ 0 with equality for r = 1. Condition II says

that {(x, f(x)) : x ∈ [0, 1]} is fixed under the transformation (x, y) 7→
(1− x, 1− y).

Theorem 1.23. Let f : [0, 1] → [0, 1] be a non–decreasing function. The following are
equivalent.

(i) There exists a self–converse tournament limit Γ with ν+(Γ) = Leb(f−1).
(ii) There exists a self–converse tournament kernel W with score function f .

(iii) f satisfies conditions I and II.
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We could also have phrased condition II in terms of the degree distribution. The
corresponding condition turns out to be ν+ = ν−, and the following alternative charac-
terisation is found.

Proposition 1.24. Let ν = (ν−, ν+) be the degree distribution of some tournament
limit. Then there is a self–converse tournament limit Γ with degree distribution ν(Γ) = ν
if and only if ν+ = ν−.

1.5. Outline. The rest of this paper is outlined as follows. In Section 2 we introduce the
necessary background on tournament limits and tournament kernels, including construc-
tion of useful random tournaments. In Section 3 we prove our initial results regarding
the degree distribution and score functions, and provide a short discussion. In Section
4 we prove Theorem 1.12. Finally, in Section 5 we prove our results on self–converse
limits.

2. Limits, kernels and random tournaments

Let F and G be digraphs. A map φ : V (F ) → V (G) is said to be a homomorphism
if (φ(i), φ(j)) ∈ E(G) for all (i, j) ∈ E(F ), and is said to preserve non–adjacency if also
(φ(i), φ(j)) /∈ E(G) for all (i, j) /∈ E(F ). For any digraph G, denote by v(G) := |V (G)|
its number of vertices. For any two digraphs F,G we define the homomorphism density

t(F,G) :=
hom(F,G)

v(G)v(F )

where hom(F,G) is the number of homomorphisms V (F ) → V (G). The denomina-
tor is the total number of maps V (F ) → V (G). Similarly, the injective and induced
homomorphism densities are defined as

tinj(F,G) :=
inj(F,G)

(v(G))v(F )

tind(F,G) :=
ind(F,G)

(v(G))v(F )
,

where inj(F,G) denotes the number of injective homomorphisms V (F ) → V (G) and
ind(F,G) denotes the number of injective homomorphisms V (F )→ V (G) that also pre-
serve non–adjacency. It can be shown that the densities t(·, G), tinj(·, G) and tind(·, G)
provide the same information for large digraphs G, so we can choose to work with either
one of them.

Remark 2.1. If F is a non–tournament digraph and G a tournament, then tind(F,G) = 0.
For this reason it is sometimes convenient to work with tind rather than t.

The densities (any one of them) above form the basis of the limit theory of tourna-
ments. Denote by T the set of unlabelled digraphs, and by T ⊆ T the set of unlabelled
tournaments. The map τ(G) := (t(F,G))F∈T × (v(G)−1) ∈ [0, 1]T × [0, 1] is injective.
Denote by T the closure of τ(T ) in [0, 1]T × [0, 1], observing that this space is compact

and metrizable. The set T̂ = T \ τ(T ) is the set of tournament limits. A tournament
limit Γ can therefore formally be seen as an element of [0, 1]T × {0}. A sequence of

tournaments (Gn)∞n=1 is said to converge to a tournament limit Γ ∈ T̂ if v(Gn) → ∞
and τ(Gn)→ Γ as n→∞. We will always abuse notation and write Gn → Γ instead of
τ(Gn)→ Γ, and think of Γ as the limit of Gn if Gn converges to Γ.

A tournament kernel is a function W : [0, 1]2 → [0, 1] such that W (x, y)+W (y, x) = 1
almost everywhere. Any tournament kernel W generates a random infinite tournament
G = G(∞,W ) as follows. Let X1, X2, X3, . . . be an infinite sequence of mutually inde-
pendent and identically distributed U [0, 1] random variables. For each 1 ≤ i < j, draw
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an edge from i to j with probability W (Xi, Xj). Restricting to the subgraph induced by
the first n vertices, one obtains a random tournament G(n,W ). It can be shown that
the limits limn→∞ t(F,G(n,W )) exist almost surely for each digraph F and satisfy

lim
n→∞

t(F,G(n,W )) =

∫
[0,1]v(F )

∏
(i,j)∈E(F )

W (xi, xj)
∏

i∈V (F )

dxi =: t(F,W ).

