Prov i matematik
Linjär algebra och geometri I, 5hp
2011–10–20

1. Lös ekvationssystemet
 \[
 \begin{align*}
 x + 2y + 2z &= 1 \\
 3x + 4y + 5z &= 2 \\
 5x + 4y + 7z &= 2
 \end{align*}
 \]
 och tolka lösningsmängden \(L \) geometriskt.

2. (a) Visa att matriserna \(A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \) och \(A + B \) är inverterbara.
 (b) Beräkna matrisen \(X = A(A^{-1} + B^{-1})B(A + B)^{-1} \).

3. För vilka värden på \(a \) är matrisen
 \[
 A = \begin{pmatrix} a & 0 & 0 & -1 \\ 0 & -a & 1 & 0 \\ 0 & -1 & -a & 0 \\ 1 & 0 & 0 & a \end{pmatrix}
 \]
inverterbar? Finn elementet \((A^{-1})_{44}\) för alla dessa värden på \(a \).

4. Punkterna \(A = (1, 1, 1), B = (2, 4, 6) \) och \(C = (3, 5, 7) \) bestämmer en triangel i rymden.
 (a) Bestäm triangulins area.
 (b) Avgör om någon av triangulins tre vinklar är trubbig. Om så är fallet, ange två vektorer som bildar den trubbiga vinkeln.

VAR GOD VÄND!
5. Bestäm avståndet mellan punkten $P = (-4,7,-4)$ och planet E som är parallellt med vektorn $v = (3,-2,0)$ och innehåller punkterna $A = (-2,-1,0)$ och $B = (-9,2,1)$.

6. (a) Visa att matriserna

$$B_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad B_3 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad B_4 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

bildar en bas $B = (B_1, B_2, B_3, B_4)$ i vektorrummet $\mathbb{R}^{2\times2}$.

(b) Ange koordinatvektorn för matrisen $A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$ i basen B.

7. Den linjära operatorn f på \mathbb{R}^3 ges geometriskt som spegling i planet $E : 2x + 3y + z = 0$. Finn f's matris, samt vektor $f(v)$ för $v = (-7, -7, -7)$.

8. Den linjära operatorn $f = gh$ på \mathbb{R}^2 är sammansatt av speglingen h i linjen $L : \sqrt{3}x + y = 0$ och rotationen g moturs kring origo med vinkel $\frac{2\pi}{3}$. Finn f's matris, och tolka operatorn f geometriskt.

LYCKA TILL!
1. \((5) (3) \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 5 & 4 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & -1 \\ 0 & -6 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \)

\[
\begin{cases}
x + z = 0 \\
y + \frac{1}{2}z = \frac{1}{2}
\end{cases} \sim \begin{cases}
x = -z \\
y = \frac{1}{2} - \frac{1}{2}z
\end{cases}
\]

Sätt \(z = t \), där \(t \in \mathbb{R} \).

Den allmänna lösningen blir

\[
(x, y, z) = (-t, \frac{1}{2} - \frac{1}{2}t, t) = (0, \frac{1}{2} - t, 0) + t(-1, -\frac{1}{2}, 1), \quad t \in \mathbb{R}
\]

eller ekvivalentt

\[
(x, y, z) = (-1, 0, 1) + s(2, 1, -2), \quad s \in \mathbb{R}
\]

Svar: \(L = \left\{ (-1, 0, 1) + s(2, 1, -2) : s \in \mathbb{R} \right\} \) är linjen genom punkten \(P = (-1, 0, 1) \) med

riktningvektor \(u = (2, 1, -2) \).

2. (a) \(\det (A) = 1 \), \(\det (B) = 1 \), \(\det (A+B) = \left| \begin{array}{cc} 1 & a \\ a & 1 \end{array} \right| = 1 \).

(b) \(X = A (A+B)^{-1}B (A+B)^{-1} = (I + AB)^{-1}B (A+B)^{-1} = (B+A) (A+B)^{-1} = (A+B)(A+B)^{-1} = I \).

