Egenskaper av linjära avbildningar

For vare linjär avbildning \(f : V \rightarrow W \) definierar man dess hörna (= kernel) enligt
\[
\ker(f) = \{ v \in V \mid f(v) = 0 \}
\]

och dess bild (= image, range) enligt
\[
\text{im}(f) = \{ w \in W \mid \exists v \text{ med } f(v) = w \}
\]

Delmängderna \(\ker(f) \subseteq V \) och \(\text{im}(f) \subseteq W \) är faktiskt delmängder.

Sät och verifiera delmunsaxiomen för \(\ker(f) \subseteq V \).

(DR1) \(f(0) = f(0 + 0) = f(0) + f(0) \Rightarrow f(0) = 0 \Rightarrow 0 \in \ker(f) \).

(DR2) \(u, v \in \ker(f) \Rightarrow f(u + v) = f(u) + f(v) = 0 + 0 = 0 \Rightarrow u + v \in \ker(f) \).

(DR3) \(c \in \mathbb{C}, v \in \ker(f) \Rightarrow f(cv) = c f(v) = c0 = 0 \Rightarrow cv \in \ker(f) \).

Verifikationen av delmunsaxiomen för \(\text{im}(f) \subseteq W \) lämnas som övning.

Varje linjär avbildning \(f : V \rightarrow W \) bestämmer alltså två delmängder, \(\ker(f) \subseteq V \) och \(\text{im}(f) \subseteq W \), och dessa innehåller viktig information om \(f \), då ju \(\ker(f) \) är just den del i \(V \) på vilken \(f \) försvinner, och \(\text{im}(f) \) är just den del i \(W \) vilken uppnås av \(f \).

\[
\begin{array}{ccc}
V & \xrightarrow{f} & W \\
U & & \text{incl}(f) \\
\ker(f) & & \text{im}(f)
\end{array}
\]

Hur kan man "se", eller "få grepp om" dessa delmängder?
Ex. 1 \(\psi : \mathbb{R}^3 \to \mathbb{R}^3 \) vara projektionen på ett plan \(P \) genom origo, parallellt med linjen \(L \) genom origo. Då är \(\ker(\psi) = L \) och \(\im(\psi) = P \).

Detta "er man" väl! Om inte, så kan man också bryta påståendet.

Beweis: En allmän vektor \(\mathbf{v} \in \mathbb{R}^3 \) skrivs på formen \(\mathbf{v} = \mathbf{p} + \mathbf{l} \), med entydigt bestämda komponenter \(\mathbf{p} \in P \) och \(\mathbf{l} \in L \). Då är \(\mathbf{p} = \psi(\mathbf{v}) \) (se figur).

\(\ker(\psi) \subseteq L \): Om \(\mathbf{v} \in \ker(\psi) \) och \(\mathbf{v} = \mathbf{p} + \mathbf{l} \), då är \(\mathbf{p} = \psi(\mathbf{v}) = 0 \), alltså \(\mathbf{v} = 0 + \mathbf{l} = \mathbf{l} \in L \).

\(L \subseteq \ker(\psi) \): Varje \(\mathbf{l} \in L \) kan skrivas \(\mathbf{l} = 0 + \mathbf{l} \) med \(\mathbf{0} \in P \) och \(\mathbf{l} \in L \). Alltså är \(\psi(\mathbf{l}) = 0 \), dvs. \(\mathbf{l} \in \ker(\psi) \).

\(\im(\psi) \subseteq P \): Allt \(\psi(\mathbf{v}) \) betyder att \(\psi(\mathbf{v}) = \mathbf{w} \) för något \(\mathbf{v} \in \mathbb{R}^3 \), alltså är \(\mathbf{w} \in P \).

\(P \subseteq \im(\psi) \): Varje \(\mathbf{p} \in P \) kan skrivas \(\mathbf{p} = \mathbf{p} + \mathbf{0} \) med \(\mathbf{p} \in P \) och \(\mathbf{0} \in L \). Alltså är \(\psi(\mathbf{p}) = \mathbf{p} \), dvs. \(\mathbf{p} \in \im(\psi) \). \(\square\)
Ex. 2. Som bekant bestämmer varje matris $A \in \mathbb{R}^{m \times n}$ en linjär avbildning $f_A : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $f_A(x) = Ax$. Då räder samhändet $\ker (f_A) = N(A)$ och $\text{in}(f_A) = K(A)$.

Beweis:
$x \in \ker (f_A) \iff f_A(x) = 0 \iff Ax = 0 \iff x \in N(A)$.

$y \in \text{in}(f_A) \iff f_A(x) = y \quad \text{för något } x \in \mathbb{R}^n$

$\iff Ax = y \quad \text{för något } x \in \mathbb{R}^n$

$\iff x_1 A_1 + \ldots + x_n A_n = y \quad \text{för något } x \in \mathbb{R}^n$

$\iff y \in \text{span}\{A_1, \ldots, A_n\} = K(A)$.