Remark 2.2. It is possible to consider tournament kernels S2 → [0, 1] for some general
probability space S instead. This does not give any extra benefit so we will take S = [0, 1]
throughout.

A tournament limit Γ is said to be represented by a tournament kernel W if

(t(F,W ))F∈T × {0} = Γ.

Since t(F,G(n,W ))→ t(F,W ) almost surely, we have that each tournament kernel rep-
resents some tournament limit. Furthermore, it was shown in [11] that each tournament
limit can be represented by some tournament kernel. However, any tournament limit
has many different representatives; for instance, applying a measure–preserving trans-
formation [0, 1]→ [0, 1] to both coordinates of a tournament kernel W does not change
the values of the densities t(F,W ) for any digraph F , so the new kernel still represents
the same tournament limit.

One source of difficulty is the non–uniqueness of tournament kernels which represent
the same tournament limit. By analogy to the case of “undirected” kernels, we believe
the following result to be true, but we are not aware of a proof in the literature.

Conjecture 2.3. If W and W ′ are equivalent tournament kernels, then there exist
measure-preserving transformations σ1, σ2 : [0, 1] → [0, 1] such that W (σ1(x), σ1(y)) =
W (σ2(x), σ2(y)) almost everywhere.

3. Results on degree distributions and score functions

Proof of Lemma 1.7. We have∫
[0,1]

xmyndν(Γ) = t(Sm,n,Γ)

= t(Sm,n,W )

=

∫
[0,1]

(∫
[0,1]m

W (x, y) dy

)m(∫
[0,1]n

W (z, x) dz

)n
dx

= E

[(∫
[0,1]m

W (U, y) dy

)m(∫
[0,1]n

W (z, U) dz

)n]
.

The claim now follows by the method of moments. �

For the proof of Theorem 1.10, we shall proceed as follows. We have already proved
(ii) =⇒ (iii). We shall prove (ii) =⇒ (i), (iii) =⇒ (ii) and (i) =⇒ (iii) in that order.

Proof of Theorem, 1.10 (ii) =⇒ (i). Let Γ be the graph limit that is represented by W .
Let Y ∼ ν+(Γ) and let X ∼ U [0, 1]. Then, for any measurable B ∈ [0, 1],

P [Y ∈ B] = P

[∫
[0,1]

W (X, y) dy ∈ B
]

= P [f(X) ∈ B] ,

so Y
d
= f(X), which proves the claim.

�
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To prove Theorem 1.10, (iii) ⇒ (ii), we will make use of a discretisation of f to con-
struct a sequence of generalised tournaments (invoking Theorem 1.1). Each generalised
tournament corresponds to a step tournament kernel, and passing to a fine enough sub-
sequence we can ensure that these step functions converge weakly to some tournament
kernel with score function f .

Let G = ({1, 2, . . . , n}, α) be a generalised tournament on n vertices. This induces a
step tournament kernel WG defined by

WG(x, y) =

{
α(i, j), (x, y) ∈

(
i−1
n , in

]
×
(
j−1
n , jn

]
, i 6= j,

1/2, (x, y) ∈ ⋃n
i=1 ((i− 1)/n, i/n]2 .

The boundaries between the subsquares form a null set, so WG can be defined arbitrarily
there. Conversely, if W is a tournament kernel that is constant almost everywhere on
each square [(i−1)/n, i/n]× [(j−1)/n, j/n] for i, j = 1, 2 . . . , n, the reverse construction
defines a generalised tournament. By this correspondence, the following lemma should
not be surprising.

Lemma 3.1. If f satisfies I, then the sequence (di)
n
i=1 defined by

di = n2
∫ i/n

(i−1)/n

(
f(x)− 1

2n

)
dx, i = 1, . . . , n,

is a score sequence of some generalised tournament. Moreover, there is a tournament
kernel Wn with score function

fn(x) = n

∫ i/n

(i−1)/n
f(y) dy, x ∈

(
i− 1

n
,
i

n

]
, i = 1, . . . , n.

