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Abstract:

In this thesis we study fiberwise hyperbolic invariant tori (FHIT) in quasiperiodic skew

product systems. These invariant objects are robust and persists under small perturbations.

The thesis can be splitted in two main parts: In the first part it is studied several bifurcations

of FHIT in 2D, and 3D, area, and volume, preserving skew products. It is presented old

and new breakdown mechanisms, which are compared and contrasted. In the second part

it is studied how to perform rigorous numerics to validate the existence of FHIT. We apply

these validation techniques in the verge of breakdown of FHIT in several scenarios.

Abstract:

En aquesta tesi s’estudien tors invariants fibrats hiperbòlics (FHIT) en sistemes skew product

forçats quasiperiòdicament. Aquests tenen la propietat que són robustos i romanen sota

perturbacions petites. La tesi es pot dividir en dues parts: En la primera part s’estudia

diferents tipus de bifurcacions en sistemes 2D i 3D. Són presentats vells i nous mecanismes

de trencament. Aquests són comparats i contrastats. En la segona part s’estudia com es pot

realitzar numèric rigorós per a validar l’existència de FHIT. Aquestes tècniques de validació

són aplicades en FHIT prop de trencament en diversos escenaris.
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Introduction

The long term behaviour of a dynamical system is organized by its invariant objects. Hence,

it is important to understand which invariant objects persist under perturbations of the

system, provide results about their existence, regularity and dependence with respect to

parameters, and classify their bifurcations and mechanisms of breakdown. In this thesis, we

address these questions for a particular class of dynamical systems and invariant objects. The

systems we consider are quasiperiodically forced, that is coupled with an irrational rotation,

and the invariant objects are invariant tori carrying such an irrational rotation. These tori

are the response to the quasiperiodic forcing and are geometrically described as graphs of

the state variables over the coupled angles describing the quasiperiodic motion [Sta97]. It is

known that persistence (in open sets of parameters) of invariant manifolds is closely related

to the concept of normal hyperbolicity [Fen72, HPS77, Mañ78, Sac65]. Here we consider an

analogous concept, tailored for skew products over rotations. Hence, the invariant tori we

consider are fiberwise hyperbolic (FHIT). Roughly speaking, a continuous invariant torus

(with graph form) is fiberwise hyperbolic if the linearized dynamics on the normal bundle

is exponentially dichotomic: the normal bundle splits into stable and unstable bundles on

which the dynamics is uniformly contracting and expanding, respectively. Notice that the

tangent dynamics is dominated by the normal dynamics, since the former presents zero

Lyapunov exponents. This fact implies that fiberwise hyperbolic tori are robust and persist

(in open sets of parameters) and are as smooth as the system [HdlL06c]. We observe that

KAM techniques lead to results of persistence (in Cantor sets of parameters) of response tori

under weaker conditions [BHS96], but often fiberwise hyperbolic tori appear in open gaps

of the parameter space [BHJ+03] (see [HdlL07] for numerical explorations of these normal-

internal resonances, including the appearance of fiberwise hyperbolic tori whose invariant

manifolds have non-orientable invariant manifolds).

In particular, we consider examples in which tori smoothly bifurcate and examples in

which tori break non-smoothly. One main goal is to define good observables to study different

types of bifurcations. The non-smooth breakdown phenomenon has been extensively studied

in the literature in the context of the Strange Non-chaotic Attractors (SNA), since their

discovery in [GOPY84] (and even before in [Her83]), in which an attracting smooth torus

bifurcates into an attracting object of complicated geometry (not even continuous) but

still carrying a non-chaotic (in fact quasiperiodic) dynamics. This extremely interesting

behaviour aroused considerable interest in theoretical physics. It was considered as a prelude

ix
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of chaotic behaviour, and there was an explosion of numerical and experimental studies

reporting of mechanisms of formation of those objects (see [FKP06, PNR01] and references

therein). Further theoretical studies rigorously explaining and mathematically proving some

of these mechanisms have been considered in the mathematical literature (see e.g. [BO96,

Bje09, HP06, Jäg09, Kel96, Sta99, SS00]). In contrast to the attention that attractors have

received, there are only a very few numerical studies on the mechanisms of breakdown of

saddle-type invariant tori [HdlL06a, HdlL07]. These are cases in which computation of

invariant tori and their whiskers (the invariant bundles) is computationally difficult. We

also study what happens after the bifurcations, with special emphasis to the nature of the

invariant objects that remain after the bifurcations.

We consider also the existence question of FHIT, even in cases in which the systems are

very far from the perturbative regime and the tori are about to break. It is presented a new

methodology to provide rigorous Computer-Assisted Proofs (CAPs) of the existence and

(local) uniqueness of fiberwise hyperbolic invariant tori in quasiperiodically forced systems.

A key point of the CAPs is to formulate the invariance of FHIT in functional terms [HdlL06c].

Applications of CAPs in functional analysis to dynamical system problems have a long

history that goes back to the proof of the Feigenbaum conjecture in unimodal maps [Lan82,

Lan87], the proof of the universality in the period-doubling cascade for area-preserving

maps [EKW84], the proof of the existence of the strange attractor in the Lorenz equations

[Tuc02], and, more recently, the proof of the existence of critical invariant tori (supporting

the renormalization group picture) in Hamiltonian systems [Koc08]. See also the inspiring

chapter 7 in [dlL01] and the review [KSW96]. The common denominator in these proofs is to

propose a functional equation to be satisfied by the relevant object, to find an approximate

solution of it, and to prove the existence of the true solution of the functional equation

in a suitable Banach space by checking the bounds provided by a fixed point theorem

(usually using a Newton-like method). For the porposes of the validation of FHIT, a natural

Banach space for parametrizing tori and considering the invariance equation is the space

of continuous periodic functions, endowed with the supremum norm. We note that, since

there is a bootstrap in the regularity of fiberwise hyperbolic tori, and since they are in fact

as smooth as the system [HdlL06c], we only consider C0 norms. Let us mention that, in

the examples mentioned in this paragraph, the differentials of the corresponding functionals

are compact operators, which have a relatively simple spectrum. In contrast, the spectrum

of the operators arising in the problems presented here is a set of annuli centered at 0

[Mat68, CL99] (the inner annuli could be a disk if the dynamical system is non-reversible).

Hence, checking the applicability of Newton’s method is equivalent to checking that 1 is not

in the spectrum, and this is just rephrasing the condition of fiberwise hyperbolicity.

Summarizing, this thesis has two main goals: to study the possible breakdown routes of

FHIT, and to give rigorous tools to perform computer-assisted proofs in order to prove the

existence of these objects.

The thesis has been organized in several chapters.
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1.- Theoretical framework of FHIT.

The theoretical framework of FHIT in skew product systems over irrational rigid rotations

is described. These are nonlinear maps of the form

(F, ω) : Rn × T −→ Rn × T
(z, θ) −→ (F (z, θ), θ + ω)

where ω is an irrational number. An invariant torus is the graph of a (continuous) map

K : T −→ Rn that satisfies the invariance equation

F (K(θ), θ) = K(θ + ω).

We say that an invariant torus is a Fiberwise Hyperbolic Invariant Torus (FHIT) if the

infinitesimal normal dynamics around it is uniformly hyperbolic. That is, its associated

linear cocycle
(DzF, ω) : Rn × T −→ Rn × T

(v, θ) −→ (DzF (K(θ), θ)v, θ + ω)

leaves invariant a Whitney sum of fiber bundles Eu ⊕ Es such that their dynamics are ex-

ponentially expanding in Eu (unstable bundle), and exponentially contracting in Es (stable

bundle), respectively.

We briefly describe the dynamical properties of linear cocycles. This description helps

us to understand the dynamics around an invariant torus, which is important in order to

give a classification of the possible breakdowns and also for the design of the computer-aided

proofs.

We also explore the relations between the dynamical properties of the FHIT with the

functional properties of these objects, and study the important ideas around the spectral

properties of FHIT, such as the Mather spectrum. This functional setting helps us to state

the robustness of these objects.

Finally, we introduce the concept of discrete Schrödinger operartor. This will appear

several times during the thesis binded with the gradient flow of some nonlinear functionals.

These gradient flows will be a key point in order to understand and classify the possible

routes to breakdown of invariant tori in area preserving skew product systems.

2.- Breakdown routes of FHIT in area preserving skew products.

In this chapter we describe, explore and compare several mechanisms of breakdown of invari-

ant tori in area preserving skew products. This exploration has been done by approximating

the (quasiperiodic) invariant tori by periodic orbits: we replace the irrational rotation of the

skew product system by a rational partial convergent, so an invariant torus is approximated

by periodic orbits. For each breakdown scenario introduced here, we perform this computa-

tion for a wide range of partial convergents, trying to capture the imporant observables, such

as the maximal Lyapunov exponent, minimum distance between their invariant bundles, etc.

The mechanisms described are the smooth bifurcation, the non-smooth breakdown and the
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folding breakdown. The first one is completely understood (using normal form techniques),

see [BHS96],[HdlL07]; and the second one is recent, first discovered in [HdlL07]. To the best

of our knowledge the third one is new.

The smooth bifurcation, or saddle to elliptic bifurcation, is the transition of a FHIT

torus to an elliptic torus with higher dimensional invariant tori. Both Lyapunov exponent

and minimum distance between invariant bundles go to zero as the bifurcation occurs. This

bifurcation is well understood using KAM techniques, see [BHS96].

The non-smooth breakdown satisfies that, while the minimum distance between the

invariant bundles goes to zero as it approaches the breakdown, the Lyapunov exponent and

the maximal distance between the invariant bundles remain positive, which is apparently

counter-intuitive. Also, the maximum slope of the torus remains bounded at the breadown.

We detect that, after the breakdown, an invariant object persists, which is no longer a

continuous invariant torus.

The folding breakdown shares some similarities with the non-smooth breakdown: the

minimum distance between the invariant bundles goes to zero as it approaches the break-

down, while the Lyapunov exponent and the maximal distance between the invariant bundles

remain positive. But, while the invariant torus approaches the breakdown, its slope gets

bigger: at the breakdown the slope is “infinity”. After the breakdown it is observed that, for

every computed partial convergent, the periodic orbit does not describe a graph of a continu-

ous map, but they still form part of an invariant curve. These curves are folded with respect

to the torus variables. If we replace one partial convergent by another, we observe that the

folded curves differ only on the number of folding points, and it is observed that it remains

almost the same object. After a massive exploration of these folded curves, we conjecture

that they approximate an invariant object for the quasiperiodic rotation. We emphasize

that this object cannot be a measurable curve, and it retains hyperbolicity properties.

3.- Fractalization route of FHIT in volume preserving skew products.

In this chapter we present the fractalization route of FHIT in volume preserving skew prod-

ucts. This mechanism, in which a torus is gradually destroyed without the collision with

a nearby object, had been observed in dissipative systems [Kan84, HdlL06a, JT08] in the

context of the existence of SNA. We have unified this mechanism, both in the dissipative

and conservative case: the fractalization route can be explained in terms of the Mather

spectrum associated to the invariant curves.

The fractalization route described in this chapter is presented with a numerical example

in a 3D skew product system. The computation of the invariant curves is done using the

same techniques as in the 2D case: the approximation of the invariant curves by periodic

orbits. In this example we explore the observables associated to the invariant curve such

as the Lyapunov exponents and the distance between the unstable and the stable bundles.

We want to point out that the numerical computation of the fractalization route presented

in this thesis is quite challenging compared with the computations in the dissipative case,

since the curves are not attractors but of saddle-type.
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5.- Computer validations of FHIT.

In this chapter we present a methodology to perform computer-assisted proofs of FHIT

using the functional settting of the invariance of a FHIT.

Our methodology represents a step forward from the results and numerical algorithms

and experiments exposed in [HdlL06b, HdlL06c, HdlL07]. Hence, the invariance of a torus

leads to a functional equation that fits in the framework of Newton-Kantorovich theorem

[HdlL06b]. Therefore, starting with an approximate solution of the invariance equation,

one can use rigorous interval arithmetics [Moo79, KM84] to verify the hypothesis of the

constructive existence theorem, which consists in checking several a-posteriori bounds. The

verification of such bounds leads to the proof of the existence (and local uniqueness) of a

true solution of the invariance equation, and hence of the true invariant torus. Note that in

these proofs the way in which approximate solutions are produced is not important.

For the examples of this thesis, we have used paper and pen, Fourier methods [HdlL07], or

rational approximation of frequencies (computing periodic orbits of approximate periodically-

forced systems) to obtain these approximate solutions. These numerical methods are tailored

for the specific class of invariant tori considered here. See e.g. [BHV07, BOV97] for general

numerical methods to compute normally hyperbolic invariant manifolds. Having accurate

and efficient numerical methods is essential for producing approximations that verifies the

validation test, and more important in cases in which the tori are on the verge of breakdown.

An alternative topological method for validating the existence of invariant sets of normally

hyperbolic type has been considered in [Cap09], which is based on the method of covering

relations [ZG04]. These methods work for more general dynamical systems but cannot be

used to prove (local) uniqueness of the invariant sets.

We apply the computer-assisted techniques in three challenging scenarios: the Harper

map, the Heagy-Hammel route in the quasiperiodically forced logistic map, and in some

examples presented in the chapter of the breakdown of invariant curves in area preserving

skew products.

6.- Numerical tools.

In this chapter we briefly describe the most relevant numerical tools used throughout the

thesis, such as the computation of the invariant tori using the periodic orbits technique, the

computation of the invariant bundles associated to an invariant torus, and some aspects of

the computations used in the computer-assisted proofs.

The thesis finishes with an appendix and a list of open questions. In the appendix we

give some examples of 3D linear cocycles with Mather spectrum a fulfilled annulus but with

no continuous invariant bundles. We included this here in order to give an example of the

relation between the Mather spectrum of a cocycle with its invariant bundles. Finally, we

present a list of open questions that we have asked throughtout the thesis, as possible future

lines of research.
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Chapter 1

Theoretical framework

In this chapter we introduce the theoretical framework of this thesis. This exposition is

taylored for the needs of the thesis, although most of the results can be generalized, for

example to Normally Hyperbolic Invariant Manifolds.

1.1 Fiberwise Hyperbolic Invariant Tori in skew prod-

ucts

A skew product over a rotation is a bundle map

(F, ω) : Rn × T −→ Rn × T
(z, θ) −→ (F (z, θ), θ + ω)

, (1.1)

where T := R/Z, ω ∈ R and F : Rn×T→ Rn is continuous, C1 with respect z. Rn is called

the fiber space and T the base space of the skew product.

Remark 1.1.1. In most of the examples worked throughout the thesis the skew products are

analytic in both z and θ.

Remark 1.1.2. Most of what follows works also for other base manifolds and base dynamics.

In particular for Td and ω ∈ Rd.

Remark 1.1.3. If ω = p
q
∈ Q, every fiber is q periodic, and we can think of (F, ω) as

a θ parametric family of maps in (Rn)q. This point of view will be useful in numerical

computations.

Remark 1.1.4. If ω ∈ R−Q, we say that the skew product is quasiperiodic.

The graph of a measurable section K : T→ Rn of the bundle Rn×T, K = {(K(θ), θ) | θ ∈
T} , is a torus. We often abuse notation and refer to K as a torus, rather than a section or

the parametrization of the torus K. If the section K satisfies the functional equation

F (K(θ), θ)−K(θ + ω) = 0 , (1.2)

then the torus K is invariant under (F, ω) and its inner dynamics is the rigid rotation ω.

1



2 CHAPTER 1. THEORETICAL FRAMEWORK

Remark 1.1.5. When ω is irrational, the condition of a measurable invariant torus to be a

graph is not restrictive. Its proof, see [HdlL06c], goes as follows: Let K̂ be a map of T in

Rn×T, K̂(φ) =
(
K̂z(φ), K̂θ(φ)

)
, that is invariant under the skew product (1.1). Then it is

satisfied that

F (K̂z(φ), K̂θ(φ)) = K̂z(φ+ ω) (1.3)

K̂θ(φ) + ω = K̂θ(φ+ ω). (1.4)

Since ω is irrational (hence ergodic), the only measurable solutions of equation (1.4) are

K̂θ(φ) = φ+ a, with a ∈ R.

Remark 1.1.6. For the periodic case it can happen that an invariant torus is not a graph.

This will be a key remark when dealing with the breakdown phenomena in chapter §2.

The invariance equation (1.2) can be rewritten in functional terms. Let T : C0(T,Rn)→
C0(T,Rn) be the operator defined as

T (K)(θ) = F (K(θ − ω), θ − ω)−K(θ) . (1.5)

K is an invariant torus for (F, ω) if and only if

T (K)(θ) = 0. (1.6)

The operator (1.6) is differentiable, see [dlLO99], with Frechet derivative the (bounded)

linear operator DT (K) : C0(T,Rn) −→ C0(T,Rn) defined as

DT (K)∆(θ) = DzF (K(θ − ω), θ − ω)∆(θ − ω)−∆(θ) . (1.7)

The nature of the solutions of (1.6), and of the linear operator DT (K), is strongly related

to the dynamical properties of the linearized dynamics around K. This is given by the vector

bundle map
(M,ω) : Rn × T −→ Rn × T

(v, θ) −→ (M(θ)v, θ + ω)
, (1.8)

where M : T→ L(Rn) is the transfer matrix M(θ) = DzF (K(θ), θ).

Define the transfer operator M associated to the vector bundle map (1.8) as the bounded

linear operator M : C0(T; Rn)→ C0(T; Rn),

M(∆)(θ) = M(θ − ω)∆(θ − ω). (1.9)

The relation between the dynamical properties of the linear cocycle (M,ω) and the spectral

properties of its associated transfer operatorM has been intensively studied in the literature,

see e.g. [Mat68, SS74, HPS77, Mañ78, LS90, dlL93, CL99]. A key result is the following.

Theorem 1.1.7. Let (M,ω) : Rn × T → Rn × T be a linear skew product, and M :

C0(T; Rn) → C0(T; Rn) its associated transfer operator. The following two properties are

equivalent:
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(a) M is a hyperbolic operator, that is, its spectrum has empty intersection with the unit

circle of the complex plane;

(b) (M,ω) is uniformly hyperbolic, that is, there exists a continuous decomposition of the

vector bundle Rn × T in a Whitney sum Es ⊕ Eu of two invariant bundles Es and

Eu, such that M restricted to Eu is invertible, and there exists constants C > 0 and

0 < λ < 1 such that

– If (v, θ) ∈ Es then |M(θ + (l − 1)ω) · · ·M(θ)v| ≤ Cλl|v| for all l ≥ 0;

– If (v, θ) ∈ Eu then |M(θ + lω)−1 · · ·M(θ − ω)−1v| ≤ Cλ−l|v| for all l ≤ 0.

We emphasize that, since DT (K) = M− I, the hyperbolicity property of the transfer

operator M implies the invertibility of DT (K) and hence, the applicability of the Implicit

Function Theorem. Invariant tori satisfying these hyperbolicity properties are the main

object of this thesis.

