Linjär algebra och geometri I
Svar på tentamen 2010–01–12

1. $L = \{(0, 8, 7, 0, -2) + s(1, -5, -4, 0, -3) + t(0, 0, 0, 1, 6) \mid s, t \in \mathbb{R}\}$.

2. $L = \{(\frac{\pi}{2}, \pi, 0)\}$.

3. A är inverterbar om och endast om $x \neq 1$ och $x \neq -1$ och $x \neq 5$.

4. *Bevisidé.* Begrunda ekvationen $\det(A) = 0$ genom utveckling längs A's första rad.

5. $F : 4x + 13y - z = 17$.

6. *Bevisidé.* $v^T A^T A \cdot w = (Av)^T A \cdot w$. Fortsätt med Cauchy-Schwarz olikhet.

7. Då P är linjär består $P(\ell)$ av alla punkter på formen $P(2, 3, 5) + tP(3, 5, 7), \ t \in \mathbb{R}$. De utgör linjen genom $P(2, 3, 5)$ med riktningsvektor $P(3, 5, 7)$.

 $P(\ell) : (x, y, z) = \left(-\frac{1}{2}, \frac{1}{2}, 5\right) + t(-1, 1, 7), \ t \in \mathbb{R}$.

8. $G = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.