Proof. For any J ⊆ {1, . . . n}, let BJ =
⋃
j∈J [(j − 1)/n, j/n]. Then |J | = nµ(BJ) and

so, since f satisfies I,∑
i∈J

di = n2
∫
BJ

(
f(x)− 1

2n

)
dx ≥ n2µ(BJ)2

2
− nµ(BJ)

2
=
|J |2

2
− |J |

2
=

(|J |
2

)
.

Also note that this implies that di ≥ 0 for any i = 1, . . . , n. Moreover, for J = {1, . . . , n}
we have

∑
i∈J di = n2

∫ 1
0

(
f(x)− 1

2n

)
dx = n2

2 − n
2 =

(
n
2

)
=
(|J |
2

)
. Therefore the condition

in Theorem 1.1 is satisfied, so there exists some generalised Gn tournament with score
sequence (di)

n
i=1. The tournament kernel Wn = WGn has score function fn. �

Using this lemma, we can now prove (iii) =⇒ (ii) in Theorem 1.10. We will use
basic concepts from weak convergence . A sequence of functions fn ∈ Lp is said to
converge weakly to a function f ∈ Lp if for all g ∈ Lq with 1/p + 1/q = 1 we have∫
fn(x)g(x) dx→

∫
f(x)g(x) dx.

Proof of Theorem 1.10, (iii) =⇒ (ii). Given f , construct the score functions (fn)∞n=1

and the associated sequence (Wn)∞n=1 of tournament kernels as in Lemma 3.1. Note
that fn → f a.e. as n → ∞. The sequence (Wn)∞n=1 can be seen as a sequence in the
the Hilbert space L2([0, 1]2), more specifically, as a sequence in the closed, convex and
bounded subset {U ∈ L2([0, 1]2) : U(x, y) + U(y, x) = 1, 0 ≤ U(x, y) ≤ 1 a.e.}. Note
that this is precisely the set of tournament kernels. It follows by the Banach-Alouglu
theorem that every sequence in this set has a weakly convergent subsequence, and (by
weak closure) the weak limit must also lie in the same set. Passing to a subsequence if
necessary, we may therefore assume that (Wn)∞n=1 converges weakly to some tournament
kernel W .
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We show that f converges weakly to the score function of W . Take any g ∈ L2([0, 1]).
Since Wn →W weakly, it follows by applying Fubini’s theorem, that

∫ 1

0
fn(x)g(x) dx =

∫ 1

0

(∫ 1

0
Wn(x, y) dy

)
g(x) dx

=

∫ 1

0

∫ 1

0
g(x)Wn(x, y) dx dy

→
∫ 1

0

∫ 1

0
g(x)W (x, y) dx dy

=

∫ 1

0

(∫ 1

0
W (x, y) dy

)
g(x) dx,

i.e. fn →
∫ 1
0 W (·, y) dy weakly. But since also fn → f a.e., it holds that f =∫ 1

0 W (·, y) dy a.e.. By changing W on a null set, we may assume that the equality
holds everywhere, i.e. f is the score function of W . �

To show (i) ⇒ (iii) we use the theory of decreasing rearrangements and the Hardy–
Littlewood inequality, along with the fact that we know that (ii) ⇒ (iii). Let us first
recall some basic facts from the theory of decreasing rearrangements. For a reference to
this, we refer the reader to [2].