Definition 1.1.8. A Fiberwise Hyperbolic Invariant Torus (FHIT for short) of the system

(1.1) is an invariant torus K : T → Rn that satisfies (1.2) and such that its corresponding

transfer operator M is hyperbolic.

The invariant bundles Es and Eu of the associated linear skew product (M,ω), see

theorem 1.1.7, are called the stable and the unstable bundles, respectively. If Eu is the zero

bundle, i.e. the spectrum of M is inside the unit circle, then we say that the torus K is

a uniform (or hyperbolic) attractor. If Es is the zero bundle, i.e. the spectrum of M is

outside the unit circle, then the torus K is a uniform (or hyperbolic) repellor. Otherwise

we say that the torus K is a saddle.

Remark 1.1.9. A consequence of the Implicit Function Theorem is that FHIT are robust

with respect to perturbations of F . Perturbations of the dynamics of T are more delicate,

more differentiability of the skew product is needed, see [HPS77].

About the regularity of FHIT, there is the following result [HdlL06c].

Theorem 1.1.10. Given a Cr r ≥ 1, in the z coordinate, skew product (F, ω), then all its

FHIT are Cr. Also, if (F, ω) is analytic, then the FHIT are analytic.

1.2 Dynamics of linear cocycles

Because theorem 1.1.7, the study of the linear part of an invariant torus (1.8) gives informa-

tion of the linear stability of the nearby orbits. With this purpose, throughout this section

it is presented the dynamics of these particular skew products.

Notation 1.2.1. The linear skew product (1.8) will be called linear cocycle.
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We define M(θ, k) by
M(θ + (k − 1)ω) · · ·M(θ) if k > 0

Id if k = 0

M(θ + kω)−1 · · ·M(θ − ω)−1 if k < 0

.

For k < 0 we suppose that the matrices M(θ + jω), j = −1, . . . , k, are all invertible.

The dynamics of (1.8) depends strongly on the invertibility of the tranfer matrix M(θ).

Noninvertibility implies that the dynamics degenerates: there is no homeomorphism over

the vector bundle Rn × T, hence the dynamics collapses in a smaller vector bundle E ′ with

fiber space of dimension n′, n′ < n. Also, due to the linear nature of a cocycle, the zero

section (0, θ) is invariant under it and, if it is understood the dynamics of a point (v, θ),

then it is understood the dynamics of its linear span (λv, θ), λ 6= 0. This means that, if one

casts aside the study of the rate of growth of the magnitude of the iterations of the vector

v and only concerns on the study of the geometry of the invariant sets, one can study the

projective cocycle

P(M,ω) : Sn−1 × T −→ Sn−1 × T

(v, θ) −→
(

M(θ)v

||M(θ)v||
, θ + ω

)
, (1.10)

where Sn−1 is the n− 1 dimensional sphere.

Remark 1.2.2. Rigorously speaking, the term projective cocycle refers when the bundle space

is Pn−1 × T, where Pn−1 is the n− 1 projective space, instead of Sn−1 × T, but the later is

a 2-1 cover of the first one.

Remark 1.2.3. Considering the map (1.10) is helpful when one wants to give visual repre-

sentations of the invariant subbundles of a given cocycle.

The Lyapunov exponents measure the average growth of the orbits. Their definition is:

Definition 1.2.4. Given (v, θ) ∈ Rn × T, its forward Lyapunov exponent is

λ+(v, θ) = lim sup
k→+∞

1

k
log ||M(θ, k)v||, (1.11)

and, if M(θ) is invertible, its backward Lyapunov exponent is

λ−(v, θ) = lim sup
k→−∞

1

|k|
log ||M(θ, k)v||. (1.12)

Remark 1.2.5. It is possible to give bounds of the forward and backward Lyapunov expo-

nents. Let
L = max

θ∈T
||M(θ)||

S = max
θ∈T

∣∣∣∣M(θ)−1
∣∣∣∣ .

Then, λ+(v, θ) ≤ L and λ−(v, θ) ≥ S−1.
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An important result that summarizes both the average growth and the directions of a

general point (v, θ) under the action of a cocycle is Oseledet’s theorem, see e.g [Arn98].

Theorem 1.2.6. Let (M,ω) be a linear cocycle on Rn × T. There exists a full-measure set

R in T, invariant under the rotation θ → θ + ω, such that, for every (v, θ), with θ ∈ R:

1. The sup limits in the definitions (1.11), (1.12) are in fact limits.

2. For fixed θ ∈ R and every v, the values attained by the limits λ+(v, θ) and λ−(v, θ) is

a finite set {λ1(θ) > · · ·λk(θ)}, with k = k(θ) ≤ n.

3. There is a measurable invariant splitting of Rn = ⊕1≤i≤kE
i
θ such that for every non-

zero v,

• λ+(v, θ) ≤ λj(θ) iff v ∈ ⊕j≤i≤kEi
θ.

• λ−(v, θ) ≥ λj(θ) iff v ∈ ⊕1≤i≤jE
i
θ.

4. The linear maps
(
M(j, θ)TM(j, θ)

) 1
2j converge as j → +∞ to a linear map whose

eigenvalues are eλ1(θ) > · · · > eλk(θ). If we denote by Êi
θ their respective eigenspaces,

then for each i = 1, · · · , k, it is satisfied that

Êi
θ ⊕ · · · ⊕ Êk

θ = Ei
θ ⊕ · · · ⊕ Ek

θ .

Oseledet’s theorem states, in a measure theoretical sense, the hyperbolicity conditions in

theorem 1.1.7 but, in the study of FHIT, it is required a continuous version of the Oseledet’s

theorem: the vector bundle Rn × T decomposes in a continuous, not only measurable,

Whitney sum Eu ⊕ Es.

Remark 1.2.7. Even in the case that there exists the continuous Whitney sum of invariant

subbundles, each of these can have a filtration of subbundles Ei, as the ones stated in

Oseledet’s theorem, such that they are only measurable.

An important corollary of Oseledet’s theorem is the (almost) independence of the Lya-

punov exponents with respect θ:

Corollary 1.2.8. In the quasiperiodic case, for almost every v ∈ Rn and θ ∈ T, the limits

lim
k→+∞

1

k
log ||M(θ, k)v||

and

lim
k→−∞

1

|k|
log ||M(θ, k)v||

exist and are equal to λ+, λ−. They are called the maximal (resp. minimal) Lyapunov

exponents.
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Another important notion is the linear conjugacy between cocycles.

Definition 1.2.9. Two cocycles (M,ω) and (N,ω) are linear conjugated if there exists

a matrix-valued map P : R/(2Z) −→ GL(n,R) such that it is satisfied the cohomology

equation

M(θ)P (θ) = P (θ + ω)N(θ) (1.13)

for all θ ∈ T.

Remark 1.2.10. The linear conjugacy P is defined as a matrix-valued map on R/(2Z), and

not in T, in order to conjugate non-orientable invariant subbundles.

With the linear conjugacy, it can be introduced the concept of reducibility.

Definition 1.2.11. A linear cocycle (M,ω) is reducible if it is conjugated to a linear cocycle

(Λ, ω) with constant transfer matrix Λ. E is a reducible subbundle of (M,ω) if it is invariant

and (M|E, ω) is reducible. In addition, if (M|E, ω) is reducible to a diagonal matrix, the

elements of the diagonal are called the Lyapunov multipliers of the invariant subbundle E.

Remark 1.2.12. When a cocycle is reducible, its dynamics are very simple. It is the dynamics

of a linear map.

Remark 1.2.13. It can be proved that the absolute value of a Lyapunov multiplier is equal

to the exponential of a Lyapunov exponent.

1.2.1 One dimensional cocycles

The dynamics of 1D cocycles are well understood. In this case, their transfer matrix are

scalar-valued maps M(θ). Due to this particular form, the computation of the maximal

(and unique) Lyapunov exponent is easy: using the Birkhoff Ergodic Theorem the Lyapunov

exponent is equal to ∫
T

log |M(θ)|dθ.

The study of the dynamics is splitted in two cases, when M vanishes at some point θ0

or when it never vanishes. If it vanishes at some point θ0, then the cocycle is not invertible

everywhere. If it never vanishes, then the cocycle is invertible everywhere and its inverse is

well-defined. Also, for the invertible case there is a classical result, see for example [Pui04b],

that says that, under a diophantine hypothesis on ω, 1D cocycles are reducible. We present

here a proof because we will use it in numerical computations.

Proposition 1.2.14. Let (M,ω) : R×T −→ R×T be an analytic 1D cocycle, with invertible

transfer matrix M and with ω diophantine, that is, there exist τ > 2 and C > 0 such that,

for every k ∈ Z− {0}, ∣∣e2πikω − 1
∣∣ > C

|k|τ
. (1.14)
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Then it is reducible, that is, there exist a constant M̄ 6= 0 and an analytic map P : T −→ R,

P (θ) 6= 0 for all θ, such that it is satisfied

M(θ)P (θ) = P (θ + ω)M̄.

Proof. Without loss of generality, we suppose that the transfer matrix M : T −→ R is always

positive. We want to find a positive analytic map P : T −→ R and a positive constant M̄

such that they satisfy

M(θ)P (θ) = P (θ + ω)M̄. (1.15)

Taking logarithms in the scalar equation (1.15) we obtain the functional equation

p(θ + ω)− p(θ) = m(θ)− m̄, (1.16)

where p(θ) = logP (θ), m(θ) = logM(θ) and m̄ = log M̄ .

Let p(θ) =
∑

k∈Z pke
2πikθ and m(θ) =

∑
k∈Zmke

2πikθ. Equation (1.16) says that the

Fourier coefficients of both both p(θ), the unknown, and m(θ) must satisfy

pk =
mk

e2πikω − 1
.

Using the diophantine condition (1.14) we obtain that the modulus of the Fourier coefficients

pk are bounded above by
|mk||k|τ

C
,

which implies that pk are the coefficients of an analytic function.

To finish, P (θ) = ep(θ) is the desired analytic function.

1.2.2 Two dimensional cocycles

In the recent years there has been many advances to understand the dynamical properties

of 2D cocycles, see e.g. [HP06, AK06, AB07, BF06].

We discuss here cocycles with constant determinant 1. In this case, the maximal, λ+,

and minimal, λ−, Lyapunov exponents satisfy λ+ = −λ−. In this case it is costumary to

speak of the Lyapunov exponent, which refers to the maximal one. One way to classify these

cocycles is with respect the value of their Lyapunov exponent:

• Positive Lyapunov exponent: Oseledet’s theorem 1.2.6 asserts that there exists an in-

variant measurable Whitney sum of 1D bundles Eu⊕Es, with corresponding Lyapunov

exponent λ+, λ−. If this Whitney sum is continuous, the cocycle is called uniformly

hyperbolic, otherwise non-uniformly hyperbolic. In the uniform case (and ω diophan-

tine) we have that the cocycle is reducible to a diagonal matrix, see proposition 1.2.14.

In the non-uniform case, the dynamics of it is very complicated, with the apperance

of Strange-Nonchaotic Attractors in the corresponding projective cocycle (1.10), see

e.g. [Her83, HP06].
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• Zero Lyapunov exponent: The dynamics of the cocycle are not exponential contracting

nor expanding and, due to the Oseledet’s theorem 1.2.6, we have that it is possible

that there does not exist any (non-trivial) invariant measurable subbundle.

Special cases of these cocycles are the parabolic case, with transfer matrix(
1 a(θ)

0 1

)
,

and the elliptic case, with transfer matrix(
cos(2πθ) − sin(2πθ)

sin(2πθ) cos(2πθ)

)
.

We proceed now to study the homotopic invariants of 2D cocycles.

Definition 1.2.15. Let (M,ω) be a 2D cocycle with a continuous 1D invariant bundle,

parameterized by v : R/(2T) −→ R2, v(0) = v(2), and let em : R/(2T) −→ R2, em(θ) :=

(cos(πmθ), sin(πmθ)). The index of the invariant bundle v is the half integer m
2

such that

em and v are homotopically equivalent.

If a cocycle (M,ω) is homotopic to the identity, that is, there exists a continuous map

γ : [0, 1] −→ C0(T, SL(2,R)), such that γ(0) = M and γ(1) = Id, then, considering the

projective cocycle (1.10), we can construct its lift as a continuous map f : R×T −→ R×T.

Then, with the help of this lift we can define the fibered rotation number associated to it,

see [JM82, Her83, JS06, BJ09].

Definition 1.2.16. Consider a 2D cocycle (M,ω) homotopic to the identity with lift f : R×
T −→ R× T. Then, its fibered rotation number is defined as the limit

ρ(M,ω) = lim
k→∞

fk(x, θ)

k
, (1.17)

where fk(x, θ) = fk−1(f(x, θ), θ + ω), k > 0 and f 1(x, θ) = f(x, θ).

Some remarkable properties of the fibered rotation number are:

• The limit (1.17) is independent of the initial point (x, θ) and it is well-defined modulus

1.

• The fibered rotation number is a continuous function in both M and ω.

• If the cocycle (M,ω) has a continuous invariant bundle, then its fibered rotation

number satisfies that

ρ(M,ω) =
m · ω

2
,

where m is the index of the invariant bundle.

Figure 1.1 shows two invariant bundles with different index.
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(a) Index = 0. (b) Index = −1/2.

Figure 1.1: The unstable (red) and stable (blue) bundles of two 1D invariant bundles of two

cocycles with different index. Note that in the left figure the bundles are orientable, while

in the right one they are non-orientable.

1.2.3 Higher dimensional cocycles

As we saw in the previous subsections, a key point to understand how the dynamics of

a cocycle is organized is to know the number, dimensions and homotopy of the invariant

subbundles. As the dimension of the vector bundle Rn increases, the possible combinations

that arise increase and it is more difficult to give a full description of the classification.

An important tool for higher dimensional cocycles is the index of a 1D invariant bundle:

the space of homotopical equivalent 1D bundles is Z/2. This can be seen as follows: If one

parameterize a 1D bundle as a map

v : T −→ Sn−1, (1.18)

n > 2, then one has that, if we think that the torus T is the closed interval [0, 1] with its

endpoints identified, v is a continuous map with the possible exception of a discontinuity at

0. At 0 one has two possibilities: v(0) = −v(1) or v(0) = v(1). If we restrict to the case of

v(0) = v(1), the other one can be studied performing a 2-1 cover of the subbundle at T. We

have that the classification up to homotopy of invariant subbundles is equivalent to study

continuous maps of the form (1.18), this is just the study of the fundamental group of the

n− 1 spheres, which is trivial. The Z/2 term comes from the distiction between continuous

parameterizations or antipodal parameterizations at 0.

Another tool for studying a n dimensional cocycle (M,ω) is its adjoint cocycle: this

cocycle has as 1D invariant bundles the (n−1) dimensional invariant bundles of the original

cocycle. Its transfer matrix is M(θ)adj.
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1.3 Spectral theory of transfer operator over rotations

In this section we describe in more detail the spectral properties of the transfer operator

associated to a linear cocycle [Mat68, CL99]. Most of this theory is covered in [HdlL05].

Since we present properties of spectral theory of linear bounded operators, a good reference

to keep in mind is [Kat95].

As we saw in section 1.1, a characterization of an invariant torus of a skew product to be

FHIT is that its transfer operatorM, defined as a bounded operator acting on the Banach

space C0(T,Cn), has not the unit circle in the spectrum.

One important property of transfer operators is to understand their continuity property

with respect perturbations in both the matrix-valued map M and the rotation vector ω. We

assert that it is continuous with respect perturbations of the matrix-valued map M but not

continuous on the rotation vector ω, see [HdlL05].

Notation 1.3.1. The spectrum of a transfer operator will be called M spectrum, in honor

to the paper [Mat68].

The M spectrum, depending on the nature of rotation ω, the spectrum has a lot of central

symmetries.

Theorem 1.3.2. Let M be a transfer operator. Then,

• If ω is irrational, then its spectrum is rotational invariant, that is, if λ is in the

spectrum and α ∈ R, then eiαλ is in the spectrum.

• If ω is rational, ω = p
q
, and λ is in the spectrum, then e2πik·ωλ is in the spectrum for

all k ∈ Z.

Theorem 1.3.2 says that the spectrum of the transfer operator is formed by an union of

annuli centered at 0. If the transfer matrix M(θ) is not invertible for some θ, then one of

the annuli is a full disk containing 0.

Notation 1.3.3. We will denote by Aλ,µ the annulus centered at 0 with inner radius λ and

outer radius µ, that is,

Aλ,µ = {z ∈ C|λ ≤ |z| ≤ µ} .

Another interesing property of the spectrum of a transfer operator is that the whole

spectrum is Weyl spectrum, that is, if λ is in the spectrum, then there exists a sequence of

continuous sections vk, with ||vk|| = 1 such that

lim
k→∞
||Mωvk − λvk|| = 1.

With the annuli characterization of theorem 1.3.2 we can state the following theorem,

which asserts Cr regularity to invariant bundles.
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Theorem 1.3.4. Let M be a transfer operator, with Cr transfer matrix, r ≥ 0, and let λ, µ

be real numbers. Assume that the spectrum does not intersect the annulus Aλ,µ.

Then, Rn × T splits in a Cr Whitney sum E<λ ⊕ E>µ that satisfies

• If (v, θ) ∈ E<λ then |M(θ + (l − 1)ω) · · ·M(θ)v| ≤ Cλl|v| for all l ≥ 0;

• If (v, θ) ∈ E>µ then |M(θ + lω)−1 · · ·M(θ − ω)−1v| ≤ Cµ−l|v| for all l ≤ 0 ,

for a given C > 0.

A consequence of theorem 1.3.4 is that the stable and unstable bundles of a FHIT are

as smooth as the linear cocycle associated to the FHIT.

1.4 Quasiperiodically discrete Schrödinger operators

In this section we review the notions on (discrete) Schrödinger operators that will be used

throughout the thesis. For a general exposition on the subject, see [Pui04b, Bou05].

Definition 1.4.1. A quasiperiodically (discrete) Schrödinger opearator is a linear bounded

operator H acting on `2(Z) of the following form

(Hx)n = xn+1 + V (θ0 + nω)xn + xn−1,

where V : T −→ R is a contiuous periodic function and ω is irrational.

Some properties of a Schrödinger operator are:

• It is a self-adjoint operator on `2(Z).

• Its spectrum lies on the real line.

The localization and the characterization of the spectrum of a Schrödinger operator can

be performed by finding generalized solutions of the following eigenvalue problem:

xn+1 + V (θ0 + nω)xn + xn−1 = Exn. (1.19)

Note that, if (xk)k∈Z is a solution of (1.19), then (xk, xk−1)k∈Z is an orbit of the linear

cocycle, acting on R2 × T, with transfer matrix

ME(θ) =

(
E − V (θ) −1

1 0

)
. (1.20)

The following result is due to Johnson [Joh83].