Svar: (b) \(X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).

3. \(\det (A) = \begin{vmatrix} a & a & -1 \\ a & -a & 1 \\ 1 & -1-a & a \end{vmatrix} = \begin{vmatrix} a & 0 & 0 & -1 \\ 0 & -a & 1 \\ 0 & -1-a & 0 \\ 1+a & 0 & 0 & 1 \end{vmatrix} = (1+a^2) > 0 \quad \forall a \in \mathbb{R} \).
\[A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) = \frac{1}{\text{det}(A)} \begin{pmatrix} C \end{pmatrix} \]

\[\begin{pmatrix} (A^{-1})^T_{44} \end{pmatrix} = \frac{1}{\text{det}(A)} \begin{pmatrix} a & 0 & 0 \\ 0 & -1-a \end{pmatrix} = \frac{1}{(1+a^2)} \begin{pmatrix} a & -1-a \end{pmatrix} = \frac{1}{(1+a^2)} a \left(a^4 + 1 \right) = \]

\[= \frac{a}{1+a^2} \]

Swäv. För alla \(a \in \mathbb{R} \) är \(A \) inverterbar, och \((A^{-1})^T_{44} = \frac{a}{1+a^2}\).

4. (a) \(\overrightarrow{AB} = (1, 3, 5), \overrightarrow{AC} = (8, 4, 6) \). Triangels area är

\[F = \frac{1}{2} ||\overrightarrow{AB} \times \overrightarrow{AC}|| = ||\overrightarrow{AB} \times \frac{4}{7}\overrightarrow{AC}|| = ||(1, 3, 5) \times (8, 4, 3)|| = \]

\[= \sqrt{6} \]

(b) \(\overrightarrow{BC} = (1, 1, 1) \)

\[\overrightarrow{BA} \cdot \overrightarrow{BC} = -\overrightarrow{AB} \cdot \overrightarrow{BC} = (1, 3, 5) \cdot (1, 1, 1) = -9 \]

medför att vinkeln \(\beta = \angle (\overrightarrow{BA}, \overrightarrow{BC}) \) är tuffig.

Swäv. (a) Triangels area är \(F = \sqrt{6} \). (b) Vinkeln \(\beta = \angle (\overrightarrow{BA}, \overrightarrow{BC}) \) är tuffig.
5. Som normalvektor till \(E \) dater \(n = \vec{AB} \times \vec{v} = (-\frac{7}{3}, 3, 1) \times (3, 2, 0) = (2, 3, 5) \).

Därmed blir \(E \) s ekvation

\[
2(x + z) + 3(y + 1) + 5(z - 0) = 0
\]

Punktnormalform

\[
2x + 3y + 5z + 7 = 0
\]

Standardform

Ändstaformeln ger:

\[
D = \frac{|2 \cdot (-4) + 3 \cdot 4 + 5 \cdot (-4) + 7|}{\sqrt{4 + 0 + 25}} = \frac{0}{\sqrt{38}} = 0
\]

vilket betyder att \(P \in E \).

Svar. \(D = D(P, E) = 0 \).

6. (a) \(B \) är en bas i \(R^2 \) ochm ekvationen \(\sum_{i=1}^{4} c_i B_i = W \) \((x_1) \) har precis en lösning \((c_1, ..., c_4) \in R^4 \) för varje \(W \in R^{2 \times 2} \). Med \(W = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \) antas \((x_1) \) för en

\[
\begin{bmatrix}
 c_1 + c_2 + c_3 + c_4 \\
 c_1 + c_3 + c_4
\end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}
\]

vilket betyder

\[
\begin{bmatrix}
 c_1 + c_2 + c_3 + c_4 \\
 c_1 + c_3 + c_4 \\
 c_2 + c_4 \\
 c_1
\end{bmatrix} = \begin{bmatrix} w_{11} \\ w_{12} \\ w_{21} \\ w_{22} \end{bmatrix},
\]

eller konkret

\[
M c = w,
\]

där \(M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \), \(c = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} \), \(w = \begin{bmatrix} w_{11} \\ w_{12} \\ w_{21} \\ w_{22} \end{bmatrix} \).
\[
\text{det}(M) = 1 \implies M \text{ är invertibel} \implies (x) \text{ har endliga lösningar } c = M^{-1}w.
\]

Alltså är \(B \) en bas i \(\mathbb{R}^m \).