Given a function f : [0, 1] → [0, 1], define Lebf : [0, 1] → [0, 1] by Lebf (t) = Leb{x ∈
[0, 1] : f(x) > t}. The decreasing rearrangement of the function f : [0, 1] → [0, 1]
is the function f∗ : [0, 1] → [0, 1] defined by f∗(t) = inf{λ ∈ [0, 1] : Lebf (λ) ≤ t}.
The increasing rearrangement of f is the function f∗ : [0, 1] → [0, 1] defined by f∗(t) =
f∗(1− t). The Hardy–Littlewood inequality states that

∫ 1

0
f∗(x)h∗(x) dx ≤

∫ 1

0
f(x)h(x) dx ≤

∫ 1

0
f∗(x)h∗(x) dx

for any measurable f, h : [0, 1] → [0, 1]. We shall only make use of the first inequality.
In particular, we will take h(x) = 1{x∈B} for any measurable B ⊆ [0, 1], whence h∗(x) =
1{x∈[1−µ(B),1]}, while f will be the score function of some tournament kernel. We also
mention the result [10] that given any measurable g : [0, 1] → [0, 1], there exists a
measure–preserving σ : [0, 1]→ [0, 1] such that g∗(σ(x)) = g(x) for almost all x ∈ [0, 1].

The notion of a decreasing rearrangement is useful to us because the cumulative
distribution function of the measure ν+(Γ) = Leb(f−1) is the function 1 − Lebf , and
f∗(t) = Leb{λ ∈ [0, 1] : Lebf (λ) > t}. Since a measure on [0, 1] is uniquely determined
by its cumulative distribution function, we may consider Lebf∗ instead of Leb(f−1).

Proof of Theorem, 1.10 (i) =⇒ (iii). Let W be any kernel representing Γ, and let g be
the score function of W . It follows by (ii) =⇒ (i) that 1 − Lebf = 1 − Lebg, whence
Lebf = Lebg and f∗ = g∗.

Let B ⊆ [0, 1] be any measurable set with µ(B) = b and let σ be a measure–preserving
map such that g∗(σ(x)) = g(x) for almost all x ∈ [0, 1]. By the Hardy–Littlewood
inequality, f∗ = g∗, the fact that g∗(σ(x)) = g(x), the implication (ii)⇒ (iii) of Theorem
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1.10 and the fact that σ is measure–preserving, it follows that∫
B
f(x) dx ≥

∫ 1

0
1{x∈[1−b,1]}f

∗(x) dx =

∫ 1

0
1{x∈[1−b,1]}g

∗(x) dx

=

∫ 1

0
1{σ(x)∈[1−b,1]}g

∗(σ(x)) dx

=

∫
σ−1([1−b,1])

g(x) dx

≥ (µ(σ−1([1− b, 1]))2

2

=
µ(B)2

2
.

Therefore f satisfies condition I. �

3.1. Discussion. The degree distribution only depends on f∗, so one may restrict one-
self to the class of decreasing functions [0, 1]→ [0, 1]. That is, if Γ is a tournament limit
with degree distribution Leb(f−1) = Leb((f∗)−1), then by Theorem 1.10 there exists
a tournament kernel W ∗ with score function f∗. Let σ : [0, 1] → [0, 1] be a measure–
preserving transformation such that f = f∗ ◦ σ. Then W (x, y) := W ∗(σ(x), σ(y)) is
a tournament kernel equivalent to W ∗ (all the subgraph densities are the same), and
moreover it has score function f , since∫ 1

0
W (x, y) dy =

∫ 1

0
W ∗(σ(x), σ(y)) dy =

∫ 1

0
W ∗(σ(x), y) dy = f∗(σ(x)) = f(x).

It follows by this construction that if f1, f2 are two score functions with the same de-
creasing rearrangement, then there exist equivalent tournament kernels W1 and W2 with
score functions f1 and f2 respectively.

Moreover, if f is assumed to be non–decreasing, then condition I simplifies and needs
only be checked for sets of the form B = [0, r], 0 < r < 1. This follows since, for
arbitrary measurable B ⊆ [0, 1] with µ(B) = r, we have by monotonicity∫

B
f(x) dx ≥

∫ r

0
f(x) dx =

r2

2
=
µ(B)2

2
.

Finally we discuss how the score function relates to certain moment problems. If Γ is
such that ν+(Γ) = Leb(f−1), then it follows by Theorem 1.7 that

t(Sm,n,Γ) =

∫ 1

0
f(x)m(1− f(x))n dx.