Theorem 1.4.2. E is in the resolvent set of a quasiperiodic discrete Schrödinger operator

if, and only if, the cocycle with transfer matrix (1.20) is uniformly hyperbolic.
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Another important tool associated to a Schrödinger operator is the Integrated Density

of States (IDS) function. This function is defined as the limit

N(x) = lim
|N2−N1|→∞

#
{
E ∈ Spec(H[N1,N2]) : E ≤ x

}
|N2 −N1|

,

where H[N1,N2] = Q[N1,N2]HQ[N1,N2], with Q[N1,N2] the projection operator acting on `2(Z):

(Q[N1,N2]v)k =

{
vk if N1 ≤ k ≤ N2

0 otherwise
.

Some properties of the IDS function, see [Bou05], are:

• N(R) = [0, 1].

• N is monotone increasing.

• N is constant outside the spectrum.

• x ∈ Spec(H) if and only if N(x) /∈ 1
2

((ωZ) /Z).

• The fibered rotation number ρ of the associated cocycle of the Schrödinger operator

satisfies that

ρ = N(x) (mod 1).

(a) λ = 1. (b) λ = 3.

Figure 1.2: Visual example of the Integrated Density of States for the quasiperiodic discrete

Schrödinger operator with V (θ) = λ cos(2πθ) for different values of λ.



Chapter 2

Numerical study of breakdown of

FHIT in area preserving skew

products

In this chapter we present three different scenarios of bifurcation of FHIT in one-parameter

families of quasiperiodically forced area preserving skew product systems. These bifurca-

tions are: the smooth bifurcation, the non-smooth breakdown and the folding breakdown.

We explore these bifurcations by approximating the quasiperiodic solutions by periodic or-

bits, see chapter §5 for the numerical methods used for these computations. For all the

rational approximations we compute different observables, like the (maximal) Lyapunov ex-

ponent, minimum distance of the invariant bundles and the maximal FK eigenvalue (defined

below). We compute these observables and observe different behaviours between different

bifurcations. Also, these rational approximations give us some hints of a renormalization

phenomenon behind all these bifurcations.

2.1 Introduction

The bifurcations that we study in this chapter are universal. However, to study their

characteristics, we present them in an explicit model. These bifurcations are:

The smooth bifurcation, well-known in the literature, see e.g. [BHS96, HdlL07], is char-

acterized by a smooth transition from a FHIT to an elliptic curve, which is surrounded by

2D tori. As the parameter approaches the bifurcation value, its Lyapunov exponent, and

the maximum and minimum distance between its invariant bundles, goes to zero.

The non-smooth breakdown, first studied in [HdlL07] in a different model, goes as follows:

as the parameter approaches the bifurcation value, the curve becomes more wildly: at the

breakdown its analycity is broken and it generates sharp peaks. The Lyapunov exponent is

positive in the breakdown and, while the minimum distance between the invariant bundles

goes to zero, the maximum distance between them stays far from zero. After the breakdown,

13



14 CHAPTER 2. BREAKDOWN OF FHIT IN AP SKEW PRODUCTS

numerics suggest that there is no continuous invariant curve, but a hyperbolic object.

The folding breakdown is a new mechanism of destruction of FHIT and shares some

similarities with the non-smooth breakdown: the Lyapunov exponent is positive and the

minimum distance between the invariant bundles is zero, while the maximum distance is

positive. After the breakdown there is, for every partial convergent ωn of the irrational

rotation ω of the skew product, an invariant curve, which is not a graph, but it is hyper-

bolic in almost every point. As ωn goes to ω, numerics suggest that these folded invariant

curves converge, in the Hausdorff sense, to a hyperbolic invariant object which is not even

a mesurable graph.

To describe these types of bifurcations, we consider the following quasiperiodic forced

standard map 
x̄ = x+ ȳ

ȳ = y − κ

2π
sin(2πx)− ε sin(2πθ)

θ̄ = θ + ω (mod 1)

. (2.1)

Throughout all the chapter, we fix ω =

√
5− 1

2
, the golden mean.

When κ > 0 and ε = 0, (2.1) has{(
1

2
, 0, θ

)}
, θ ∈ T (2.2)

as FHIT. For every different scenario, we fix κ and continue the solution (2.2) with respect

ε. Since for ε = 0 the invariant curve is constant, so the transfer matrix is constant and has

positive eigenvalues, the fibered rotation number of the curve is 0. Then, while we continue

(2.2), the fibered rotation number of the invariant curves for ε > 0 is also zero.

Remark 2.1.1. The skew product (2.1) is analytic, so its FHIT are analytic curves.

Remark 2.1.2. We want to emphasize that, although we show different bifurcations for some

values of the parameter κ, every bifurcation is produced in an open set of the parameter κ.

This is discussed at the end of the chapter.

The orbits of (2.1), {(xn, yn, θn)}n∈Z, satisfy

xn+1 − 2xn +
κ

2π
sin(2πxn) + xn−1 + ε sin(2πθn) = 0, (2.3)

with yn+1 = xn+1 − xn and θn = θ0 + nω. The form (2.3) is very useful from the theoretical

point of view: an invariant curve of the quasiperiodically forced standard map can be

represented as the graph of the function x : T −→ R. Then, the y coordinate of the invariant

curve is just y(θ) = x(θ) − x(θ − ω). Throughout all the chapter, we denote by x(θ) the

invariant curves of the quasiperiodically forced standard map.

It is easy to see that the solutions of (2.3) are the stationary orbits of the gradient flow

ẋn = xn+1 − 2xn +
κ

2π
sin(2πxn) + xn−1 + ε sin(2πθn), (2.4)
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defined in `∞(Z). This gradient flow is called (generalized) FK model. It is a generalization

of the FK model studied in, e.g. [MMS89, Har98, Gol01], and satisfies that it has equilbrium

states of the potential

H(x, θ0) =
∑
n∈Z

1

2
(xn+1 − xn)2 − κ

4π2
cos(2πxn) + ε sin(2π(θ0 + nω))xn. (2.5)

Remark 2.1.3. Given a fixed point of the FK model (2.3), its linearization at the fixed point

is a discrete Schrödinger operator. The spectrum of the linearization of the fixed point will

be called FK spectrum, and the upper bound of the FK spectrum will be called maximal

FK eigenvalue. The computation of both the FK spectrum and maximal FK eigenvalue is

the same as for a Schrödinger operator, and it is discussed in chapter §5.

As we observed above, the continued curves has zero fibered rotation number, which

means that the FK spectrum lies on the negative real axis. This implies that they are

attracting fixed points of (2.3). By the theory exposed in chapter §1, these curves will

remain FHIT until they loose their attracting nature as ixed points of the gradient flow.

Remark 2.1.4. All the numerical computations have been done using the periodic orbits

technique, see chapter §5 for further details. Also, when the periodic orbits technique does

not work, we have used the FK model, equation (2.3), to compute the invariant curves,

or objects. Note that integration of points under the flow only converge to objects that

has zero fibered rotation number, which correspond to fixed points of the flow that are

(exponentially) attracting.

Remark 2.1.5. All the computations shown throughout the chapter have been done for every

partial convergent less than 107. We have compared them and obtained that there are no

significant differences, otherwise we state the differences in the text. Hence, when we show

a computation, we fix a partial convergent but the results are not significantly altered if we

change the rational approximation.

2.2 Smooth bifurcation

This scenario is characterized by the transition of a FHIT to an elliptic curve: a curve

surrounded by 2D tori. This is analogous to the bifurcation of a hyperbolic fixed point

to an elliptic fixed point in an area preserving map. As the ε parameter approaches the

bifurcation value, the Lyapunov exponent and the minimum and maximum distance between

the invariant bundles approach zero. This means that the M spectrum of the curve, which is

two concentric circles before the bifurcation, collides with the unit circle at the bifurcation

value. See figure 2.1 for a schematic example of these spectra.

The example we present here appears when we fix κ = 0.3 and let ε increase from 0 to

the critical value, εc ' 1.336405501779, where the transition from the hyperbolic curve to

the elliptic curve is predicted.
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(a) Before the breakdown. (b) At the breakdown.

Figure 2.1: Schematic representation of the M spectrum before and at the smooth bifurca-

tion. The blue circle is the unit circle.

2.2.1 Smooth bifurcation prediction and behaviour of the observ-

ables

For every partial convergent of the golden mean with its denominator between 30 and

6000000, we computed the critical εc where the transtition occurs, see table 2.1. The stop-

ping criterion used for the computation of the table is when the Lyapunov exponent as-

sociated to the invariant curve, Λ, reaches values close to 10−5. We observe in the table

that the minimum distance between the unstable and stable bundles, and the maximal FK

eigenvalue are close to zero. Also, from the table we can observe that these critical values

converge to a value, ε∞ ' 1.336405501779, which corresponds to the critical value of the

transition of the curve in the quasiperiodic case. This convergence can be seen in figure 2.2.

See also figure 2.3 for a visualitzation of the Lyapunov exponent, the minimum distance and

the maximal FK eigenvalue near the bifurcation.

Remark 2.2.1. In table 2.2 we compute the Aitken’s accelerations for the ten smallest ratio-

nal approximations. Note that for the first Aitken’s value we have 1.336405518559, which

is remarkably close to the predicted ε∞ ' 1.336405501779. Also note that in the third

column in table 2.2, where the ratios of the differences of successive critical values εc is

computed, stabilize to a value around −3.819646318413e-01. This gives us some hints that

a renormalization phenomena occurs in this bifurcation.

In figure 2.4 it is shown several invariant curves with their invariant bundles for different

values of ε near the bifurcation. We can observe that the smoothness of the invariant curve

is not altered by the bifurcation, and that the invariant bundles collide in a smooth manner:

the minimum and the maximum distance between them goes to zero as the parameter

approaches the critical value.

As it is shown in figure 2.3, the Lyapunov exponent and the minimum distance between

the invariant bundles behave as a square root, while the maximal FK eigenvalue behaves as
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Figure 2.2: Graph of εc with respect the rational approximations.

Numerator Denominator Ratio convergence Aitken’s accel.
55 89 -3.819054851656e-01 1.336405518559e+00
89 144 -3.819809967525e-01 1.336405503724e+00

144 233 -3.819596590822e-01 1.336405502123e+00
233 377 -3.819683587215e-01 1.336405501874e+00
377 610 -3.819651347217e-01 1.336405501834e+00
610 987 -3.819664512905e-01 1.336405501815e+00
987 1597 -3.819665264814e-01 1.336405501859e+00

1597 2584 -3.819646318413e-01 1.336405501847e+00
2584 4181 -3.819779819878e-01 1.336405501735e+00
4181 6765 -3.819358748000e-01 1.336405502142e+00

Table 2.2: In the second column there is the qn denominators of the partial convergents used

to compute the third and fourth columns. In the third column there is the ratios of conver-

gence between successive critical εn. These ratios are computed using the formula εn−εn−1

εn−1−εn−2
.

In the fourth column there is the Aitken’s acceleration of the critical εn corresponding to

the denominator qn. These are computed using the formula
εnεn−2−ε2n−1

εn−2εn−1+εn−2
.
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(a) Lyapunov exponent. (b) Minimum distance function.

(c) Maximal FK eigenvalue.

Figure 2.3: Observables values along the continuation of the FHIT for ωn = 46368
75025

.
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(a) κ = 0.3, ε = 1. (b) κ = 0.3, ε = 1.

(c) κ = 0.3, ε = 1.33. (d) κ = 0.3, ε = 1.33.

(e) κ = 0.3, ε = 1.336. (f) κ = 0.3, ε = 1.336.

(g) κ = 0.3, ε = 1.3364. (h) κ = 0.3, ε = 1.3364.

Figure 2.4: Invariant curves (left) and their invariant bundles (right) with ωn = 46368
75025

, near

the smooth bifurcation.
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a line. To check these behaviours, for every partial convergence between 700 and 6000000

and for every of these three observables, we performed a fit, using the fit utility of gnuplot,

of the data of these observables with the supposed behaviour. The Lyapunov exponent isn

fitted by the function

Λ = b(εc − ε)
1
2

wher Λ is the Lyapunov exponent, εc is the critical value of the parameter and b is a constant.

In table 2.3 it is shown the output of the fit that corresponds to the Lyapunov exponent.

For the computation of that table we let b and εc be the variables to fit. Similarly, the fitting

for the minimum distance function is done using formula

D = b(εc − ε)
1
2

where D represents the minimum distance, see table 2.4. Also, the fitting for the maximal

FK eigenvalue is done using formula

λmax = b(εc − ε)

where λmax represents the maximal FK eigvalue, see table 2.5.

Remark 2.2.2. Note that the εc predicted by the fitting outputs are close to the ones that

comes from table 2.1.

Numerator Denominator εc b
610 987 1.336404648094 0.556222197926
987 1597 1.336405813488 0.556222790393

1597 2584 1.336405368166 0.556222750560
2584 4181 1.336405538051 0.556222984995
4181 6765 1.336405473608 0.556222434246
6765 10946 1.336405498023 0.556222850865

10946 17711 1.336405488936 0.556222446033
17711 28657 1.336405492169 0.556222846314
28657 46368 1.336405490786 0.556222845242
46368 75025 1.336405491413 0.556222743564
75025 121393 1.336405491405 0.556222544689

121393 196418 1.336405491089 0.556222949529
196418 317811 1.336405491160 0.556222845531
317811 514229 1.336405491271 0.556222743449
514229 832040 1.336405491066 0.556222949507
832040 1346269 1.336405491169 0.556222845534

1346269 2178309 1.336405491168 0.556222845538
2178309 3524578 1.336405491169 0.556222845534
3524578 5702887 1.336405491168 0.556222845538

Table 2.3: Fitting results for the Lyapunov exponent.
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Numerator Denominator εc b
610 987 1.336404609742 0.812315016364
987 1597 1.336405775314 0.812317480289

1597 2584 1.336405329278 0.812317409677
2584 4181 1.336405498697 0.812318777507
4181 6765 1.336405436044 0.812315111960
6765 10946 1.336405459064 0.812317878350

10946 17711 1.336405451365 0.812315144669
17711 28657 1.336405453222 0.812317804204
28657 46368 1.336405451840 0.812317799402
46368 75025 1.336405452820 0.812317120221
75025 121393 1.336405453498 0.812315795749

121393 196418 1.336405451783 0.812318492295
196418 317811 1.336405452214 0.812317799545
317811 514229 1.336405452677 0.812317119547
514229 832040 1.336405451761 0.812318492133
832040 1346269 1.336405452223 0.812317799568

1346269 2178309 1.336405452222 0.812317799566
2178309 3524578 1.336405452222 0.812317799587
3524578 5702887 1.336405452222 0.812317799500

Table 2.4: Fitting results of the minimum distance function.

Numerator Denominator εc b
610 987 1.336404972751 -0.299010813617
987 1597 1.336405935817 -0.299011407883

1597 2584 1.336405413180 -0.299011409504
2584 4181 1.336405553503 -0.299011697212
4181 6765 1.336405477894 -0.299010983678
6765 10946 1.336405497893 -0.299011544526

10946 17711 1.336405487284 -0.299010987410
17711 28657 1.336405489775 -0.299011541984
28657 46368 1.336405488141 -0.299011544429
46368 75025 1.336405488717 -0.299011396760
75025 121393 1.336405488722 -0.299011115705

121393 196418 1.336405488313 -0.299011647254
196418 317811 1.336405488394 -0.299011517917
317811 514229 1.336405488543 -0.299011370895
514229 832040 1.336405488294 -0.299011635593
832040 1346269 1.336405488422 -0.299011497471

1346269 2178309 1.336405488421 -0.299011493162
2178309 3524578 1.336405488421 -0.299011494552
3524578 5702887 1.336405488421 -0.299011494513

Table 2.5: Fitting results for the maximal FK eigenvalue.
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Remark 2.2.3. In [HdlL07] there is also numerical explorations of this bifurcation in the

context of Schrödinger operators and area preserving skew products. These numerical ex-

plorations are done using Fourier methods to compute the invariant tori, see chapter §5.

They observe that the Lyapunov exponent and minimum distance function behave as a

square root.

2.2.2 After the smooth bifurcation

After the bifurcation, the invariant curve is as smooth as before the breakdown, but its

invariant unstable and stable bundles have dissapeared: the curve is no more hyperbolic,

see figure 2.8. There are 2D tori around it. Figure 2.5 shows a section, for θ = 0, where

it can be seen these 2D tori surrounding the invariant curve. Hence, in the bifurcation the

invariant curve is still smooth but the dynamics of its associated cocycle is conjugated to a

constant cocycle with transfer matrix of the form(
1 a

0 1

)
(2.6)

with a 6= 0. This conjugacy property is in accordance with the general theory, see [Pui04a].

Figure 2.5: Neighbourhood of the torus after the transition. Section θ = 0.

In figure 2.6 we plot the first and second derivative of the invariant curves for ε = 1.3364

(before the breakdown) and for ε = 1.3365 (after the breakdown). We observe in this figure

that the first and second derivatives are continuous before and after the breakdown. Also,

in figure 2.7 we can see the graphs of the maximum of the first and second derivatives of

the invariant curves with respect ε near the breakdown.
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Remark 2.2.4. We observe that the graph of the second derivative in figure 2.7 seems to

have a vertical asymptote in the breakdown value, but this is a numerical phenomenon:

as ε approaches the breakdown value, the system gets more singular because the condition

number, of the linear system that has to be solved to compute the derivatives, increases.

If ε is increased up to 1.44 we observe, see figure 2.8, that the invariant curve bifurcates

to a FHIT with invariant bundles with non-trivial homotopy (hence the fibered rotation

number is different from zero). To see this bifurcation from elliptic curve to FHIT curve, we

compute the upper 10% of the FK spectrum, with respect ε, before and after the breakdown,

see figure 2.9. In this figure we can see that, after the breakdown, when the spectrum crosses

the blue line, a part of the spectrum crosses the zero line, which means that for some ε values,

the invariant curve is not a FHIT. In fact, KAM theory predicts that there is a Cantor set

of ε such that the invariant curves are elliptic, see [JS96] and references therein. Increasing

further ε, we observe that in the FK spectrum there is an open gap, where ε = 1.44 is in it,

hence the invariant curve is FHIT.

(a) κ = 0.3, ε = 1.3364. (b) κ = 0.3, ε = 1.3365.

(c) κ = 0.3, ε = 1.3364. (d) κ = 0.3, ε = 1.3365.

Figure 2.6: First derivative, x′(θ), (left) and second derivative, x′′(θ), (right) of the invariant

curve, with ωn = 46368
75025

, at ε values before and after the smooth bifurcation. Note that there

are no significant changes.
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(a) Graph of the maximum of the first derivative
for κ = 0.3.

(b) Graph of the maximum of the second deriva-
tive for κ = 0.3.

Figure 2.7: Graphs of the derivatives with respect ε near the smooth bifurcation. These are

computed with ωn = 2178309
3524578

.

(a) κ = 0.3, ε = 1.3365. (b) κ = 0.3, ε = 1.3365.

(c) κ = 0.3, ε = 1.44. (d) κ = 0.3, ε = 1.44.