Ex. 3. Projektionen f på planet $P: x - 2y - z = 0$ parallellt med linjen $L = \text{span}\{(1, -1, 1)\}$.

Hur matris $A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$, se Ex. 1. Enligt Ex. 1 är

$\ker (f) = L$ och $\text{in}(f) = \mathbb{R}^3$ (geometrisk tolkning). Enligt Ex. 2 är:

$\ker (f) = N(A)$ och $\text{in}(f) = K(A)$ (algebraisk tolkning). Alltså är $N(A) = L$ och $K(A) = P$. Verifiera detta!

Körning: $A \sim \begin{pmatrix} 1 & 2 & -1 \\ 5 & 2 & -1 \\ 3 & -6 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 \\ 0 & -2 & 4 \\ 0 & 12 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -4/3 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Från triangulärmatrisen läser vi av att $N(A) = \text{span}\{(1, -1, 1)\} = L$, och

$K(A) = \text{span}\{A_1, A_2\} = \text{span}\{(1, -1, 1)\} = P$, då b_1, b_2 är linjärt oberoende och ligger i P. □
Det finns ett enkelt samhåll mellan dimensionerna av de trummen, \(\ker(f_A) \) och \(\im(f_A) \), som bygger på

Dimensionssatsen för matrixer. För varje matrix \(A \in \mathbb{R}^{m \times n} \) gäller

\[
\dim(N(A)) + \dim(\im(A)) = n
\]

(1)

Vidare är

\[
\dim(\im(A)) = \dim(\ker(A^T)) = \dim(K(A))
\]

(2)

Detta hade vi i Ex.1. Nu vet enligt Ex.2 dessutom att

\[
N(A) = \ker(f_A) \quad \text{och} \quad K(A) = \im(f_A)
\]

(3)

Identiteterna (1)-(3) leder fram till

Dimensionssatsen för linjära avbildningar mellan kolonnrum. För varje linjär avbildning \(f_A : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(f_A(x) = Ax \) gäller

\[
\dim(\ker(f_A)) + \dim(\im(f_A)) = \dim(\mathbb{R}^n)
\]

Allmänna linjära avbildningar \(f : V \rightarrow W \) hänger nära ihop med linjära avbildningar \(f_A : \mathbb{R}^n \rightarrow \mathbb{R}^m \), då \(A = [f]_B^A \). Genom att systematiskt utnyttja formeln

\[
[f(v)]_B = [f]_B^A [v]_A
\]

kan man även visa

Dimensionssatsen för allmänna linjära avbildningar. För varje linjär avbildning \(f : V \rightarrow W \) gäller

\[
\dim(\ker(f)) + \dim(\im(f)) = \dim(V)
\]
Vi kommer nu in på tre speciella typer av linjära avbildningar. Två av dem definieras så här.

En linjär avbildning \(f : V \to W \) kallas \(\text{injectiv} \) om ekvationen \(f(v) = w \) har \(\text{högst en} \) lösning \(v \in V \) \(\text{för varje} \ w \in W \).

For varje \(f : V \to W \) är följande uttrycksvärt ekvivalenta.

(i) \(f \) är injectiv (i boken: one-to-one).
(ii) \(v \neq v' \Rightarrow f(v) \neq f(v') \).
(iii) \(v = v' \iff f(v) = f(v') \).

Ex. 4 Projektionen \(f : \mathbb{R}^3 \to \mathbb{R}^3 \) på en plan \(P \) genom origo parallellt med en linje \(L \) genom origo är nästan injectiv eller surjektiv.

\[\text{Beweis.} \text{ For varje} \ w \in P \text{ har ekvationen} \ f(w) = w \ \text{ändligt många lösningar} \ v = w + l, \]
\[\text{med} \ l \in L. \text{ Alltså är} \ f \ \text{ej injectiv}. \]
\[\text{For varje} \ w \in P \text{ har ekvationen} \ f(w) = w \ \text{ingen lösning} \ v \in V. \text{ Alltså är} \ f \ \text{ej surjektiv}. \]

Ex. 5 Rotationen \(r : \mathbb{R}^3 \to \mathbb{R}^3 \) kring en axel \(L \) genom origo med vinkel \(\alpha \) är både injectiv och surjektiv.

\[\text{Beweis.} \text{ Injectiv:} \ r(v) = r(v') \ \Rightarrow \ v = r^{-1}(v) = r^{-1}(v') = v'. \]
\[\text{Surjektiv:} \ r(w) = w \ \text{lösas av} \ v = r^t(v) \]
\[\square \]
Ex. 6 Med $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ är $f_A : \mathbb{R}^2 \to \mathbb{R}^2$ injektiv, men ej surjektiv.

Beweis. Injektiv: $Ax = Ay \Rightarrow A(x - y) = 0 \Rightarrow x - y = 0 \Rightarrow x = y$.