In particular, the numbers t(Sm,n,W ) determine the moments of the function f . Us-
ing this relationship (or arguing via inclusion–exclusion type formulae that exist for
tournaments and tournament kernels), this formula shows that

t(Sm,n,Γ) =

m∑
`=0

(
m

`

)
(−1)`t(S0,`+n,Γ) =

n∑
`=0

(
n

`

)
(−1)`t(Sm+`,0)

which is another way to see that the degree distribution ν(Γ) is determined by its first
or second marginals, ν−(Γ) or ν+(Γ), see also Remark 1.6.

The moments of f determine f up to a measure–preserving transformation. See e.g.
[7, Proposition A.18], which states that two measurable functions f, g : [0, 1] → [0, 1]
have the same moments if and only if there exist measure–preserving transformations
σ, σ′ : [0, 1] → [0, 1] such that f ◦ σ = g ◦ σ′ almost everywhere. Given a function f :

[0, 1]→ [0, 1], we call the sequence
∫ 1
0 f(x)k dx, k = 0, 1, 2, . . . its moment sequence. The
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Hausdorff moment problem calls for the characterisation those non–negative sequences
(ak)

∞
k=0 that can be realised as the moments of some function f : [0, 1]→ [0, 1].

Proposition 3.2 ([7], Proposition A.20). Let (ak)
∞
k=0 be a bounded non–negative se-

quence. The following are equivalent.

(i) (ak)
∞
k=0 is the moment sequence of some measurable function [0, 1]→ [0, 1].

(ii) a0 = 1 and
∑m

k=0(−1)k
(
m
k

)
an+k ≥ 0 for all n,m ≥ 0.

(iii) a0 = 1 and the infinite matrix [an+m]n,m≥0 is positive semi–definite.

Notice that
∑m

k=0(−1)k
(
m
k

)
an+k =

∫ 1
0 f(x)m(1 − f(x))n dx if (ak)

∞
k=0 is the moment

sequence of f .
In view of Proposition 3.2 and what we have proved so far, we are therefore dealing

with a restricted form of the Hausdorff moment problem, where we consider functions
[0, 1] → [0, 1] that satisfy condition I. The following result, which follows from the
preceding discussion and Theorem 1.10, provides a characterisation of moment sequences
of functions [0, 1]→ [0, 1] that satisfy condition I.

Proposition 3.3. Let (ak)
∞
k=0 be a bounded non–negative sequence. The following are

equivalent.

(i) (ak)
∞
k=0 is the moment sequence of some measurable function f : [0, 1] → [0, 1]

satisfying condition I.
(ii) There exists a sequence (Gn)∞n=0 of tournaments such that v(Gn)→∞ and t(S0,k, Gn)→

ak as n→∞ for any k ≥ 0.
(iii) There exists a tournament limit Γ such that t(S0,k,Γ) = ak for any k ≥ 0.

(iv) There exists a tournament kernel W such that
∫ 1
0

(∫ 1
0 W (x, y) dy

)k
dx = ak for

any k ≥ 0.

A natural question is whether these moment sequences can be characterised purely
algebraically. That is, can one add additional (algebraic) conditions to items ii and
iii in Proposition 3.2 to make these equivalent to the statements in Proposition 3.3?
Applying the results of [5] would give such an algebraic condition, essentially saying
that a sequence (ak)

∞
k=0 satisfies any of the conditions in Proposition 3.3 if and only if

the zeroes of a certain polynomial determined by (ak)
∞
k=1 satisfies a inequality similar to

that in Theorem 1.1. This however is not particularly illuminating and we refrain from
pursuing this matter further here.

4. Results on the uniqueness

We turn now to the question of uniqueness and completing the proof of Theorem 1.12.

Remark 4.1. For finite tournaments, one can change the orientation of any 3–cycle with-
out changing the score sequence, although this would typically change the isomorphism
type of the tournament. (In particular, given any two tournaments with the same score
sequence, one can transform one into the other by successively reversing the orientation
of 3–cycles.) The idea of the proof of Theorem 1.12 is precisely to reverse the orientation
of 3–cycles in W , taking care not to change the score function but still changing the
kernel to another, non–equivalent kernel.