Figure 2.8: Invariant curves (left) and their invariant subbundles (right) with ωn = 46368
75025

,

after the smooth bifurcation.
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Figure 2.9: 10% of the FK spectrum for κ = 0.3.
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2.3 Non-smooth breakdown

In this scenario, the invariant curve bifurcates in a non-smooth manner: the Lyapunov

exponent is positive at the breakdown, and the invariant bundles collided non uniformly:

the minimum distance between them goes to zero but the maximum distance stays positive.

The spectral implications of this dynamical behaviour is that the M spectrum, which is

an union of two circles before the breakdown, collides forming an annulus containing the

unit circle, see figure 2.10. About the regularity of the invariant curves, it is observed that,

as the parameter approaches the breakdown, the curve, which is always analytic when it

is a FHIT, starts to develop peaks. Numerics suggests that at the breakdown, the curve

has peaks, which means that the first derivative in the breakdown is a bounded but not a

continuous curve, while the supremum norm of the second derivative goes to infinity.

(a) Before the breakdown. (b) At the breakdown.

Figure 2.10: Schematic representation of the M spectrum before and at the non-smooth

breakdown.

The non-smooth breakdown is observed when we fix K = 1.3 and increase ε form 0 to

εc ' 1.235275526763.

2.3.1 Non-smooth breakdown prediction and behaviour of the ob-

servables

The ε parameter value where the breakdown occurs is computed with the periodic orbits

with denominator between 30 and 6000000. All the critical parameter values obtained can

be seen in table 2.6. The stopping criterion used for the computation of this table is when

the periodic orbits method, used to compute the periodic curves, stops to work, see remark

2.3.1. In this table we can see that the Lyapunov exponent at every periodic approximation

of ω is bigger than zero and that it stabilizes at a value around 0.36402. In figure 2.11 we

observe the convergence of the critical parameter value εc and the Lyapunov exponent Λc

compared with the computed one with denominator 5702887. Since the convergence of the
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Lyapunov exponent is not linear, the Aitken method does not improve the convergence, see

table 2.7.

Remark 2.3.1. An interesting phenomenon that occurs in this scenario, in contrast with

the other two described in this chapter, is that, when the parameter value increases and

approaches the breakdown value, the numerical method used to compute the approximate

invariant curves, the periodic orbits method, stops to work: it cannot be continued any

periodic orbit after the breakdown. When it stops, the minimum distance between the

invariant bundles is close to zero, so we can conclude that the breakdown occurs near where

the numerical method stops. As we will see at the end of the section, using the gradient

flow we can continue the invariant curve after the breakdown and obtain a non-continuous

object. This suggests that after the breakdown there is no longer a continuous curve, but

a hyperbolic invariant object, which cannot be a measurable graph due to the discussion of

invariant graphs in chapter §1.
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Figure 2.11: Graphs of εc and Λc with respect the rational approximations.

Figure 2.12 shows the curve and its invariant bundles for several values of ε near the

non-smooth breakdown. Observe that the graphs of the invariant curves develop sharp edges

as the ε parameter approaches the breakdown, while the invariant bundles collide in a non-

smooth manner. The graphics suggest that the non-smooth collision of the bundles goes as

follows: there is a θ0 for which the invariant bundles approach, also for all the θ0 + kω with

k ∈ Z, while for the others θ0 the invariant bundles remain separated.

Near the breakdown we compute the first and second derivatives of the invariant curve,

see figure 2.13. This figure suggests that the first derivative of the invariant curve at the
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(a) κ = 1.3, ε = 1. (b) κ = 1.3, ε = 1.

(c) κ = 1.3, ε = 1.23. (d) κ = 1.3, ε = 1.23.

(e) κ = 1.3, ε = 1.235. (f) κ = 1.3, ε = 1.235.

(g) κ = 1.3, ε = 1.235275. (h) κ = 1.3, ε = 1.235275.

Figure 2.12: Invariant curves (left) and their invariant bundles (right) with ωn = 46368
75025

, near

the non-smooth breakdown.
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Numerator Denominator Ratio convergence Aitken’s accel.
55 89 1.808541192710e-02 1.235657626508e+00
89 144 2.292816108434e+00 1.235984480997e+00

144 233 -2.121709117542e-01 1.235315969279e+00
233 377 -4.976403824778e-01 1.235302015937e+00
377 610 -3.480356703739e-01 1.235298743720e+00
610 987 -1.656737136610e+00 1.235293127808e+00
987 1597 2.090353767277e-02 1.235276706501e+00

1597 2584 2.429183210842e+00 1.235277622460e+00
2584 4181 -2.131315382136e-01 1.235275652188e+00
4181 6765 -4.975392979390e-01 1.235275609154e+00

Table 2.7: In the second column there is the qn denominators of the partial convergents used

to compute the third and fourth columns. In the third column there is the ratios of conver-

gence between successive critical εn. These ratios are computed using the formula εn−εn−1

εn−1−εn−2
.

In the fourth column there is the Aitken’s acceleration of the critical εn corresponding to

the denominator qn. These are computed using the formula
εnεn−2−ε2n−1

εn−2εn−1+εn−2
.

breakdown is bounded but not continuous, while the supremum norm of the second derivative

of the invariant curve is infinite. Also, in figure 2.14 it is shown the maximum of the first

and second derivative of the invariant curve with respect the parameter ε. As we observe,

the first derivative remains bounded as ε approaches εc, while the second derivative, which

is plotted in log10 scale, reaches values of order 106 near the breakdown.

(a) κ = 1.3, ε = 1.235275. (b) κ = 1.3, ε = 1.235275.

Figure 2.13: First derivative, x′(θ), (left) and second derivative, x′′(θ), (right) of the invariant

curve, with ωn = 46368
75025

, at a ε value near the non-smooth breakdown.

In the left pictures of figure 2.15, we can observe the graph of the Lyapunov exponent,

minimum distance between the invariant bundles and the maximal FK eigenvalue. As we

observe, these three graphs behave as a square root with respect to the difference (εc − ε).
In the right pictures of figure 2.15 we plot the graphs of this three observables as a func-
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(a) Graph of the maximum of the first derivative
for κ = 1.3.

(b) Graph of the maximum of the second deriva-
tive for κ = 1.3. The y axis is in log10 scale.

Figure 2.14: Graphs of the derivatives with respect ε near the non-smooth breakdown.

These are computed with ωn = 2178309
3524578

.

tion of
√
εc − ε. These plots are straight lines, which strenghten the hypothesis that these

observables behave as square root near the breakdown.

From the last paragraph and the right plots in figure 2.15 we conclude that the observ-

ables behave linearly with respect
√
εc − ε. We perform, for both three observables and with

the help of the fit function in gnuplot, a fit in order to check this behaviour.

In table 2.8 we can see the fit for the Lyapunov exponent by the function

Λ = b(εc − ε)
1
2 + c,

where Λ represents the Lyapunov exponent and εc is the parameter when the transition

occurs. We can observe that the coefficients stabilize as the denominator of the partial

convergent increases. As we can observe, the predicted εc from table 2.8 agrees in nine

digits with the predicted one via the periodic orbits method, see table 2.6.

Remark 2.3.2. This square root behaviour is also supported by the figure 2.16, where it is

shown the largest 10% of the FK spectrum of the invariant curve with respect ε.

In table 2.9 we can see the fit for the minimum distance function by the function

D = b(εc − ε)
1
2 ,

where D represents the minimum distance function and εc is the parameter when the transi-

tion occurs. We can observe that the coefficients stabilize as the denominator of the partial

convergent increases.

In table 2.10 we can see the fit for the maximal FK eigenvalue by the function

λmax = b(εc − ε)
1
2 ,

where λmax represents the maximal FK eigenvalue and εc is the parameter when the transi-

tion occurs. We can observe that the coefficients stabilize as the denominator of the partial

convergent increases.
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(a) Lyapunov exponent (b) Lyapunov exponent.

(c) Minimum distance function. (d) Minimum distance function.

(e) Maximal FK eigenvalue. (f) Maximal FK eigenvalue.

Figure 2.15: Observables values along the continuation of the FHIT, for ωn = 46368
75025

, with

respect ε (left) and
√
εc − ε (right).
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Figure 2.16: 10% of the FK spectrum κ = 1.3.

Numerator Denominator εc b c

610 987 1.235288815166 1.929669458707 0.357544193075
987 1597 1.235281946637 1.526950323123 0.360893528244

1597 2584 1.235278385603 1.229168286572 0.362734799711
2584 4181 1.235277490525 1.157315948767 0.363193088486
4181 6765 1.235276208604 1.058313749228 0.363779854479
6765 10946 1.235276280966 1.064594421607 0.363746597568

10946 17711 1.235275581642 1.019477491017 0.364025480278
17711 28657 1.235275542553 1.017224302358 0.364040261930
28657 46368 1.235275522252 1.016160124872 0.364047143474
46368 75025 1.235275522001 1.016116585456 0.364047413765
75025 121393 1.235275518825 1.015961014535 0.364048445972

121393 196418 1.235275521711 1.016106198080 0.364047480712
196418 317811 1.235275519175 1.015975011753 0.364048348125
317811 514229 1.235275519171 1.015974330284 0.364048352564
514229 832040 1.235275519258 1.015979242831 0.364048320566
832040 1346269 1.235275519149 1.015973192000 0.364048359942

1346269 2178309 1.235275519149 1.015973227541 0.364048359711
2178309 3524578 1.235275519149 1.015973213917 0.364048359800
3524578 5702887 1.235275519149 1.015973219061 0.364048359766

Table 2.8: Asymptotic results for the Lyapunov exponent.
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Numerator Denominator εc b

610 987 1.235277152315 1.056001847578
987 1597 1.235276640525 1.055413884515

1597 2584 1.235275348478 1.055268792719
2584 4181 1.235275624530 1.055251607346
4181 6765 1.235275482652 1.055394199957
6765 10946 1.235275529557 1.055420883306

10946 17711 1.235275451808 1.055397307119
17711 28657 1.235275454727 1.055260078205
28657 46368 1.235275443715 1.055487201439
46368 75025 1.235275451622 1.055263477838
75025 121393 1.235275444138 1.055485301404

121393 196418 1.235275451354 1.055263987843
196418 317811 1.235275446541 1.055408494124
317811 514229 1.235275446537 1.055408808805
514229 832040 1.235275446531 1.055409095999
832040 1346269 1.235275446528 1.055408979609

1346269 2178309 1.235275446527 1.055408986226
2178309 3524578 1.235275446528 1.055408987355
3524578 5702887 1.235275446527 1.055408988530

Table 2.9: Asymptotic results for the minimum distance function.

Numerator Denominator εc b

610 987 1.235277200502 -0.954220310320
987 1597 1.235276678661 -0.953935339891

1597 2584 1.235275386162 -0.953798223236
2584 4181 1.235275661978 -0.953820133959
4181 6765 1.235275522440 -0.953874747343
6765 10946 1.235275569745 -0.953891294499

10946 17711 1.235275491357 -0.953865587789
17711 28657 1.235275492034 -0.953799887158
28657 46368 1.235275484453 -0.953900051972
46368 75025 1.235275488904 -0.953798772321
75025 121393 1.235275484880 -0.953900175317

121393 196418 1.235275488632 -0.953798572716
196418 317811 1.235275486059 -0.953864195082
317811 514229 1.235275486054 -0.953864187262
514229 832040 1.235275486047 -0.953864014288
832040 1346269 1.235275486044 -0.953864189964

1346269 2178309 1.235275486042 -0.953864191296
2178309 3524578 1.235275486043 -0.953864191180
3524578 5702887 1.235275486042 -0.953864189764

Table 2.10: Asymptotic results for maximal FK eigenvalue.



36 CHAPTER 2. BREAKDOWN OF FHIT IN AP SKEW PRODUCTS

2.3.2 After the non-smooth breakdown

As we observed at remark 2.3.1 the numerical method used to continue the invariant curve

that starts at ε = 0, stops near the breakdown parameter value. In order to check if there

is still some invariant object we integrate the gradient flow (2.3) for κ = 1.3, ε = 1.236 and

several partial convergents ωn. A visual example of the invariant object with its invariant

bundles can be seen in figure 2.17. This figure suggests that there is a (bounded) invariant

object that remains after the breakdown, and that it is not a continuous invariant curve.

Also, we compute its Lyapunov exponent, which is around 0.363. This positive Lyapunov

exponent suggests that the invariant object is hyperbolic.

We want to point out several things about the invariant object that remains after the

breakdown. First, we have tried to use this invariant object as an initial condition of the

periodic orbits method, or variants of it, and we have not get any success, but we have

evaluated it in the skew product and obtained a small error (around 10−12). Second, the

integration of the gradient flow only converges to attracting fixed points, so it can happen

that after the breakdown, the invariant curve bifurcates to the invariant object described

earlier and, maybe, to another ones, which will be not attracting fixed points of the gradient

flow. With the tools that we have now we cannot say any more in this direction.

(a) κ = 1.3, ε = 1.236. (b) κ = 1.3, ε = 1.236.

Figure 2.17: Invariant object (left) and its invariant bundles (right) with ωn = 46368
75025

, after

the non-smooth breakdown.
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2.4 Folding breakdown

This scenario is characterized by a transition from a uniformly hyperbolic curve to a non-

uniformly hyperbolic object. As it happens in the non-smooth breakdown, as the parameter

approaches the breakdown value, the Lyapunov exponent, and the maximum distance func-

tion between the invariant bundles, of the invariant curve stay far from zero, while the

minimum distance goes to zero. This means that the M spectrum is an union of two circles

before the bifurcation, while it is an annulus with the unit circle in it at the breakdown, see

figure 2.18. It is also observed that, as the parameter approaches the critical value, the max-

imum slope of the invariant curve goes to infinity (this does not happen in the non-smooth

breakdown).

(a) Before the breakdown. (b) At the breakdown.

Figure 2.18: Schematic representation of the M spectrum before and at the folding break-

down.

After the critical value, the approximation of the invariant curve, which is computed

using the periodic orbits method with rational rotation number ωn, is no longer a graph

with respect θ but it is a continuous curve with foldings. Numerics suggests that the

folding invariant curves converge, as ωn → ω, to a non-smooth and non-uniformly hyperbolic

invariant object.

Remark 2.4.1. Numerics suggests that there is a big difference between the invariant object

after the non-smooth breakdown with the invariant object after the folding breakdown. The

first one is, roughly speaking, the result of an invariant curve that has lost its continuity,

while the second one is the limit, in the Hausdorff metric, of a sequence of (folding) smooth

curves.
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2.4.1 Folding breakdown prediction and behaviour of the observ-

ables

We compute the breakdown value of the invariant curves for rational approximations, ωn,

of the irrational rotation ω, with all the denominators between 30 and 6000000. This is

shown in table 2.11. The stop criterion used for the computation of this table is that we

stablish a threshold, 10−10, for the absolute value of the maximal FK eigenvalue, or that

the minimum distance between the invariant bundles is less than 10−4. Observe in the table

that the sequence of εc values for every partial convergent converges, while the Lyapunov

exponents, which are sensibly bigger than zero, do not converge as good as in the smooth

bifurcation or the non-smooth breakdown tables. For a visual example of these convergences,

see figure 2.19. In this figure we observe that in the Lyapunov exponent’s graph, there are

some peaks, with period 3. These peaks corresponds to the rational approximations that

has even denominator. In fact, from table 2.11 we can see that there are three families

of rational approximations: the one with both odd numerator and denominator, the one

with even numerator and odd denominator, and the last one with odd numerator and even

denominator. These families converge exponentially to the critical value.

Figure 2.19: Exponential convergence of εc and Λc for the rational approximations.

Remark 2.4.2. In table 2.12 we compute the Aitken’s accelerations for the ten smallest

rational approximations. Note that for the third Aitken’s value we have 1.275369505272,

which is remarkably close to the predicted ε∞ ' 1.275369645795. Also note that in the

third column in table 2.12, where the ratios of the differences of successive critical values

εc is computed, stabilize to a value around −3.819601904780e-01. This gives us some hints
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that a renormalization phenomenon occurs in this bifurcation. Compare also these ratios

with the ones for the smooth bifurcation, table 2.2. The smooth bifurcation has a similar

ratio: −3.819646318413e-01. They agree in 5 digits! We will explore this coincidence at the

end of the chapter.

Numerator Denominator Ratio convergence Aitken’s accel.
55 89 -1.785895970348e+00 1.275162244534e+00
89 144 -3.760507629195e-01 1.275368559504e+00

144 233 -3.845922927548e-01 1.275369505272e+00
233 377 -3.810316593481e-01 1.275369656351e+00
377 610 -3.823277633985e-01 1.275369677339e+00
610 987 -3.818293702019e-01 1.275369680425e+00
987 1597 -3.820184122584e-01 1.275369680876e+00

1597 2584 -3.819464726728e-01 1.275369680891e+00
2584 4181 -3.819740131899e-01 1.275369680853e+00
4181 6765 -3.819601904780e-01 1.275369681007e+00

Table 2.12: In the second column there is the qn denominators of the partial convergents used

to compute the third and fourth columns. In the third column there is the ratios of conver-

gence between successive critical εn. These ratios are computed using the formula εn−εn−1

εn−1−εn−2
.

In the fourth column there is the Aitken’s acceleration of the critical εn corresponding to

the denominator qn. These are computed using the formula
εnεn−2−ε2n−1

εn−2εn−1+εn−2
.

In figure 2.20 it is shown the graphs of the Lyapunov exponent, the minimum distance

function and the maximal FK eigenvalue, with respect ε. We observe that the asymptotic

behaviour of both the minimum distance and the maximal FK eigenvalue are straight lines.

The Lyapunov exponent seems to behave as a straight line, but at a distance of 10−7 of the

predicted breakdown, it turns down. This “turn down” phenomenon is observed in all the

partial convergents computed. If we delete in the computation outputs of the asymptotics

these turn downs, and we check the Lyapunov exponent, we obtain table 2.13, where it is

shown the values of the ε where the maximum Lyapunov exponent is attained, and its value.

We observe that these values converge.

Figure 2.21 shows several curves with their invariant bundles, for several values of ε, near

the folding breakdown. Note that, as in the non-smooth breakdown, the invariant bundles

collide in a non-smooth manner: the minimum distance between them goes to zero, while

the maximum distance stays far from zero. Note also that maximum slope of the invariant

curves increases as ε goes to εc. Figure 2.22 shows the graph of the first derivative of a curve

near the breakdown, and also the graph, with respect ε, of the maximum, in absolute value,

of the first and second derivatives.

Now, we check the asympotic behaviour of the minimum distance function between

the invariant bundles and the maximal FK eigenvalue for all the partial convergents with

denominator between 700 and 6000000, near the folding breakdown, using the fit utility in
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(a) Lyapunov exponent. (b) Minimum distance function.

(c) Maximal FK eigenvalue.

Figure 2.20: Observables values along the continuation of the FHIT, for ωn = 46368
75025

, with

respect ε.
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(a) κ = 1.05, ε = 1. (b) κ = 1.05, ε = 1.

(c) κ = 1.05, ε = 1.2. (d) κ = 1.05, ε = 1.2.

