Algebraic structures

Seventh sheet of exercises

86. As an application of the theory of finite abelian groups one can prove the following

Theorem. Every finite subgroup of the unit group of a field is cyclic.

Use this theorem to show that every finite extension of a finite field is simple.

87. Show that the real number \(\alpha = 2 + \sqrt[4]{5} \) is algebraic, and find \(\text{irrpol}_Q(\alpha) \).

88. The \(n \)-th cyclotomic polynomial is defined for all \(n \in \mathbb{N} \setminus \{0\} \) as

\[\Phi_n(X) = \text{irrpol}_Q \left(e^{\frac{2\pi i}{n}} \right). \]

Find \(\Phi_n(X) \) for all \(1 \leq n \leq 8 \).

89. Show that the field \(\mathbb{A} \) of all algebraic numbers has the following properties.

(a) \([\mathbb{A} : \mathbb{Q}] = \infty \).

(b) \(\mathbb{A} \) is not simple over \(\mathbb{Q} \).

(c) \(\mathbb{A} \) is not finitely generated over \(\mathbb{Q} \).

90. A field \(K \) is called algebraically closed if \(K \) is the only algebraic extension of \(K \). Show that \(\mathbb{C} \) is algebraically closed.

91. Show that \(\mathbb{A} \) is algebraically closed.

92. Show that every field extension \(K \subset E \) of degree 2 is Galois, provided that \(\text{char}(K) \neq 2 \).

93. Prove that \(|\text{Gal}(E/K)| = [E : K] \), whenever \(K \subset E \) is a finite Galois extension.

(Hint. According to the proof of Proposition 56 there exists a primitive element \(\alpha \in E \) such that \(E = K(\alpha) \) is a splitting field for \(q(X) = \text{irrpol}_K(\alpha) \). Let \(R = \{\alpha_1, \ldots, \alpha_n\} \) be the set of all roots of \(q(X) \) in \(E \), with \(\alpha = \alpha_1 \). Show that for each \(\alpha_i \in R \) there is a unique \(\sigma \in \text{Gal}(E/K) \) such that \(\sigma(\alpha) = \alpha_i \).)

Please turn over!
94. Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(a) Determine $\text{Gal}(E/\mathbb{Q})$.
(b) Describe all subgroups of $\text{Gal}(E/\mathbb{Q})$, ordered by inclusion.
(c) Describe all intermediate fields $\mathbb{Q} \subset F \subset E$, ordered by inclusion.

95. Let $E = \mathbb{Q}(\zeta)$, where $\zeta = e^{\frac{2\pi i}{13}}$.
(a) Determine $\text{Gal}(E/\mathbb{Q})$.
(b) Describe all subgroups of $\text{Gal}(E/\mathbb{Q})$, ordered by inclusion.
(c) Describe all intermediate fields $\mathbb{Q} \subset F \subset E$, ordered by inclusion.

96. Let $K \subset E$ be a finite extension of degree n. Show that the inequality
$$\deg(\text{irrpol}_K(\alpha)) \leq n$$
holds for all $\alpha \in E$.

97. Show that every irreducible real polynomial has degree 1 or 2.

98. Find the addition table and the multiplication table of a field of order 8.

99. Find the complex roots of the polynomial $f(X) = 12X^3 - 16X^2 + 3X - 4$.