Proof of Theorem 1.12 (ii) ⇒ (vi). We prove the contrapositive statement. Suppose
t(C3,Γ) > 0. We claim there is a tournament limit Γ0 6= Γ such that ν(Γ) = ν(Γ0).

Let W be any representative of Γ. There must exist some 0 < δ < 1 such that the set

A = {(x, y, z) ∈ [0, 1]3 : δ < W (x, y),W (y, z),W (z, x) < 1− δ}
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satisfies Leb(A) > 0. Otherwise t(C3,W ) = 0, a contradiction. Moreover, there exist
disjoint intervals A1, A2, A3 ⊆ [0, 1] such that Leb ((A1 ×A2 ×A3) ∩A) > 0. We may
assume Leb(A1),Leb(A2),Leb(A3) < δ. Let B = (A1 ×A2 ×A3) ∩A.

We define a family of tournament kernel Ws : [0, 1]2 → [0, 1], s ∈ [0, 1] as follows. For
any (x, y, z) ∈ B, define

Ws(x, y) := W (x, y) + t · Leb{z ∈ A3 : (x, y, z) ∈ B}
Ws(y, z) := W (y, z) + t · Leb{x ∈ A1 : (x, y, z) ∈ B}
Ws(z, x) := W (z, x) + t · Leb{y ∈ A2 : (x, y, z) ∈ B}

and

Ws(y, x) := W (y, x)− t · Leb{z ∈ A3 : (x, y, z) ∈ B}
Ws(z, y) := W (z, y)− t · Leb{x ∈ A1 : (x, y, z) ∈ B}
Ws(x, z) := W (x, z)− t · Leb{y ∈ A2 : (x, y, z) ∈ B}

and define Ws(x, y) = W (x, y) for any point (x, y) ∈ [0, 1] where Wt is not yet defined.
The disjointedness of A1, A2, A3 ensures that the construction is well–defined. This
defines a tournament kernel Ws : [0, 1]2 → [0, 1].

Denote by f and fs the score functions of W and Ws, respectively. We claim that
f = fs for all s ∈ [0, 1]. Fix some x ∈ [0, 1]. If x ∈ A1, then, by Fubini’s theorem,

(f − ft)(x) =

∫ 1

0
(W −Wt)(x, y) dy

= t

∫
A2

Leb{z ∈ A3 : (x, y, z) ∈ B}dy − t
∫
A3

Leb{y ∈ A2 : (x, y, z) ∈ B} dz

= t · Leb{(y, z) ∈ A2 ×A3 : (x, y, z) ∈ B} − t · Leb{(y, z) ∈ A2 ×A3 : (x, y, z) ∈ B}

= 0.

The other cases with x ∈ A2 and x ∈ A3 are similar. If x ∈ [0, 1] \ (A1 ∪A2 ∪A3), then
clearly fs(x) = f(x). Hence fs = f , so Ws and W have the same score functions.

Finally we show that we can choose s ∈ [0, 1] such that W and Ws are not equivalent
as kernels. We do this by showing that there is some s ∈ [0, 1] for which

t(C4,W ) 6= t(C4,Ws).

When computing t(C4,Wt), we integrate the function

gs(x1, x2, x3, x4) = Ws(x1, x2)Ws(x2, x3)Ws(x3, x4)Ws(x4, x1)

over [0, 1]4. Each such product is a polynomial in s (of degree at most 4) with constant
term equal to W (x1, x2)W (x2, x3)W (x3, x4)W (x4, x1). This implies that t(C4,Ws) is a
polynomial in s, of degree at most 4, with constant term equal to t(C4,W ).

We claim that the coefficient of s4 in gs must be non–negative. To see this, recall
that Ws is equal to W except possibly inside the small squares shown in Figure 3. If
gs(x1, x2, x3, x4) is to be of degree 4, then necessarily x1, x2, x3, x4 ∈ A1 ∪ A2 ∪ A3. It
is straightforward to check all cases and see that the coefficient in front of s4 must be
non–negative. Since we have changed W on a non–null set, gs(x1, x2, x3, x4) is of degree
4 on a non–null set of [0, 1]4. Therefore

t(C4,Ws) = a4s
4 + a3s

3 + a2s
2 + a1s+ t(C4,W ),
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Figure 3. An illustration of the construction of Wt. The 2–dimensional
projections of B lie inside the small squares Ai × Aj , i 6= j (but need
not fill them up, so the picture is somewhat misleading) and the sign
highlights the difference between Wt and W .