(e) κ = 1.05, ε = 1.275. (f) κ = 1.05, ε = 1.275.

(g) κ = 1.05, ε = 1.27536. (h) κ = 1.05, ε = 1.27536.

Figure 2.21: Invariant curves (left) and their invariant bundles (right) with ωn = 46368
75025

, near

the folding breakdown.
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(a) First derivative of the invariant curve near the
folding breakdown, at κ = 1.05, ε = 1.2753.

(b) Maximum first derivative graph, with respect
ε, near the folding breakdown. The y axis is in
log10 scale.

(c) Maximum second derivative graph, with re-
spect ε, near the folding breakdown. The y axis is
in log10 scale.

Figure 2.22: Several observables of the slope of the invariant curves near the folding break-

down for ωn = 46368
75025

.
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Numerator Denominator εc Lyapunov exponent (Λmax)
610 987 1.275083958017e+00 2.108429272589e-01
987 1597 1.275204213745e+00 2.115915668887e-01

1597 2584 1.275159345875e+00 2.112945336131e-01
2584 4181 1.275311766260e+00 2.124532060962e-01
4181 6765 1.275335002973e+00 2.126878887107e-01
6765 10946 1.275326254133e+00 2.125960450347e-01

10946 17711 1.275357100737e+00 2.129479723452e-01
17711 28657 1.275362058471e+00 2.130159603950e-01
28657 46368 1.275360180282e+00 2.129895177453e-01
46368 75025 1.275366854014e+00 2.130893283669e-01
75025 121393 1.275367953197e+00 2.131081071591e-01

121393 196418 1.275367535275e+00 2.131008283938e-01
196418 317811 1.275369032450e+00 2.131281047798e-01
317811 514229 1.275369282852e+00 2.131331570864e-01
514229 832040 1.275369187468e+00 2.131312030813e-01
832040 1346269 1.275369530475e+00 2.131384884700e-01

1346269 2178309 1.275369588334e+00 2.131398235506e-01
2178309 3524578 1.275369566264e+00 2.131393079536e-01
3524578 5702887 1.275369645795e+00 2.131412232005e-01

Table 2.13: Critical εc where the maximum Lyapunov exponent is attained.

gnuplot.

Remark 2.4.3. We do not report here the asympotic behaviour of the Lyapunov exponent

because we have not succeed in it, but we have checked that it does not behave as a straight

line nor a square root.

For the minimum distance function, see table 2.14, we fit it by

D = b(εc − ε),

where D represents the distance function and εc the parameter when the breakdown occurs.

We have fitted the unknowns b and εc.

For the maximal FK eigenvalue, see table 2.15, we fit it by

λmax = b(εc − ε),

where λmax represents the maximal FK eigenvalue and εc the parameter when the breakdown

occurs. We fit the unknowns b and εc.

Observe that for both fits, the εc output of the fittings are quite close, 10−5, to the

predicted ones in table 2.13.

2.4.2 After the breakdown

We continue, for several partial convergents ωn = pn

qn
, the periodic orbits and observe that

after the folding breakdown, see figure 2.23, they seem to lie in non-continuous graphs. Note
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Numerator Denominator εc b
610 987 1.275367829229 4.463266843647
987 1597 1.275369536726 4.463704574507

1597 2584 1.275368900023 4.463256748918
2584 4181 1.275369130518 4.463658585980
4181 6765 1.275369041732 4.463518677682
6765 10946 1.275369081206 4.463471195378

10946 17711 1.275369064192 4.463524474433
17711 28657 1.275369075722 4.463412797824
28657 46368 1.275369070598 4.463468509886
46368 75025 1.275369065080 4.463582934842
75025 121393 1.275369155710 4.460062859984

121393 196418 1.275369085165 4.462876191439
196418 317811 1.275369269885 4.453430397976
317811 514229 1.275369252625 4.453079249422
514229 832040 1.275369260816 4.453132010334
832040 1346269 1.275369227714 4.453108188694

1346269 2178309 1.275369220222 4.453186851665
2178309 3524578 1.275369223086 4.453154179539
3524578 5702887 1.275369213184 4.453279780334

Table 2.14: Asymptotic results for the minimum distance function with fixed c = 1.

Numerator Denominator εc b
610 987 1.275367445362 -1.634832182121
987 1597 1.275369142326 -1.635098982192

1597 2584 1.275368519395 -1.634829330986
2584 4181 1.275368736620 -1.635070297522
4181 6765 1.275368652437 -1.634986350489
6765 10946 1.275368693651 -1.634958109968

10946 17711 1.275368674751 -1.634989921593
17711 28657 1.275368690177 -1.634923147442
28657 46368 1.275368683110 -1.634956475394
46368 75025 1.275368673622 -1.635024859910
75025 121393 1.275368678483 -1.634990518571

121393 196418 1.275368678595 -1.634990523948
196418 317811 1.275368683660 -1.634956536199
317811 514229 1.275368673415 -1.635024823993
514229 832040 1.275368673409 -1.635024821106
832040 1346269 1.275368678563 -1.634990539575

1346269 2178309 1.275368678563 -1.634990515450
2178309 3524578 1.275368678567 -1.634990502790
3524578 5702887 1.275368678564 -1.634990524231

Table 2.15: Asymptotic results for the maximal FK eigenvalue with fixed c = 1.
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also that discontinuites are also present in the invariant bundles. The periodic orbits showed

in figure 2.23 have, as θ coordinates, θk = 0 + kωn, k = 0, . . . , qn − 1.

Remark 2.4.4. The plots in figure 2.23 show that, for different values of ωn, the periodic orbits

resemble each other but, if for a fixed partial convergent ωn, the graph has a discontinuity

then, due to the periodicity of the skew product, it has qn discontinuities. This implies that

the number of discontinuities differ for different partial convergents.

In the pictures of figure 2.23 we observe that in some of the discontinuities it seems

that there is a middle point between the extrema of the discontinuities, see figure 2.24 for

a magnification of this phenomena. If, for these computations, there is an invariant curve

and we continue these periodic points, which are computed for θ0 = 0, with respect θ0, then

we must obtain a closed curve. These continuations, with respect θ0, are shown in figures

2.25 and 2.26. As we observe in these figures, the continuation of the periodic orbits with

respect the parameter θ0 leads to a closed curve, which is invariant, but it is not a graph of a

function with respect θ: it has turnings. As we mentioned above, if there is a turning then,

due to the periodicity of the system, the number of turnings must be a multiple of qn. Also,

as we observe in figures 2.25 and 2.26, as it is increased the denominator qn of the partial

convergent, it is obtained a sequence of invariant curves which are close to each other. This

leads to conjecture that, as qn goes to infinity, these converge, in the Hausdorff sense, to an

invariant object, which cannot be the graph of a measurable function, see remark 1.1.5 in

chapter §1.

Remark 2.4.5. From figures 2.25 and 2.26 we can observe that the width of the turnings does

not depend on the denominator qn. See also figure 2.27, where it is shown a superposition

of three turnings for three different partial convergents. This implies that for a fixed θ0, as

qn increases, the number of points on the folding curve, with θ cordinate equal θ0, increases

(without upper bound).

Remark 2.4.6. The computation of the continuation method of the periodic orbits with

respect θ0, for low values of the denominator qn, is quite simple and the classical continuation

method, see [Sim90], can be used. For moderate values of qn, for example 6765 and above,

the classical continuation method does not work, due to huge amount of memory required,

hence we perform the continuation using the Newton’s method explained in chapter 5. The

initial seed used for the computation of the periodic orbit at θ0 + ∆ is the periodic orbit at

θ0. To compute the turnings of the curves, we also use the information of the curvatures of

the periodic points with respect the parameter θ0 at three consecutive values of it.

As pointed in remark 2.4.6, we can only compute using the classical continuation method,

the folding curves for low values of the period qn. For all qn between 55 and 377 we have

computed the folding curves, continuing form θ = 0 to θ = 1. With these computations,

we also compute the parameterization of the folding curves with respect the arclength, see

figure 2.28. Note that the arclength of the curves increases as qn increases. See table 2.16

for the arclength of the folding curves for these partial convergents.
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(a) ωn = 610
987 (b) ωn = 610

987

(c) ωn = 987
1597 (d) ωn = 987

1597

(e) ωn = 46368
75025 (f) ωn = 46368

75025

(g) ωn = 832040
1346269 (h) ωn = 832040

1346269

Figure 2.23: Periodic orbits (left) and their invariant bundles (right), with different rational

approximation. The parameters are κ = 1.05, ε = 1.28 and θ0 = 0.
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(a) ωn = 610
987 (b) ωn = 832040

1346269

Figure 2.24: Magnification of the periodic orbits for some of the partial convergents showed

there. The parameters are κ = 1.05, ε = 1.28 and θ0 = 0.

Numerator Denominator Arclength

21 34 3.063197728351e+00

34 55 4.120121806595e+00

55 89 4.504743647041e+00

89 144 4.304636200438e+00

144 233 7.031692452759e+00

233 377 9.590577699228e+00

Table 2.16: Arclength of the folding curves for different ωn = pn

qn
for the parameter values

κ = 1.05 and ε = 1.28.
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(a) ωn = 21
54 (b) ωn = 34

55

(c) ωn = 55
89 (d) ωn = 610

987

(e) ωn = 4181
6765 (f) ωn = 28657

46368

Figure 2.25: Folding curves computed for several partial convergents for the parameter

values κ = 1.05 and ε = 1.28.
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(a) ωn = 832040
1346269 (b) ωn = 832040

1346269

(c) ωn = 3524579
5702887 (d) ωn = 5702887

9227465

Figure 2.26: Folding curves computed for several partial convergents for the parameter

values κ = 1.05 and ε = 1.28.
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Figure 2.27: Magnification of a superposition of three folded curves for the partial conver-

gents 610
987

(red), 4181
6765

(green) and 28657
46368

(blue). Note that the width of the three turnings are

almost the same.

Figure 2.28: Graphs of the arclenght (y axis) with respect θ for different values of ωn = pn

qn
.
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(a) θ0 = 0. (b) θ0 = 1
2·987 .

Figure 2.29: 10% of the FK spectrum κ = 1.05 with respect ε, computed for the partial

convergent ωn = 610
987

and with different θ0.

In terms of the stability properties of the periodic orbits, as stationary solutions of the

gradient flow (2.4), we observed that it depends on the θ0 that we choose to compute the

periodic orbit. Figure 2.29 shows the biggest 10% of the FK spectrum for two different θ0.

Note that for θ0 = 0 all the spectrum lies on the negative axis, while for θ0 = 1
2qn

there

is some part of the spectrum on the postive real axis. We performed this computation for

several rational approximations and observed the same phenomenon for each of them. Also,

we observed that the number of positive eigenvalues of the FK spectrum, for θ0 = 1
2qn

, is

the integer part of N
qn

, where N × N are the dimensions of the tridiagonal matrix used as

an approximation of the discrete Schrödinger operator, the linear part of the gradient flow,

used to compute the stability of the periodic point.

The numerical computations explained during this section suggest that, for a fixed ra-

tional approximation ωn, the creation of the folding curves can be explained as follows:

Before the folding breakdown, all the periodic points have their FK spectrum at the neg-

ative real axis, so all of them are attracting fixed points of the gradient flow. After the

breakdown, some of the periodic orbits have some part of the FK spectrum positive, while

other periodic orbits have all the FK spectrum negative. This suggests that, for a fixed

θ0, there is a bifurcation from one periodic orbit to three periodic orbits, one of them with

positive FK spectrum. In conclusion, for a fixed θ0 and rational approximation ωn, the

folding bifurcation can be read as a pitchfork bifurcation of an attracting fixed point of the

gradient flow. Also, we conjecture that the invariant object, that is the Hausdorff limit of

the folding curves for rational convergents, is a pitchfork bifurcation of the gradient flow for

the irrational rotation ω.

Folding breakdown in other skew products:

We also explored other skew products than the one worked in this chapter and we found
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that there are also folding bifurcations in other 2D skew products. For example, we explored

the quasiperiodic standard map forced with other perturbations of θ, like
x̄ = x+ ȳ

ȳ = y − κ

2π
sin(2πx)− ε (sin(2πθ) + 0.1 sin(4πθ))

θ̄ = θ + ω (mod 1)

.

For this example, with κ = 0.8, there are folding curves. Figure 2.30 shows a picture for

one of these foldings.

(a) Folding curve. (b) Magnification of the folding curve.

Figure 2.30: Folding curve for ωn = 610
987

. The parameter values are κ = 0.8 and ε = 1.27.

Also, we explored the quasiperiodic standard map with two frequencies
x̄ = x+ ȳ

ȳ = y − κ

2π
sin(2πx)− ε (sin(2πθ1) + sin(2πθ2))

θ̄1 = θ1 + ω1 (mod 1)

θ̄2 = θ2 + ω2 (mod 1)

,

and found that, for ω1 =
√

2− 1, ω2 =
√

3− 1, κ = 0.7 and ε = 0.772, there exists a folding

torus. See figure 2.31 for a visual example of it. Note that there are holes in the torus,

which means that there has been a folding breakdown of it.

We suspect that, generically, the folding bifurcation occurs in all skew products that has

a gradient flow associated to it. We plan in the future to attack this problem.
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Figure 2.31: Invariant torus with two frequencies computed with rational approximation of

the rotation vector

(
485269

1171543
,

857629

1171543

)
, and with parameter values κ = 0.7 and ε = 0.772.
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2.5 Summary

We saw in this chapter a numerical exploration of three different types of bifurcations of

FHIT. In table 2.17 we summarize the breakdowns, comparing and contrasting before, at,

and after the breakdown for different observables.

Before breakdown.
Min dist B. Max dist B. Lyap. exp. M spec FK spec T. smooth B. smooth

Smooth > 0 > 0 > 0 Thin < 0 Yes Yes
Non-smooth > 0 > 0 > 0 Thin < 0 Yes Yes
Folding > 0 > 0 > 0 Thin < 0 Yes Yes

At breakdown.
Min dist B. Max dist B. Lyap. exp. M spec FK spec T. smooth B. smooth

Smooth = 0 = 0 = 0 Thin = 0 Yes Yes
Non-smooth = 0 > 0 > 0 Thick = 0 No No
Folding = 0 > 0 > 0 Thick = 0 No No

After breakdown.
Min dist B. Max dist B. Lyap. exp. M spec FK spec T. smooth B. smooth

Smooth = 0 = 0 = 0 Thin > 0 smooth smooth
Non-smooth > 0 > 0 > 0 ????? < 0 non-mes non-mes
Folding > 0 > 0 > 0 Thin > 0 non-mes non-mes

Table 2.17: Summary of the observables behaviour of the three different breakdowns. The

first column is the minimum distance between the invariant bundles, the second one is the

maximum distance between invariant bundles, the third is the Lyapunov exponent, the

fourth is the M spectrum, the fifth is the FK spectrum, the sixth is the smoothness of the

invariant curve, and the seventh is the smoothness of the invariant bundles.

We computed the region, in the 2 parameter space (ε, κ), where there exists a FHIT.

This is shown in figure 2.32. We highlight some parts of the figure. These are:

• The region A is the uniformly hyperbolic region, where the FHIT exists.

• The curve B is where the smooth bifurcation occurs. After this curve there are elliptic

curves.

• The region D where the folding curves exists. Figure 2.33 shows a folding curve for a

different κ and ε parameter values.

• The curve E is where the non-smooth breakdown occurs. After this curve there are

no continuous invairant curves.
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Remark 2.5.1. We could not characterize the type of breakdown that occurs in the curveis

C. The numerics does not work properly on this part of the frontier and we do not have any

clue of what happens there. We plan to come back to this problem on the future.

Figure 2.32: Boundary of the hyperbolic region for ωn = 6765
10946

.

(a) Invariant curve. (b) Invariant bundles.

Figure 2.33: Invariant curve and its invariant bundles for ωn = 987
1597

. The parameter values

are κ = 1.102377 and ε = 1.272629.

In figure 2.32 we observe that the curve B, smooth bifurcation, and the boundary of

the region D, folding breakdown, are smooth. These smooth curves give some hints that

a renormalization process is behind the breakdowns. Also, in the numerics described in

these bifurcations, see tables 2.2 and 2.12, we observed that the Aitken’s acceleration work
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properly for the critical ε values, and that the ratios of the differences between successive

critical ε values are similar, around −3.8196e-01. During the description of the breakdowns,

we suggested that this gives some hints on a behind (but unknown) renormalization process.

In order to strengthen this renormalization conjecture, we have computed, for other κ values

and for both the smooth bifurcation and folding breakdown, these observables. We have

obtained that for both the smooth and the folding bifurcations the Aitken’s acceleration

produces good estimates of the critical ε and that the ratios of the differences between

successive critical ε are close to −3.8196e-01. These ratios are shown in table 2.18.

Remark 2.5.2. Note that −3.8196e-01 is close to the number 2√
5+3
' 3.81966011250e-01.

Type bifurcation κ Ratios
Folding 1.02 -3.819608065480e-01
Folding 1.03 -3.819565612617e-01
Folding 1.07 -3.819696922783e-01
Smooth 0.4 -3.819670229269e-01

Table 2.18: Ratios of the differences between successive critical ε for different κ with different

type of breakdown.
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Chapter 3

The conservative fractalization route

The fractalization route is a mechanism of transition to chaos in a quasiperiodic system,

in which an invariant curve gets increasingly wrinkled until it stops being a smooth curve.

In this chapter we describe this mechanism in a completely different context: in quasiperi-

odically forced volume preserving skew products. With the help of M spectrum we unify,

following the theoretical lines in [JT08], the explanation of this fractalization mechanism.

3.1 Introduction

The fractalization route was first observed in noninvertible dissipative systems in the pioneer

work of Kaneko [Kan84], see also [Kan86, NK96, DRP04], where they observe that an

attracting curve of the driven logistic map gradually wrinkles as the forcing parameter is

increased, while no collision with other invariant object is observed. [Kan84] suggests that,

as the forcing parameter is increased, there is a route from a smooth attracting curve to a

Strange Nonchaotic Attractor (a non-smooth invariant object that is a minimal attractor

with negative Lyapunov exponent), and then to a Strange Attractor (a non-smooth invariant

object that is a minimal attractor with positive Lyapunov exponent). However, a more

refined numerical exploration, see [HS05], suggests that when the Lyapunov exponent is

negative there is an invariant continuous curve, and that the maximum slope of the (smooth)

attracting curve increases as the Lyapunov exponent goes to zero. Hence, the Strange Object

appears when the Lyapunov exponent reaches zero. In [HdlL07, JT08] it is suggested that a

possible explanation of this breakdown phenomenon goes as follows: before the breakdown,

at some value of the forcing parameter, the transfer operator associated to the invariant curve

looses its invertibility: its M spectrum is a disk, with its radius the Lyapunov multiplier.