(b) \([A]_B \) är lösningen till systemet med totalmatrix

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 3
\end{pmatrix}
\begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & 1 & 3 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 3
\end{pmatrix}
\begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & 3 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
3 \\
1 \\
-1
\end{pmatrix}
\sim
\begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}
\rightarrow
[A]_B = \begin{pmatrix}
3 \\
-4 \\
4 \\
-4
\end{pmatrix}.
\]

Svar (b), \((A) = (3, -1, -1, -1)\).

7. \([f] = \begin{pmatrix}
f(e_1) \\
f(e_2) \\
f(e_3)
\end{pmatrix} \), där

\[
f(e_j) = e_j - \frac{1}{\|v\|} \text{proj}_v(e_j) = e_j - \frac{e_j \cdot v}{\|v\|^2} v \quad \text{och} \quad n = (2, 3, 1).
\]

Vi förr.

\[
f(e_1) = (1, 0, 0) - \frac{1}{\sqrt{14}} (2, 3, 1) = (1, 0, 0) - \frac{3}{\sqrt{14}} (2, 3, 1) = \frac{1}{\sqrt{14}} (-3, -6, -2)
\]

\[
f(e_2) = (0, 1, 0) - \frac{1}{\sqrt{14}} (2, 3, 1) = (0, 1, 0) - \frac{3}{\sqrt{14}} (2, 3, 1) = \frac{1}{\sqrt{14}} (-6, -2, -3)
\]

\[
f(e_3) = (0, 0, 1) - \frac{1}{\sqrt{14}} (2, 3, 1) = (0, 0, 1) - \frac{1}{\sqrt{14}} (2, 3, 1) = \frac{1}{\sqrt{14}} (-8, -3, 6)
\]

Alltså \([f] = \frac{1}{\sqrt{14}} \begin{pmatrix}
3 & -6 & -2 \\
-6 & 2 & 3 \\
-3 & -2 & 6
\end{pmatrix} \) och \([f] \begin{pmatrix}
-1 \\
-1 \\
-1
\end{pmatrix} = \frac{1}{\sqrt{14}} \begin{pmatrix}
3 & -6 & -2 \\
-6 & 2 & 3 \\
-3 & -2 & 6
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix} = \begin{pmatrix}
5 \\
11 \\
-1
\end{pmatrix} \).
Svar. $[f] = \begin{bmatrix} 3 & -6 & \frac{1}{2} \\ -6 & 2 & -\frac{3}{2} \\ -\frac{3}{2} & -\frac{3}{2} & 6 \end{bmatrix}$ och $f(-\frac{1}{2}, \frac{15}{2}) = (5, \frac{1}{2}, -1)$.

8. Linjen L går genom origo och punkten $(-\frac{1}{2}, \frac{15}{2}) = (\cos \frac{2\pi}{3}, \sin \frac{2\pi}{3})$. Alltså är $[h] = \begin{bmatrix} \cos \frac{2\pi}{3} & \sin \frac{2\pi}{3} \\ \sin \frac{2\pi}{3} & -\cos \frac{2\pi}{3} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$. Dessutom är $[g] = \begin{bmatrix} \cos \frac{\pi}{3} & -\sin \frac{\pi}{3} \\ \sin \frac{\pi}{3} & \cos \frac{\pi}{3} \end{bmatrix} = \begin{bmatrix} 1 & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$. Därmed blir $[f] = [g][h] = [g][k] = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

där i är speglingen i x-axeln.

Svar. $[f] = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Operatorn f är speglingen i x-axeln.