where a4 > 0. We can therefore choose s0 ∈ [0, 1] so that t(C4,Ws0) 6= t(C4,W ).
Now let Γ0 be the tournament limit represented by Ws0 . Since f = fs0 , we have

ν(Γ) = ν(Γ0). But Γ 6= Γ0 since t(C4,Γ) 6= t(C4,Γ0). This completes the proof. �

It is also proved in [11] that W represents the transitive tournament limit if and only

if E
[(∫ 1

0 W (X, y) dy
)2]

= 1/3, where X ∼ U [0, 1]. Therefore the transitive tournament

limit is determined by the first two moments of its outdegree distribution.

5. Results on self–converse limits

Proof of Lemma 1.14. (i) ⇔ (ii). This is the definition.
(iv) ⇔ (ii). This follows by the fact that t(·, G) and tind(·, G) are related via lin-

ear combinations, so the homomorphism density of any digraph can be expressed as a
linear combination of induced homomorphism densities of digraphs, which is a linear
combination of induced homomorphism densities of tournaments.

(ii) ⇒ (iii). Immediate since tind(F,G
′) = tind(F

′, G) holds for any tournament G;
now G and G′ are isomorphic, so tind(F,G

′) = tind(F,G).
(iii) ⇒ (ii). Take F = G′. Then tind(G

′, G) = tind(G,G) > 0, so G contains a copy of
G′. Since v(G) = v(G′), this implies that G and G′ are isomorphic, so G is self–converse.

(ii) ⇒ (v). The bijection observing the isomorphism between G and G′ will satisfy
this.

(v) ⇒ (ii). The bijection ρ will be the required isomorphism between G and G′. �

Proof of Proposition 1.19. Let σ : [0, 1]→ [0, 1] be a measure–preserving transformation
such that σ2(x) = x for almost every x ∈ [0, 1] and W (x, y) = W (σ(y), σ(x)) for almost
every (x, y) ∈ [0, 1]2. Let X1, . . . , Xn ∼ U [0, 1] be mutually independent and identically
distributed. We construct a sequence of self–converse (random) tournaments H(2n,W )
with vertex set {v1, . . . , vn, w1, . . . , wn} as follows.

• For 1 ≤ i < j ≤ n, include the edge vivj with probability W (Xi, Xj); otherwise
include the edge vjvi. The induced random subtournament on {v1, . . . , vn} is
distributed like G(n,W ).
• For 1 ≤ i < j ≤ n, include the edge wiwj if and only if the edge vjvi was included

in the previous step. Note that the probability that the edge wiwj is included is
precisely W (Xj , Xi) = W (σ(Xi), σ(Xj)). The induced random subtournament
on {w1, . . . , wn} is therefore distributed like G(n,W ).
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• For any 1 ≤ i ≤ j ≤ n include the edge viwj with probability W (Xi, σ(Xj).
For any 1 ≤ j < i ≤ n, include the edge vjwi if and only if the edge viwj was
included. Then vjwi is included with probability W (Xi, σ(Xj)) = W (Xj , σ(Xi)).

The edges of H(2n,W ) are only “weakly dependent”, in the sense that all pairs of
distinct edges (vi, vj), (vk, v`) and all pairs (wi, wj), (wk, w`) are independent, while
edges (vi, wj) and (vk, w`) are dependent if and only if i = ` and j = k. When sam-
pling k vertices, the (orientation of the) edges induced by these k vertices are mutually
independent with probability tending to 1 as n → ∞. (It is enough to select vertices
with different indices.) Moreover, if we sample k vertices with “independent edges”,
then the induced subgraph will be distributed like G(k,W ). Denote by H(2n,W )[k] the
random induced subtournament of H(2n,W ) obtained by sampling k vertices (without
replacement). Then, for any tournament F on k vertices,

tind(F,H(2n,W )) = P[F = H(2n,W )[k]]→ P[F = G(k,W )] = tind(F,W )

as n → ∞. By [3], this implies that H(2n,W ) → W with probability 1. Since every
realisation of H(2n,W ) is self–converse, we can extract a sequence of self–converse
tournaments converging to W . �

Proof of Lemma 1.20. (v) ⇒ (ii). Let W0(x, y) = W (σ1(x), σ1(y)). Then

W ′0(x, y) = W0(y, x) = W (σ1(y), σ1(x)) = 1−W (σ2(y), σ2(x)) = W (σ2(x), σ2(y)).