Then, as the forcing parameter is increased, the M spectrum approaches the unit circle

(the Lyapunov exponent goes to zero), meanwhile, the attracting curve is smooth but its

maximal slope increases as the forcing parameter increases. The breakdown is produced

when the M spectrum, which is a disk, collides with the unit circle. Then the smooth

curve bifurcates to a Strange Object. Figure 3.1 shows a diagram of the M spectra before

59



60 CHAPTER 3. THE CONSERVATIVE FRACTALIZATION ROUTE

and at the breakdown. After the creation of the Strange Object, if the forcing parameter

is increased, ther is a Strange Attractor, SA: a minimal attractor with positive Lyapunov

exponent. This means that the M spectrum is a disk with radius bigger than 1, that is, it

contains the unit circle.

(a) Before breakdown. (b) At the breakdown.

Figure 3.1: Diagram of the M spectra for the dissipative 1D fractalization route. The unit

circle is colored in blue.

The fractalization route has also been observed in dissipative higher dimensional skew

product systems. For example, in quasiperiodically invertible dissipative systems, e.g. the

rotating dissipative Henon map, see [SFKP96, KL04, HdlL07]. In this scenario, there is an

attracting smooth curve with a 2D stable bundle. The role that plays the noninvertibility

of the map, in the 1D case, is replaced by collisions of the 1D invariant subbundles (fast

and slow stable subbundles). This implies that the M spectrum goes from an union of two

concentric circles, when the 1D subbundles are smooth, to an annulus, when they are only

measurable. Then, as the forcing value is increased, the invariant curve starts to wrinble,

while the (maximal) Lyapunov exponent approaches zero. At zero Lyapunov exponent it

is produced the Strange Object. This breakdown phenomenon can be interpreted, as in

the case of noninvertible maps, in functional terms: the invariant curve has M spectrum an

annulus with outer radius less than one before the breakdown. Then, at the breakdown the

M spectrum, the annulus, has collided with the unit circle. Figure 3.1 shows a diagram of

the M spectra before and at the breakdown.

In this chapter we describe a new fractalization route in a conservative 3D preserving

skew product. This is the lowest dimension where it can occur. The invariant curve that

we study is not an attracting curve, but a FHIT curve with stable and unstable bundles.

The example goes as follows: when the forcing parameter is equal zero, the invariant curve

is the graph of a constant function K : T −→ R3. As the forcing parameter increases,

and after several smooth transitions, the invariant curve has a 1D stable bundle and a 2D

unstable bundle. The 2D unstable bundle decomposes in a continuous Whitney sum of 1D
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(a) Before breakdown. (b) At the breakdown.

Figure 3.2: Diagram of the M spectra for the dissipative 2D fractalization route. The unit

circle is colored in blue.

subbundles (fast and slow unstable subbundles). This means that the M spectrum is an

union of three circles, two of them with radius bigger than one. At some value of the forcing

parameter, the two 1D unstable subbundles collide, forming a nonreducible 2D unstable

bundle, which is the Whitney sum of two measurable non-continuous subbundles. Now, the

M spectrum is the union of a circle, with radius less than one, with a thick annulus outside

the unit circle. Then, as the forcing parameter is increased, the invariant curve starts to

wrinkle, while the medium Lyapunov exponent, which is associated to the slow (measurable)

unstable subbundle, goes to zero. The maximal and minimal Lyapunov exponents stay far

from zero, hence the annulus part of the M spectrum has collided with the unit circle. Also,

we observe that the distance between the stable and unstable bundles stays far from zero.

With the help of the numerical example presented in this chapter, and the theoretical

arguments described above, we want to streghten the theoretical explanation of the frac-

talization route, which unifies both dissipative and conservative cases. To sum up, the

fractalization route is a consequence of the collision, with the unit circle, of some annular

part of the M spectrum. In this situation, the condition of fiberwise hyperbolicity fails and

the torus can not be continued nor smoothly bifurcate.

Remark 3.1.1. We want to point out that the lowest dimension of a conservative skew

product where the fractalization route could happen is three. This is because to have this

type of breakdown, some part of the M spectrum must need to be an annulus. In one

dimensions, the M spectrum is a full disk, so the skew product is not invertible along the

curve. In two dimensions, if the M spectrum is an annulus and the invariant curve is FHIT,

then it lies inside (resp. outside) the unit circle, which implies that the skew product is

dissipative (resp. expansive).

We want to finish by comparing and contrasting the numerics used in this chapter.

In the dissipative case, the classical method used in the literature, see e.g. [Kan84, Kan86,
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NK96, DRP04, HdlL07, JT08, HS05], to compute attracting invariant curves is the iteration

method; while in the conservative case, the computation that we perform is using the periodic

orbits method, see chapter §5. As it is observed in [HS05, JT08], the iteration method has

a big disadvantage: near the breakdown the invariant curve has big local expansion rates

at some points and, due to the finite precision of the computations, the numerics generates

bad approximations of the attracting sets. Without care, this generates false Strange sets

instead of smooth curves. In the other hand, the computations of the hyperbolic curves done

in this chapter does not suffer this pathology. This is because the periodic orbits method

does not require the iteration of any map, so there are no possible local expansions nor

accumulation of errors due to the finite precision of the computations.

Remark 3.1.2. In [CS10] they show how critical can be the computation of invariant curves

using the classical iteration method. They compute an attracting curve in a quasiperiodically

forced logistic map that, if the computations are performed in double precision, then the

numerics gives as a result an (incorrect) strange set, but if the computations are performed

in multiprecision arithmetics, then they obtain an extremely smooth and mild curve.

Remark 3.1.3. All the computations shown throughout the chapter has been done for every

partial convergent less than 107. We compared them and obtained that there are no signif-

icant differences. Hence, when we show a computation, we fix a partial convergent but the

results are not significantly altered if we change the rational approximation.

3.2 The studied model

The quasiperiodic nonlinear volume preserving system that we focus on is
x̄ =

κ1

2π
sin(2πx) +

κ2

2π
sin(2πy) + z − ε sin(2πθ)

ȳ = x

z̄ = y

θ̄ = θ + ω (mod 1)

, (3.1)

where ω =
1−
√

5

2
is the inverse of the golden mean. We fix κ1 = 2.1 and κ2 = 0.95.

Remark 3.2.1. Before starting the detailed exposition of the fractalization route’s example,

we want to point out that we did an exploration of the skew product (3.1) for several

values of the parameters κ1, κ2, and we found other different bifurcation phenomena: the

smooth bifurcation and the non-smooth breakdown (see chapter §2 for a detailed exposition

of these bifurcations in 2D skew products). We do not report them in this thesis due to the

similarities with the 2D case.

The system (3.1) has the peculiarity that an invariant curve K is of the form K(θ) =

(x(θ), x(θ − ω), x(θ − 2ω)), where x : T −→ R satisfies the functional equation

x(θ + ω)− κ1

2π
sin(2πx(θ))− κ2

2π
sin(2πx(θ − ω))− x(θ − 2ω) + ε sin(2πθ) = 0, (3.2)
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so, from now on, we will make an abuse of notation and denote by x the invariant curve.

For ε = 0 the system (3.1) has the constant FHIT x(θ) = 0. It is a saddle-focus :

its Lyapunov exponents are λ1 ' 0.95958961 and λ2 = λ3 ' −0.47979481, so its stable

bundle is 2D, with a complex pair of eigenvalues, and the unstable bundle is 1D. As this

curve is continued via the parameter ε, it suffers several smooth transitions: some of them

concerning only on the topology of its invariant bundles, others concerning its stability. To

detect these transitions, we use the minimum distance between the invariant unstable and

stable bundles, and the Lyapunov exponents of the 1D subbundles, see figure 3.3.

(a) Lyapunov exponents of the invariant curves,
with respect to the parameter ε. The colors are:
red (maximal), blue (medium), green (minimal).

(b) Minimum distance function between the unsta-
ble and stable bundles.

Figure 3.3: Observables of the invariant curve. These are computed with partial convergent
46368
75025

.

The diagram of transitions can be summarized as follows:

1. From ε = 0 to ε ' 0.459160 the invariant curve has a 2D reducible stable bundle

and 1D unstable bundle. Depending on the ε, the stable bundle is either of node-type

(it decomposes into fast and slow stable subbundles) or is focus-type (it reduces to a

matrix with complex conjugate eigenvalues). Figures 3.5 and 3.6 show some plots of

node-type and focus-type. In figure 3.4 it is observed that the Lyapunov exponents

have some open gaps. In these gaps is where the stable bundle is of node-type. In

terms of the M spectrum, when the stable bundle is node-type means that the part of

the spectrum associated to the bundle is the union of two circles, see subfigure 3.8(a),

and when it focus-type means that the spectrum is a unique circle, see subfigure 3.8(b).

From ε ' 0.452905 to ε ' 0.459160 the stable bundle is node-type with medium Lya-

punov exponent approaching zero as ε approaches 0.459160. At this parameter value

the invariant bundles has a smooth bifurcation: the slow stable subbundle bifurcates

to the slow unstable subbundle.
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Figure 3.4: Magnification of the Lyapunov spectra for the parameter values 0.438 ≤ ε ≤
0.454. The colors are: blue (medium), green (minimal), red (the negative value of the half

of the maximal exponent).

2. From ε ' 0.459160 to ε ' 0.4598 the unstable bundle is 2D reducible and the stable

bundle is 1D. At ε ' 0.4598 the unstable bundle suffers a non-smooth transition:

Its 1D subbundles collide in a non-smooth manner, while their Lyapunov exponents

remain separated. Figure 3.7 shows this collision. This collision means that the M

spectrum goes from an union of two circles, see subfigure 3.8(c), to an annulus, see

subfigure 3.8(d).

3. From ε ' 0.4598 to ε ' 0.4649 the torus fractalizes: as ε increases, the invariant

curve gets more wrinkled. The unstable bundle remains nonreducible, with different

Lyapunov exponents, hence part of the M spectrum is an annulus. Figure 3.9 shows

the invariant curve near the breakdown parameter ε ' 0.4649. The medium Lyapunov

exponent goes to zero as ε increases, while the maximal and minimal Lyapunov expo-

nents remain far from zero. This means that the M spectrum, which is an annulus,

see subfigure 3.8(d), collides with the unit circle, see subfigure 3.8(e). Figure 3.10

shows the derivatives of the invariant curves near the breakdown. As ε increases the

derivatives increases. See figure 3.13 for a graph in log10 scale of the maximum slope

of the invariant curves with respect to the parameter ε. It can be observed that the

maximum slope increases as the invariant curve fractalizes.

Remark 3.2.2. As it is said in the description of the bifurcation diagram, we predict that

the fractalization route starts at ε ' 0.4598. Also, we compute the Medium Lyapunov
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(a) ε = 0.4384 (b) ε = 0.4384

(c) ε = 0.43841 (d) ε = 0.43841

Figure 3.5: Invariant curves (left) and fast (red) and slow (blue) stable subbundles (right)

for different values of ε. These are computed with partial convergent 196418
317811

. The fast and

slow stable subbundles are plotted as a projection on the 2D stable bundle. See text for

further details.
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(a) ε = 0.451151 (b) ε = 0.451151

(c) ε = 0.455 (d) ε = 0.455

Figure 3.6: Invariant curves (left) and fast (red) and slow (blue) stable subbundles (right)

for different values of ε. These are computed with partial convergent 196418
317811

. The fast and

slow stable subbundles are plotted as a projection on the 2D stable bundle.

exponent’s graph (see figure 3.11 for a visual example of it), for different values of the

partial convergents, and checked that its behaviour is “erratic”, which means that the curve

is suffering the fractalization route, that is affecting also its regularity. Figure 3.12 shows the

minimum distance function between the invariant unstable and stable bundles, with respect

ε, near the breakdown. Note that this minimum distance function is always bigger than

zero. This means that the invariant unstable and stable bundles do not merge. Also, we

have computed several invariant curves for different values of ε near this regime (see figure

3.9) and with different partial convergents, and we have observed that as ε is increased,

the wrinkle behaviour increase (although for all the parameter values ε before the non-

smooth bifurcation the curves are all smooth). See also figure 3.10 for a visualization of the

derivatives of the invariant curves near the breakdown.
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3.3 Summary

We can summarize the fractalization breakdown with table 3.1. Compare this table with

table 2.17 of the breakdowns described in chapter §2.

Min dist B. Max dist B. Med. Lyap. exp. M spec T. smooth B. smooth
Before breakdown > 0 > 0 > 0 Thin Yes Yes
At breakdown > 0 > 0 = 0 Thin No No

Table 3.1: Summary of the observables behaviour of the three different breakdowns. The

first column is the minimum distance between the invariant bundles, the second one is the

maximum distance between invariant bundles, the third is the medium Lyapunov exponent,

the fourth is the M spectrum, the fifth is the smoothness of the invariant curve, and the

sixth is the smoothness of the invariant bundles.

We showed in this chapter that an invariant curve with hyperbolic normal dynamics in

a volume preserving skew product can fractalize as in the dissipative case. This numeri-

cal example strengthens the unified theoretical framework to understand the fractalization

route in skew product systems. This framework is that, before the breakdown, there is a

loosness of reducibility in an invariant bundle, which is the same that there is an annular

part of the M spectrum. At the breakdown, the closest Lyapunov exponent to zero of the

nonreducible invariant bundle collides with zero, which is the same that the annular part of

the M spectrum collides with the unit circle.
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(a) ε = 0.45979 (b) ε = 0.45979

(c) ε = 0.4598 (d) ε = 0.4598

(e) ε = 0.4649 (f) ε = 0.4649

Figure 3.7: Invariant curves (left) and fast (red) and slow (blue) unstable subbundles (right)

for different values of ε. These are computed with partial convergent 196418
317811

. The fast and

slow unstable subbundles are plotted as a projection on the 2D unstable bundle.
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(a) Node-type stable bundle. (b) Focus-type stable bundle.

(c) Node-type unstable bundle. (d) Nonreducible unstable bundle.

(e) M spectrum at the breakdown.

Figure 3.8: Diagram of the M spectra for the different regimes of the bifurcation diagram.

The blue circle is the unit circle.
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(a) Invariant curve for ε = 0.4648. (b) Magnification of the invariant curve for ε =
0.4648.

(c) Invariant curve for ε = 0.464912. (d) Magnification of the invariant curve for ε =
0.464912.

Figure 3.9: Two (smooth) invariant curves near breakdown for the partial convergent 514229
832040

.

Note that, as ε is increased, the curve is more wrinkled. Note that the invariant curves are

a smooth curve, but very wrinkled, and, without the magnification, we cannot distinguish

them.
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(a) ε = 0.4648 (b) ε = 0.464912

Figure 3.10: Derivatives of the invariant curves computed with partial convergent 46368
75025

for different values of the ε parameter near the breakdown. Note that there is a slightly

difference between the parameter ε but the magnitude of the derivatives differ a lot. See

text for further details.

(a) Medium Lyapunov exponent’s graph near the
breakdown, computed with the partial convergent
46368
75025 . Note that at ε ' 0.4598 we can see a bump
in it, where the one dimensional subbundles of the
unstable bundle collide.

(b) Magnification of the medium Lyapunov expo-
nent’s graph near the breakdown, computed with
several partial convergents: 46368

75025 (red), 121393
196418

(green), 514229
832040 (blue).

Figure 3.11: Medium Lyapunov exponent’s graphs for ε near the breakdown. These are

computed with partial convergent 46368
75025

. See text for more details.
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(a) Note that there is a discontinuity of the min-
imum distance function between the unstable and
stable bundles at ε = 0.45916. At this parameter
value there is the transition of the slow stable sub-
bundle to the slow unstable subbundle.

(b) Magnification of the minimum distance function
near the breakdown. Note that it is bigger than
zero.

Figure 3.12: Minimum distance between the invariant unstable and stable bundles near

breakdown. This is computed with partial convergent 46368
75025

.

(a) (b) Magnification of figure 3.13(a).

Figure 3.13: Maximum slope function of the invariant curve with respect ε computed with

the partial convergent 514229
832040

. The y axis is in log10 scale. See text for further details.



Chapter 4

Computer-assisted proofs of FHIT

The goal of this chapter is to present a new methodology to provide rigorous proofs of the

existence and (local) uniqueness of fiberwise hyperbolic invariant tori in quasiperiodically

forced systems, even in cases in which the systems are very far from the perturbative regime

and the tori are about to break. The methodology is based on the use of computers to verify

the conditions of a taylored version of Newton-Kantorovich theorem [HdlL06b] for FHIT.

We report the application of computer-assisted proofs of existence of invariant tori in three

challenging scenarios.

The first scenario is the Harper map. This map arises in the study of the spectral

properties of the Almost-Mathieu operator [HP06], a discrete Schrödinger operator. We

develop computer-assisted proofs in several regimes of this map. This computer-assisted

proofs will be a warm up for the next two scenarios because the invariant torus is known

a priori and the validations concern only on the uniform hyperbolicity of the cocycles. We

apply indirect arguments to prove the existence of SNA in the projective cocycle, analyzing

different regions (gaps) of the parameter space and observing that the topology of the

invariant bundles depend on the gaps [HP06, HdlL07]. We also show the dependence of the

validations to the quality of the initial data, which in turn depends on the hyperbolicity

constants.

The second scenario examined is the Heagy-Hammel route [HH94]. This is a period 2

attracting torus (appeared in a period doubling bifurcation) that collides with its companion

repelling torus, producing a SNA. In this transition, the repelling torus is preserved, while

the period 2 attracting torus is destroyed (and becomes a SNA). This situation has been ob-

served in numerical experiments on a quasiperiodically driven logistic map, a noninvertible

system. Interestingly, the role of noninvertibility in global bifurcations was already noted in

[AK91, AKdlL07]. Noninvertibility is also a drawback in rigorous numerical computations,

since it implies that the linear dynamics around the torus cannot be reduced to constant

coefficients. Moreover, the unstable dynamics around the repelling torus has to be apparent

on the period 2 attracting torus when both objects approach each other and, in the limit

case, the closure of the SNA must contain some repelling orbits [Sta99]. Hence, even though

73
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the normal dynamics around the period 2 attracting torus is attracting on average (the

Lyapunov exponent is negative), it can be locally expanding. We overcome these compu-

tational problems by averaging the normal dynamics around the period 2 attracting torus.

We prove that the period 2 attracting torus exists up to a relative distance which is less

than 7.3 · 10−4 of the estimated value of the breakdown. We emphasize that other collision

mechanisms of formation of SNA have been studied both numerically and rigorously in the

literature, such as the non-smooth versions of the saddle-node and pitchfork bifurcations

[GFPS00, Jäg09, OWGF01].

The third scenario is a non-smooth breakdown of a saddle invariant torus, described in

[HdlL07, HdlL06a], and in chapter §2, for a quasiperiodically driven standard map. Here,

the stable and unstable bundles of a saddle torus approach each other in a complex way.

In other words, their projectivizations show the typical collision mechanism of creation

of SNA observed, e.g. in the Harper map [HP06, KS97]. Moreover, the corresponding

Lyapunov multipliers are away from 1. We report this mechanism for a quasiperiodically

forced standard map, and prove the existence of the saddle torus up to a bound that is at

a relative distance less than 4.3 · 10−7 from the estimated value of the breakdown.