Ej surjektiv: $Ax = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ har ingen lösning x.

Ex. 7 Med $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ är $f_B : \mathbb{R}^2 \to \mathbb{R}^2$ ej injektiv, men surjektiv.

Beweis. Ej injektiv: $Bx = 0$ har oändligt många lösningar $x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Surjektiv: $Bx = y$ lösas av $x = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, ex.nisi.

Injektivitet och surjektivitet hos en linjär avbildning $f : V \to W$ kan enkelt karakteriseras med hjälp av $\ker(f)$ och $\text{im}(f)$.

Sats 1. En linjär avbildning $f : V \to W$ är

$$\begin{cases} \text{injektiv om } \ker(f) = \{0\} \\ \text{surjektiv om } \text{im}(f) = W \end{cases}$$

Beweis. Alltid gäller $f(0) = 0$, alltså $\ker(f) = \{0\}$.

Antag att f är injektiv. $v \in \ker(f) \Rightarrow f(v) = 0 = f(0) \Rightarrow v = 0$, alltså $\ker(f) = \{0\}$.

Antag omvänd att $\ker(f) = \{0\}$. $f(v) = f(v') \Rightarrow f(v - v') = f(v) - f(v') = 0$.

$
\Rightarrow v - v' \in \ker(f) = \{0\} \Rightarrow v = v'.
$

Ekvivalensen: surjektiv om $\text{im}(f) = W$ framgår direkt av definitionen av injektivitet och surjektivitet.

Tillsammans med dimensionssatsen abstrakt Sats 1 följer.
Sats 2. låt \(f : V \rightarrow W \) vara en linjär avbildning, och \(\dim(V) = \dim(W) < \infty \). Då är
\(f \) injektiv om och om \(f \) är surjektiv.

Obs. att Sats 2 gäller i synnerhet för varje linjär operator på \(V \) med \(\dim(V) < \infty \). Följ Ex. 4 och Ex. 5!

Bevis. Med \(\dim(\ker(f)) + \dim(\text{im}(f)) = \dim(V) \) (\(\star \)) gäller att
\[
f \text{ är injektiv } \iff \ker(f) = \{0\} \iff \dim(\ker(f)) = 0
\]
Sats 4
\[
f \text{ är surjektiv } \iff \text{im}(f) = W \iff \dim(\text{im}(f)) = \dim(W)
\]
Sats 1

Nu kommer vi in på den tredje speciella typen av linjära avbildningar.

En linjär avbildning \(f : V \rightarrow W \) kallas \textit{injektiv} om ekvationen \(f(v) = w \) har exakt en lösning \(v \in V \) för varje \(w \in W \).

Sats 3. För varje linjär avbildning \(f : V \rightarrow W \) är de följande påståendena ekvivalenta.

(i) \(f \) är injektiv.
(ii) \(f \) är både injektiv och surjektiv.
(iii) \(f \) är en bijektiv.
(iv) \([f] \) är inversbar för alla \(a \in V \) och \(b \in W \).
Bevis (skiss). (i) \Rightarrow (ii) framgår direkt av gällande begreppen bijectiv, injektiv och surjektiv.

(i) \Rightarrow (iii) Definition $g: W \to V$ genom $g(w) = \text{den endynlig bestående vektor av med } f(w) = w$. Därför gäller $g \circ f = \text{id}_V$ och $f_g = g^{-1}_W$, dvs. $g = f^*$.

(iii) \Rightarrow (iv) är samma resonemang som i Ex. 5 (rotation).

(iv) \Rightarrow (i) För varje $w \in W$ har matrixrepresentationen $[f]_{ab} = [f]_{aa} = [g]_{aa}$.

Den endynliga lösningen $x = [f]_{aa}^{-1}[w]_a$.

Alltså har vektorrelationen $f(v) = w$ den endynliga lösningen $v = \sum x_i a_i$.

Exempel på bijectiva linjära operationer $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ utgörs av alla rotationer (Ex. 5) och alla speglingar. Mer allmänt säger Satz 3 att varje invertierbar matris $A \in \mathbb{R}^{n \times n}$ ger upphov till en bijektiv operator $f_A: \mathbb{R}^n \rightarrow \mathbb{R}^n$. Intressant är också

Ex. 8. För varje vektorrum V med bas $a = (a_1, \ldots, a_n)$ är koordinatanbildningen

$[\cdot]_a: V \rightarrow \mathbb{R}^n$, $v \mapsto [v]_a$

linjär och bijectiv.

Beviset är en nycklig ösning.

Satz 4. Om $f: V \rightarrow W$ är linjär och bijectiv, då är $\dim(V) = \dim(W)$.

Bevis. Om (a_1, \ldots, a_n) är en bas i V, då är $(f(a_1), \ldots, f(a_n))$ en bas i W. Detta följer lättvis som ösning.