Hence both W0 and W ′0 are pull–backs (via σ1 and σ2 respectively) of W , so W0 and W ′0
are equivalent (two pullbacks from the same kernel must have the same homomorphism
densities, hence be equivalent). Therefore W0 is self–converse. But W0 is equivalent
to W , so W must also be self–converse. (Another way to see this is that W ′0(x, y) =
W ′(σ1(x), σ1(y)) by the above, so W ′ is equivalent to W ′0, which is equivalent to W0,
which is equivalent to W .)

(ii) ⇒ (v). Suppose W and W ′ are equivalent and that there exists measure–
preserving transformations σ1, σ2 : [0, 1]→ [0, 1] such thatW (σ1(x), σ1(y)) = W ′(σ2(x), σ2(y))
almost everywhere. Then

W (σ1(x), σ1(y)) +W (σ2(x), σ2(y)) = W (σ1(x), σ1(y)) +W ′(σ2(y), σ2(x))

= W (σ1(x), σ1(y)) +W (σ1(y), σ1(x))

= 1

almost everywhere.
�

Proof of Theorem 1.23. (ii) ⇔ (i): This follows by Theorem 1.17 and the proof of The-
orem 1.10.

(i) =⇒ (iii): Since Γ is self–converse and S′n,0 = S0,n, we have∫ 1

0
f(x)n dx = t(Sn,0,Γ) = t(S0,n,Γ) =

∫ 1

0
(1− f(x))n dx.

so f and 1− f have the same moments, and hence the same decreasing rearrangement.
But f is non–decreasing, so its decreasing rearrangement is f(1 − x). Since 1 − f is
non–increasing, it is equal to its decreasing rearrangment, so f(1 − x) = 1 − f(x) for
almost all x ∈ [0, 1], as desired.

(iii) =⇒ (i): Fix f . Take the sequence (fn)∞n=1 as in Lemma 3.1. The associated score
sequence (di)

n
i=1 (as in Lemma 3.1) satisfies di + dn+1−i = n − 1 for i = 1, 2, . . . n. By

Theorem 1.21, there is a generalised self–converse tournament Gn with score sequence
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(di)
n
i=1. By compactness, there is a subsequence of Gn converging to some tournament

limit Γ. For any finite digraph F ,

t(F,Γ) = lim
n→∞

t(F,Gn) = lim
n→∞

t(F,G′n) = lim
n→∞

t(F ′, Gn) = t(F ′,Γ)

which implies that Γ is self–converse. Similar to Theorem 1.10, we have ν+(Γ) =
Leb(f−1). �

Proof of Proposition 1.24. Suppose Γ is self–converse. Then, since S′n,0 = S0,n, we have

t(Sn,0,Γ) = t(S0,n,Γ). Therefore the moments of its indegree and outdegree distributions
are equal, so ν+(Γ) = ν−(Γ).

Conversely, suppose ν+ = ν−. We know that ν+ = Leb(f−1) for some f : [0, 1] →
[0, 1]. Similarly one can show that the indegree distribution must be of the form ν− =
Leb((1−f)−1) for the same f : [0, 1]→ [0, 1]. We may assume that f be non–decreasing
(changing to its non–decreasing rearrangment, if necessary). Since ν+ = ν−, we have
that f and 1 − f have the same moments. Hence they have the same non–decreasing
rearrangement. This implies f(x) = 1−f(1−x)) for all x ∈ [0, 1]. It follows by Theorem
1.23 that there is a self–converse tournament limit Γ with ν(Γ) = ν. �
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