All the validations presented here were tested with several types of computers working

under several operating systems, although we report only the results obtained with a machine

Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz working under Debian, using one of the

processors.

4.1 A validation theorem

In chapter §1 we saw the relation between hyperbolicity and the implementability of New-

ton’s method. From theorem 1 in [HdlL06b], Newton’s method for finding FHIT converges

quadratically, provided that the initial approximations of the torus and its invariant bundles

are accurate. The following is a reformulation of such a theorem, which is the theoretical

core of the validations done in this chapter.

Notation 4.1.1. An open strip of the vector bundle Rn × T is the open set

D := {(z, θ) ∈ Rn × T : z ∈ U , θ ∈ T} ,

where U is an open set of Rn.

Theorem 4.1.2. Let Rn×T be the trivial bundle over T, endowed with the Finslered norm

given by the maximum norm on each fiber. Let F : D ⊂ Rn × T → Rn be a continuous

map defined in an open strip D, C2 with respect to z, and ω ∈ R, defining the skew product

(F, ω) : D → Rn × T.

1.- Assume we are given:
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1.1) a continuous parametrization K : T→ Rn of a torus K ⊂ D;

1.2) two continuous matrix-valued maps P1, P2 : T→ L(Rn);

1.3) a continuous block diagonal matrix-valued map Λ: T→ L(Rn), Λ(θ) = diag (Λs(θ),Λu(θ)),

where Λs : T→ L(Rns) and Λu : T→ GL(Rnu), with n = ns + nu.

2.- Let ρ, σ, τ, λ, λ̂ be positive constants such that:

2.1) For each θ ∈ T, R(θ) = P2(θ + ω) (F (K(θ), θ)−K(θ + ω)) ∈ Rn satisfies

|R(θ)| ≤ ρ;

2.2) For each θ ∈ T, S(θ) = P2(θ + ω)DF (K(θ), θ)P1(θ) − Λ(θ) ∈ L(Rn) satisfies

|S(θ)| ≤ σ;

2.3) For each θ ∈ T, T (θ) = P2(θ)P1(θ)− In ∈ L(Rn) satisfies |T (θ)| ≤ τ ;

2.4) For each θ ∈ T, max (|Λs(θ)|, |Λu(θ)−1|) ≤ λ, |Λ(θ)| ≤ λ̂;

and assume that

2.5) λ+ σ + τ < 1.

3.- Given a positive constant r, let b, h be positive constants such that:

3.1) For each (z, θ) ∈ Rn × T with z = K(θ) + P1(θ)v and |v| ≤ r, then (z, θ) ∈ D
and B(z, θ) = P2(θ+ω)D2

zF (z, θ) [P1(θ)·, P1(θ)·] ∈ L2(Rn) satisfies |B(z, θ)| ≤ b;

3.2) (1− λ− σ − τ)−2bρ ≤ h;

and assume that

3.3) h < 1
2
.

4.- Assume also that the positive constants r0, r1 satisfy:

4.1) (1− λ− σ − τ)(1−
√

1− 2h)b−1 ≤ r0 ≤ r;

4.2) r1 ≤ (1− λ− σ − τ)(1 +
√

1− 2h)b−1 and r1 ≤ r.

Then, there exists a unique continuous map K∗ : T→ Rn such that, for each θ ∈ T:

a.1) F (K∗(θ), θ)−K∗(θ + ω) = 0;

a.2) |P−1
1 (θ) (K∗(θ)−K(θ)) | ≤ r1.

Moreover:



76 CHAPTER 4. CAPS OF FHIT

a.3) |P−1
1 (θ) (K∗(θ)−K(θ)) | ≤ r0.

5.- If, moreover, the positive constant µ satisfies:

5.1) λ(1− λ2)−1(1− τ)−1(br0 + σ + λ̂τ) ≤ µ < 1
4
.

Then, there exist continuous matrix-valued maps P∗ : T → GL(Rn), Λ∗ : T → L(Rn),

with Λ∗(θ) = diag (Λs
∗(θ),Λ

u
∗(θ)), where Λs

∗ : T→ L(Rns) and Λu
∗ : T→ GL(Rnu), such

that, for each θ ∈ T:

b.1) P∗(θ + ω)−1DzF (K∗(θ), θ)P∗(θ)− Λ∗(θ) = 0;

b.2) |P1(θ)−1(P∗(θ)− P1(θ))| ≤ µ√
1−4µ

;

b.3) |Λ∗(θ)− Λ(θ)| ≤
(

1 + µ√
1−4µ

)
(1− τ)−1(br0 + σ + λ̂τ).

Remark 4.1.3. As a consequence of theorem 4.1.2, K∗ parametrizes a FHIT, and the columns

of P∗ contain frames of its invariant bundles. Moreover, the convergence of Newton’s method

to K∗ from K is quadratic.

Remark 4.1.4. From the results in [HdlL06c], the torus K∗ is as smooth as the map F

(including analytic).

Remark 4.1.5. The Finslered norm appearing in theorem 4.1.2 is the sup norm on each

fiber. More general norms can be considered [HdlL06b], e.g. the Lyapunov metric adapted

to the hyperbolic splitting. Instead of considering adapted metrics, theorem 4.1.2 considers

adapted frames.

Remark 4.1.6. The norm of the second differential (in the coordinates of the adapted frame

P1), is bounded by b for all points in the strip

D̄P1(K, r) = {(z, θ) | |P−1
1 (θ)(z −K(θ))| ≤ r}.

This bound b (and subsequently h) depends obviously on the radius r of the strip. A first

choice is taking 2(1 − λ − σ − τ)−1ρ ≤ r, that ensures (if h < 1
2
) that r0 ≤ r, assumption

that appears in 3.3). We can also tune r (making it smaller) in order to improve the error

radius r0 and the uniqueness radius r1.

Remark 4.1.7. One can state a similar theorem using norms with higher regularities (e.g.

Cr, Sobolev, analytic). In this thesis we have only considered (and implemented) validations

using C0 norms. Hence, although the FHIT K∗ is as smooth as the skew product and the

bundles are as smooth as its differential, we only measure the distance of the invariant

objects to the approximately invariant objects using C0 norms. We plan to come back to

this problem in the future.

Remark 4.1.8. Theorem 4.1.2 also works if T is replaced by a general compact metric space,

and ω : T→ T is replaced by a general homeomorphism. However, the fiberwise hyperbolic

invariant graph K∗ obtained will be in general less regular than F .
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4.2 Implementation of the validation algorithm

In this section we explain implementation issues of computer validations of FHIT in skew

products over rotations, based on Theorem 4.1.2. Since the base manifold of the skew

product is a torus, and the base dynamics is a rotation, we use Fourier polynomials to

approximate the periodic functions to modelize the components of the approximate invariant

tori and bundles of the input data for the algorithm. We emphasize that other dynamics

and/or other manifolds would lead to other types of approximations, such as simplices,

splines, etc.

The core of the implementation is a set of routines to rigorously manage periodic func-

tions and enclose them in Fourier polynomials plus error intervals. These are what we refer

to as the Fourier models. For a brief and concise exposition on the definition, properties

and rigorous manipulations of Fourier models, see chapter §5.

The validating computer program has to verify, from an approximately invariant torus

and approximately invariant stable and unstable bundles (e.g. computed numerically or

using perturbative arguments), all the hypotheses of Theorem 4.1.2. Notice that the checking

has to be done only once. Since we will apply the computer programs in situations in which

tori are about to break, see sections §4.3, §4.4 and §4.5, we prioritize the accuracy over the

speed of the computations.

4.2.1 Validation of FHIT

Here we show how theorem 4.1.2 can be implemented, via Fourier models, in order to validate

some initial data as a good approximation of a FHIT and its invariant subbundles for a given

continuous skew product (F, ω) : D ⊂ Rn × T→ Rn × T, C2 with respect to z.

We assume that we can effectively compute the enclosures of the components of the

compositions of F (z, θ), DzF (z, θ) and D2
zF (z, θ) with Fourier models. That is, we can

substitute z by a (vector) Fourier model K̂, if for each θ ∈ [0, 1], K̂(θ) ⊂ Dθ (a fact that

can be rigorously checked by using interval arithmetics).

0) Compute, e.g. numerically or using perturbative arguments, the trigonometric polyno-

mial approximations of an invariant torus (K), the adapted frame (P1) and its inverse

(P2), and the dynamics on the invariant bundles (Λ = diag(Λs,Λu)).

Fix the order m of the Fourier models throughout the rigorous computations of the

validation algorithm. The results at each operation of Fourier models will be m-enclosed.

Remark 4.2.1. The order m of the Fourier models that we choose to represent rigorously

the initial data depends on the invariant torus, its invariant bundles and the quality of

the uniform hyperbolicity of them. A rule to fix it is to perform a study of the decay

of the coefficients of the Fourier expansion of the initial data and choose m in order that

all the Fourier coefficients that are discarded are below a given threshold (e.g. 10−6 is a
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good threshold). As a rule of thumb, with this methodology we ensure that the error, in

supremum norm, between the numerical computed initial data and the Fourier model is

below the threshold.

The validation algorithm mimics the statement of theorem 4.1.2. Here are the steps:

1) From the input data, derive the Fourier models K̂, P̂1, P̂2, Λ̂ = (Λ̂s, Λ̂u).

2) Compute the upper bounds ρ, σ, τ, λ, λ̂ by enclosing the Fourier models R̂, Ŝ, T̂ , Λ̂s,

Λ̂u, (Λ̂u)−1. Check (using interval arithmetic) if λ+ σ+ τ < 1. If not, the torus is not

validated (and the algorithm stops).

3) Given r (for instance, an upper bound of 2(1 − λ − σ − τ)−1ρ, see remark 4.1.6),

compute upper bounds b and h. Since we use maximum norms, we compute the

Fourier model B̂ = B(K̂ + P̂1 [−r, r]n , ·) of the bilinear map B(z, θ) for points (z, θ)

in the strip D̄P1(K, r) and, hence, b is an upper bound of the maximum norm of B̂(θ)

for all points in [0, 1]. Once we compute h, check (using interval arithmetic) if h < 1
2
.

If not, the torus is not validated (and the algorithm stops).

4) Compute (an upper bound of) the error radius r0 ≥ (1− λ− σ− τ) (1−
√

1− 2h)b−1

and (a lower bound of) the uniqueness radius r1 ≤ (1− λ− σ − τ) (1 +
√

1− 2h)b−1.

Check if r0 ≤ r. If not, the torus is not validated (and the algorithm stops).

Then, the torus is validated, meaning that there is a unique invariant torus K∗ in the

strip D̄P1(K, r1). Moreover, the torus K∗ is contained in the strip D̄P1(K, r0).

5) Compute the upper bound of µ using σ, τ, λ, λ̂. Check if µ < 1
4
. If not, the normal

dynamics of the validated torus is not validated (and the algorithm stops). Compute

the upper bounds µ√
1−4µ

≤ ρP and
(

1 + µ√
1−4µ

)
(1− τ)−1(br0 + σ + λ̂τ) ≤ ρΛ.

Hence, the normal dynamics on the torus and the invariant subbundles are validated:

they are at a distance of less than ρΛ, ρP from the ones given by the initial data.

4.2.2 Validation of a family of FHIT

Here we show the procedure to validate the existence of a family of FHIT of a one-parameter

family of skew products (Ft, ω) : D ⊂ Rn × T→ Rn × T, with parameter t ∈ [a, b].

Consider the interval [a, b] = I ∪ J , where I and J are closed intervals, and let Ki, P1,i,

P2,i and Λi for i = I, J be the initial data of the validation algorithm for the (interval) skew

products (Fi, ω). In order to check that the corresponding validated tori belong to the same

family we proceed as follows.

0) Apply the validation algorithm explained in subsection §4.2.1 to the (interval) skew

products (Fi, ω), i = I, J . Besides the Fourier models corresponding to the initial data,

K̂i, P̂1,i, P̂2,i and Λ̂i, the validation algorithm produces bounds ρi, σi, τi, r0,i, r1,i, hi.
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1) Construct the Fourier model ÊI,J = P̂2,J ·
(
K̂J −

(
K̂I + P̂1,I · [−r0,I , r0,I ]

n
))

. Check

if

||ÊI,J || ≤ (1− τJ)r1,J . (4.1)

If this holds, the two initial data approximate the same family of FHIT, if not, this

family has not been validated.

4.3 Example 1: upper bounds of the spectrum of 2

dimensional Schrödinger operators

In this section we report quantitative computer validations of existence of gaps of the spec-

trum of the Almost-Mathieu operator [Las95, Dam09], which is a discrete Schrödinger op-

erator. These quantitative validations give lower bounds of the Lebesgue measure of some

open gaps of this operator, which are used to give rigorous upper bounds of the Lebesgue

measure of the spectrum. These results are used to test the efficiency of the validation

algorithms, because we know a priori what is the Lebesgue measure of the spectrum of the

operator. Also, the proofs of the open gaps in the spectrum is used to prove indirectly the

existence of SNA in the projective cocycle associated to the operator.

The validations use the fact, see chapter §1, that a real number E is in the resolvent of the

operator if and only if the linear cocycle associated to this energy is uniformly hyperbolic.

We also compare the quality of the outputs of the validations with respect the type of

breakdown of hyperbolicity.

It is important to remark that this first example does not use all the theory developed in

the validation algorithm: we are using the fact that we know a priori which is the invariant

torus, the zero section K(θ) = 0. Hence, the validation algorithm reduces only to prove

that the upper bounds σ, λ and τ of theorem 4.1.2 satisfy σ+ λ+ τ < 1, because the upper

bound ρ is exactly zero and the skew product where we work on is linear, which means that

its second differential is also exactly zero.

4.3.1 Numerical exploration of the spectrum of the Almost-Mathieu

operator

The Almost-Mathieu operator is defined as the bounded linear operator, acting on `2(Z),

(Hx)n = xn+1 + L cos (2π(θ0 + nω))xn + xn−1. (4.2)

We fix ω the golden mean.

Remark 4.3.1. As pointed out in chapter §1, this operator does depend on θ0, but nor its

spectral set nor the hyperbolic nature of its solutions depend on θ0.
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As described in chapter §1, the “eigenvalue” problem of the operator (4.2) is equivalent

to see that the linear cocycle, the Harper map, defined as

(M,ω) : R2 × T −→ R2 × T
(v, θ) −→ (M(θ)v, θ + ω)

, (4.3)

with transfer matrix

M(θ) =

(
E − L cos (2πθ) −1

1 0

)
,

is uniformly hyperbolic, that is, the Harper map (4.3) has continuous invariant unstable and

stable bundles. See [KS95, KS97, MOW00, HP06] for numerical and theoretical explorations

of this linear cocycle. We will work with this linear cocycle with L values 1 and 3.

The linear cocycle satisfies, because ω is diophantine, that if it is uniformly hyperbolic

and its invariant bundles are orientable, then the invariant bundles can be parameterized

by continuous vector-valued maps vs : T −→ R2 (stable bundle) and vu : T −→ R2 (unstable

bundle) that satisfies

M(θ)vi(θ) = λivi(θ), i = u, s,

where λi are the Lyapunov multipliers associated to the invariant bundles. If the invariant

bundles are not orientable, we can use the “double-cover trick”, see [HdlL06c]: the invariant

bundles are orientable for the linear cocycle

(M̄, ω
2
) : R2 × T −→ R2 × T

(v, θ) −→
(
M(2θ)v, θ + ω

2

) .
Remark 4.3.2. We use the double-cover trick to validate the non-orientable invariant bundles.

The spectrum and the dynamics of the cocycle (4.3) are binded by the following theorem

[BJ02].

Theorem 4.3.3. The Almost-Mathieu operator satisfies that the Lyapunov exponent of the

Harper map (4.3), with fixed L and energy E, is bigger than

max

{
0, log

(
L

2

)}
,

with equality only if E is in the spectrum.

With theorem 4.3.3 we can see that the Lyapunov exponent approaches zero as E ap-

proaches the spectrum when L = 1, while for L = 3 the Lyapunov exponent is always bigger

than log

(
3

2

)
' 0.4054651081. See also [Avi09] for a discussion of these two regimes. Hence,

these two L regimes are a good example to test what happens to the validation algorithm

near different types of hyperbolicity breakdown.

As described in chapter §1, for a fixed L, this operator has associated an Integrated

Density of States function, see figure 4.1. This function is defined on the real line and it is
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monotone increasing, and stricly increasing only on the spectrum of the operator, so in its

resolvent is constant. With the help of this function, which is computed using the numerical

techniques described in chapter §5, we can detect numerically the open gaps of the Almost-

Mathieu operator. See tables 4.1 and 4.2 for the first ten biggest gaps of this operator for

L = 1 and L = 3. From the general theory described in chapter §1, E is in the resolvent

(in a gap) if the IDS at E is equal kω
2

(mod 1), k ∈ Z. These k are used to label the gaps

in tables 4.1 and 4.2.

Remark 4.3.4. The orientability of the invariant bundles is related to the value of k. When

k is an even integer, then the invariant bundles are orientable, otherwise they are non-

orientable.

Remark 4.3.5. The IDS helps us to detect SNA in the dynamics of the projective cocycle

of (4.3). If L = 3 (the Lyapunov multiplier is always bigger than 1) and E1 < E2 satisfy

that they are in open gaps with different k label, then there exists an intermediate E∗,

E1 < E∗ < E2, such that E∗ is in the spectrum of the Almost-Mathieu operator. Hence, by

Oseledet’s theorem, see chapter §1, at E∗ the invariant bundles are only measurable, so the

SNA is the measurable unstable bundle, that is an attractor in the projective cocycle.

(a) L = 1. (b) L = 3.

Figure 4.1: Integrated Density of States of the Almost-Mathieu operator for different L

values.

A result that we use in order to contrast the accuracy of the validation results with the

theory is the following, see [Las95].

Theorem 4.3.6. For every irrational ω and for a fixed L, the Lebesgue measure of the

spectrum of the Almost-Mathieu operator is exactly

|4− 2 |L|| .

Remark 4.3.7. For ω irrational and L 6= 0, the spectrum of this operator has a very compli-

cated structure: it is a Cantor set. This was proved in [BS82, Pui04a, AJ09].
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spec. gap left right width

0 2.144103733062e+00 +∞ -

∞ −∞ -2.144103733062e+00 -

1 3.350514793395e−01 1.297606544494e+00 0.962555065154

-1 -1.297606544494e+00 -3.350514793395e−01 0.962555065154

2 -1.743300521850e+00 -1.619954509735e+00 0.123346012115

-2 1.619954509735e+00 1.743300521850e+00 0.123346012115

3 1.943385314941e+00 1.977029056549e+00 0.033643741608

-3 -1.977029056549e+00 -1.943385314941e+00 0.033643741608

4 -1.239519195556e−01 -1.062295761108e−01 0.017722343444

-4 1.062295761108e−01 1.239519195556e−01 0.017722343444

Table 4.1: L = 1. Numerical approximation of the measure of the spectrum 2.013673.

spec. gap left right width

0 3.386230716705e+00 +∞ -

∞ −∞ -3.386230716705e+00 -

1 3.833788871765e−01 2.252360553741e+00 1.868981666564

-1 -2.252360553741e+00 -3.833788871765e−01 1.868981666564

2 -2.882815551757e+00 -2.585066146850e+00 0.297749404907

-2 2.585066146850e+00 2.882815551757e+00 0.297749404907

3 3.081375732421e+00 3.185926513671e+00 0.104550781250

-3 -3.185926513671e+00 -3.081375732421e+00 0.104550781250

4 -1.703894042968e−01 -1.026932334899e−01 0.067696170806

-4 1.026932334899e−01 1.703894042968e−01 0.067696170806

Table 4.2: L = 3. Numerical approximation of the measure of the spectrum 2.094505.
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Figure 4.2 shows the Lyapunov exponent function and the minimum distance function of

these two regimes, L = 1, 3. Also, figures 4.3 and 4.4 show examples of the invariant bundles

in these two regimes. We can observe in subfigures 4.3(c) and 4.3(d) a visual example of

invariant bundles for L = 1 which are (numerically) on the spectrum of the Almost-Mathieu

operator. Compare these with the subfigure 4.4(d), where the invariant bundles for L = 3

have also collided, but in a non-smooth manner.

(a) Lyapunov exponent. L = 1. (b) Minimum distance function. L = 1.

(c) Lyapunov exponent. L = 3. (d) Minimum distance function. L = 3.

Figure 4.2: Lyapunov exponent function and minimum distance function between the in-

variant bundles for L = 1 and L = 3.
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(a) E = 3. (b) E = 1.95.

(c) E = 0.106210. (d) E = 1.9433.

Figure 4.3: Unstable bundles (red) and stable bundles (blue) for L = 1 and different E

values.
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(a) E = 4. (b) E = 1.

(c) E = 0.15. (d) E = 0.102693.

Figure 4.4: Unstable bundles (red) and stable bundles (blue) for L = 3 and different E

values.
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4.3.2 Computer validations

Motivated by the previous numerical study, we proceed to show the validation results ob-

tained for both the L = 1 and L = 3 regime. The goal of the validations presented here

is to show the main differences between the validation algorithms when they are applied

in regimes (L = 1) where the hyperbolicity is destroyed when the Lyapunov exponent is

zero, and regimes (L = 3) when the Lyapunov exponent is positive. With the help of the

validations we can give rigorous upper bounds of the Lebesgue measure of the spectrum

of the Almost-Mathieu operator and, as pointed out in remark 4.3.5, for L = 3 we prove

indirectly the existence of SNA in the projective cocycle of the linear cocycle associated to

the Almost-Mathieu operator.

Remark 4.3.8. We perform the validations for the Almost-Mathieu operator because, as

stated in the previous numerical study, the measure of the spectrum is well-known. However,

the same validation technique can be applied in any (quasiperiodic) discrete Schrödinger

operator in order to localize the gaps of the spectrum and to give upper bounds of its

measure.

The validations for L = 1 are done with a number of 100 modes, while the validations

for L = 3 with a number of 1500 modes. This is because, at L = 1, there is no need of a lot

of Fourier modes in order to give to the validation algorithm a good approximation of the

invariant bundles (the matrix-valued maps P1 and P2), while in the L = 3, as E approaches

the boundary of a gap of the spectrum, the number of Fourier modes to modelize the initial

data increases.

Remark 4.3.9. The computation of the invariant bundles differ a lot with respect the value

of L. To compute the invariant bundles for L = 1 for energies E near the spectrum, the

non-rigorous algorithm needs a lot of iterates to perform the computations because the

Lyapunov multiplier is close, in absolute value, to 1. In the other hand, this phenomenon is

not present for L = 3, because the Lyapunov exponent is, in absolute value, bigger than 1.

The first thing we validate are the ten biggest gaps of the spectrum for both L parameters.

For an example of the output of the validation algorithm, see table 4.3. These validations

can be seen in tables 4.4 and 4.5. The bold numbers are the ones that differ with the

numerical values predicted in tables 4.1 and 4.2. From the validation tables we can obtain

that a rigorous upper bound of the measure is of the spectrum for L = 1 is 2.013735 and

a rigorous upper bound for L = 3 is 2.12634. For both L, theorem 4.3.6 predicts that the

Lebesgue measure of the spectrum is 2. Note that for L = 1 the prediction of the upper

bounds of the measure of the spectrum is more accurate. This is because we can reach

energies closer to the spectrum because the number of Fourier modes does not increase as

the energies approach the spectrum.

To see the dependence of the quality of the validations with respect the number of

Fourier modes used to modelize the initial data, we run the validation algorithm for L = 3

and E = 3.3864 for different number of Fourier modes, see table 4.6. We can observe
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L Energy E σ τ λ µ ρΛ

1 -0.106239 2.483091e-07 2.322641e-07 9.999361e-01 3.760928e-03 4.824094e-07
1 -0.123942 3.887487e-07 3.296118e-07 9.998938e-01 3.380968e-03 7.208412e-07
1 2.144104 7.404575e-10 3.658449e-10 9.994621e-01 1.028292e-06 1.106500e-09
3 -0.104500 3.247660e-02 2.335234e-02 6.617801e-01 8.169597e-02 7.629253e-02
3 -0.161900 5.664570e-07 2.997832e-08 6.564044e-01 7.059915e-07 6.121279e-07
3 -2.585400 1.325050e-01 1.011495e-01 6.620383e-01 3.740879e-01 −

Table 4.3: Examples of the outputs of the validation algorithm for several energies in both

L regimes. Note that the quality of the validations differ on the value of L.

spec. gap left right width

0 2.144104e+00 +∞
∞ −∞ -2.144104e+00

1 3.350540e−01 1.297605e+00 0.962551

-1 -1.297605e+00 -3.350540e−01 0.962551

2 -1.743299e+00 -1.619956e+00 0.123343

-2 1.619955e+00 1.743299e+00 0.123343

3 1.943388e+00 1.977027e+00 0.033639

-3 -1.977027e+00 -1.943388e+00 0.033639

4 -1.239425e−01 -1.062390e−01 0.0177035

-4 1.062390e−01 1.239425e−01 0.0177035

Table 4.4: Validated gaps for L = 1. See text for further details.

spec. gap left right width

0 3.386300e+00 +∞
∞ −∞ -3.386300e+00

1 3.840000e−01 2.251850e+00 1.867850

-1 -2.251850e+00 -3.840000e−01 1.867850

2 -2.882000e+00 -2.585400e+00 0.296600

-2 2.585400e+00 2.882000e+00 0.296600

3 3.082720e+00 3.184000e+00 0.101280

-3 -3.184000e+00 3.082720e+00 0.101280

4 -1.619000e−01 -1.045000e−01 0.057400

-4 1.045000e−01 1.619000e−01 0.057400

Table 4.5: Validated gaps for L = 3. See text for further details.
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in this table that the quality of the validations increases as the number of Fourier modes

increases. We want to point out that there is a threshold for the number of Fourier modes

and, when this threshold is exceeded, then the quality of the validations decreases because

the intervalar rounding error affects the computations.

modes σ τ µ ρΛ

1000 4.450523e-02 3.715832e-02 1.220098e-01 1.226678e-01
1050 2.502640e-02 2.148061e-02 6.856729e-02 6.363466e-02
1100 1.435212e-02 1.252136e-02 3.932783e-02 3.522698e-02
1150 7.662255e-03 6.660096e-03 2.082827e-02 1.827918e-02
1200 4.243660e-03 3.635333e-03 1.140599e-02 9.911308e-03
1250 2.445562e-03 2.159715e-03 6.678007e-03 5.774756e-03
1300 1.304042e-03 1.178295e-03 3.604592e-03 3.107328e-03
1350 7.158839e-04 6.485635e-04 1.980802e-03 1.704750e-03
1400 3.775534e-04 3.484195e-04 1.055612e-03 9.076539e-04
1450 2.006238e-04 1.822298e-04 5.556880e-04 4.775617e-04
1500 1.118179e-04 9.869580e-05 3.046152e-04 2.617224e-04
1550 6.501144e-05 5.415003e-05 1.713850e-04 1.472327e-04
1600 4.262203e-05 3.465038e-05 1.108558e-04 9.522767e-05
1650 2.470572e-05 2.060447e-05 6.517422e-05 5.598363e-05

Table 4.6: Dependency of the validations with respect the number of modes for L = 3,

E = 3.3864. For all the validations, the value of λ is 0.658855383393.
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4.4 Example 2: computer validations for noninvertible

skew products

In this section we report computer validations of existence of invariant tori for a noninvertible

map, the quasiperiodically driven logistic map. Special emphasis is put on validation of

non-reducible tori for values close to their breakdown. Note that in this context, the concept

of non-reducible torus is equivalent to the noninvertibility of the transfer at some points of

the torus.

4.4.1 Numerical exploration of invariant curves in the quasiperi-

odically driven logistic map

The driven logistic map is defined as the skew product

(F, ω) : R× T −→ R× T
(z, θ) −→ (a(1 +D cos(2πθ))z(1− z), θ + ω)

, (4.4)

where ω = 1
2
(
√

5− 1); and a and D are parameters. We will fix D = 0.1 and let a > 0 vary.

This map has been the target of several numerical studies: see for example [AKdlL07, HH94],

where the authors explore numerically the creation of SNA (Strange Non-chaotic Attractor)

via collision of period 2 attracting curves and a repelling curve. After the collision, the

period 2 attracting curve has bifurcated to a SNA while the repelling curve is still a smooth

curve. This mechanism is known as the Heagy-Hammel route.

In figure 4.5(a) appears the bifurcation diagram (with respect to a) of the invariant

objects, while in figure 4.5(b) appears the corresponding Lyapunov multipliers. A partic-

ularly simple case is the zero-curve xa(θ) = 0, for which the Lyapunov multiplier can be

analytically computed (see e.g. [JT08]): Λ(a) = a
2

(
1 +
√

1−D2
)
. Hence, for D = 0.1, the

zero-curve is attracting if a < 2(1+
√

0.99)−1 and repelling if a > 2(1+
√

0.99)−1 ' 1.002512.

Now, let’s explain the other invariant curves and their bifurcations, labelled in figure

4.5(b). This is done through a numerical exploration.

A) a ∈ (0, 1.002512) : There is a reducible repelling curve. As a→ 0 this curves tends to
a−1
a

, and its Lyapunov multiplier approaches 2. As a → 1.002512 this curve tends to

0.

B) a ∈ (1.002512, 1.854419) : There is a reducible attracting curve with positive Lyapunov

multiplier (0 < Λ < 1). This curve comes from a transcritical bifurcation between the

zero-curve x(θ) = 0 and the repelling curve of region A.

C) a ∈ (1.854419, 2.406952) : There is a non-reducible attracting curve, that is, its transfer

matrix vanishes at some points. This curve belongs to the same family of the curve of

region B.
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D) a ∈ (2.406952, 3.141875) : There is a reducible attracting curve with negative Lya-

punov multiplier (−1 < Λ < 0). This curve also belongs to the same family of curves

of regions B and C.

E) a ∈ (3.141875, 3.271383) : The attracting curve of region D ends in a period doubling

bifurcation. In region E, there is a period 2 attracting curve and a period 1 repelling

curve (see figures 4.6(a) and 4.6(b) for the corresponding Lyapunov multipliers). For

values a ∈ (3.141875, 3.17496) the period 2 attracting curve is reducible and for values

a ∈ (3.17496, 3.271383) it is non-reducible.

At a near 3.271383 the period 2 attracting curve collides in a non-smooth way with

the repelling curve, bifurcating to a SNA (Heagy-Hammel fractalization route). Fig-

ures 4.7(a) and 4.7(b) show these invariant objects before and after the bifurcation.

F) a ∈ (3.271383,∞) : The repelling curve exists for all these values. The SNA seems

to persist for values in a ∈ (3.271383, 3.2746), and afterwards it apparently bifurcates

into a SA (Strange Attractor), with Lyapunov multiplier bigger than 1.
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(a) x(0) value of the invariant curves x(θ) with re-
spect to parameter a. The red color represents a
repelling curve and the blue color an attracting ob-
ject.
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Figure 4.5: Bifurcation diagram of the invariant curves and their Lyapunov multipliers, with

respect to parameter a. See text for further details.

4.4.2 Numerical computation of the initial data

In this section, we describe how to compute the initial data K,P1, P2,Λ for attracting curves

of the noninvertible 1D skew product (F, ω). Similar methods can be applied for repelling
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rameter a.
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curves, by using a right inverse of the map (i.e., one of the branches of the inverse of (F, ω)).

We will also present methods to deal with noninvertible transfer matrices.

The approximately invariant torus K can be computed using the simple iteration algo-

rithm, since the invariant torus is attracting. The number of iterations needed to obtain

a good approximation depends heavily on the modulus of the Lyapunov multiplier. In our

computations, the number of iterations does not exceed 1010 simple iterations.

More challenging is the computation of the initial data P1, P2, Λ, since even though the

transfer matrix M is contracting “on average”, it can be locally expanding. The condition of

invertibility of the transfer matrix plays a key role in this computation. We have considered

two methods in order to overcome these computational problems.

Lyapunov metric This is a general construction when dealing with uniform hyperbolicity

[Ano69]. In the 1D case, for an uniformly attracting torus with transfer matrix M and

Lyapunov multiplier λ, this metric is given by |v|θ = |L(θ)v|, where L : T → [1,∞) is the

continuous function

L(θ) =
∞∑
j=0

1

λ̄j
|M(θ + (j − 1)ω) · · ·M(θ)|, (4.5)

where 1 > λ̄ > |λ| + ε, for sufficiently small ε > 0. Instead of considering this Lyapunov

metric, we consider the transformations P1(θ) = 1
L(θ)

and P2(θ) = L(θ). Hence, we define

the continuous function

Λ(θ) = P2(θ + ω)M(θ)P1(θ) = sgn(M(θ))

(
L(θ)− 1

L(θ)

)
λ̄, (4.6)

where sgn(·) is the sign function. Then, |Λ(θ)| ≤ λ̄ < 1 for all θ ∈ T.

Reducibility and almost reducibility to constant coefficients The goal of the re-

ducibility method is to reduce the transfer matrix to a constant Λ, which satisfies

M(θ)P1(θ) = P1(θ + ω)Λ, (4.7)

for a suitable transformation P1(θ) 6= 0. If M(θ) is invertible for all θ ∈ T, this equation

is solved by taking logarithms and solving small the small divisor equations obtained by

matching the Fourier coefficients, see chapter §1.

If M(θ) has zeroes, equation (4.7) has no continuous solutions. Hence, we can not reduce

M(θ) to constant coefficients. To overcome this difficulty, we consider the modified equation

(M(θ)2 + εη(θ))P1(θ)2 = P1(θ + ω)2λ2
ε, (4.8)

for a suitable function η : T→ [0, 1] and a sufficiently small ε > 0.

One choice for the function η is η(θ) = 1 −
(
M(θ)

||M ||C0

)2

. This function achieves its

maximum value, 1, when the transfer matrix vanishes and decays rapidly outside its zeroes.
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Notice that

λ2
ε = exp

(∫
T

log(M(θ)2 + εη(θ))dθ

)
, (4.9)

hence we consider ε > 0 such that |λε| < 1 (notice that |λ0| < 1).

By defining

Λ(θ) =
M(θ)√

M(θ)2 + εη(θ)
λε ,

we obtain that P1, P2 = P−1
1 and Λ satisfy equation

P2(θ + ω)M(θ)P1(θ) = Λ(θ) .

Remark 4.4.1. Λ(θ) and M(θ) have the same sign and the same number of zeros.

Remark 4.4.2. In numerical computations these equations are solved by matching Fourier

coefficients up to a finite order, even though the analytical solution of small divisors equations

involve the smoothness of the transfer matrix and diophantine properties of the rotation ω.

These are intermediate computations to produce initial data to be validated by our computer

programs.

Numerical comparison of both methods The Lyapunov metric method and the almost

reducibility method have been tested, among others, for the period 2 attracting curve of the

quasiperiodically driven logistic map, with D = 0.1 and a = 3.250. In this case, the

transfer matrix is noninvertible, hence nonreducible to constant. See figure 4.8 to check

differences between the two methods. In figure 4.8(a) we can see that the dynamics of the

linear cocycle is locally expanding in some regions (but it is globally contracting), while in

figures 4.8(e) and 4.8(c) the linear cocycles are locally and globally contracting. Notice that

the Fourier coefficients of the reduced matrix Λ(θ), figure 4.8(d), decay slowly when using

the Lyapunov metric method, while they decay exponentially fast when using the almost

reducibility method, figure 4.8(f).

4.4.3 Computer validations

Motivated by the previous numerical study, see subsection §4.4.1, we have validated the

invariant curves appearing in the bifurcation diagram in figure 4.5(a), up to values of a

close to the smooth bifurcations A-B (transcritical) and D-E (period doubling) and the non-

smooth bifurcation E-F. We report here in detail the existence of the repellor in regions E

and F, and the existence of the period 2 attracting curve near the non-smooth bifurcation

E-F.

Invariant curves in regions A, B, C and D have been validated using no more than 20

Fourier modes. The validations near the smooth bifurcations have been performed obtaining

results similar to the ones reported below for the repellor.

To summarize the validations that we will present in detail, we have:
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Proposition 4.4.3. 1. For the range of parameters a ∈ (3.157065,∞) of the system

(4.4) there exists a continuous family of invariant repellor curves.

2. For every parameter a = 3.265, 3.268, 3.269 of the system (4.4) there exists a period 2

invariant attracting curve.

Validation of the repellor

Here we explain the validation of the repelling curve. First of all, we validate analytically

the existence of this curve for a ∈ (4.6,∞) and then, via Computer Assisted Proofs, we

validate it for a ∈ (3.157065, 5) and check that the two families match.

Analytic validation For the analytic validation, it is convenient to consider the following

right inverse of (F, ω):

(G,ω) : R× T −→ R× T

(z, θ) −→
(

1

2
+

1

2

√
1− 4

z

a(1 +D cos(2π(θ − ω)))
, θ − ω

)
. (4.10)

We apply the validation algorithm with the following initial datum: K(θ) = a−1
a

, P1(θ) =

P2(θ) = 1, Λ(θ) = M(θ) = DzG
(
a−1
a
, θ
)
. In the following, we consider the bound

∆ =

√
1− 4(a− 1)

a2(1−D)
.

The constants ρ = 1
2
− 1

a
− 1

2
∆, σ = τ = 0 and λ = λ̂ = 1

a(1−D)∆
satisfy inequalities 2.1),

2.2), 2.3), 2.4) of the validation theorem 4.1.2. Inequality 2.5) is satisfied if a > 1
(1−D)∆

.

Choosing r = 2ρ
1−λ , we obtain the upper bound of the second derivative 3.1) to be

b =
2

a2(1−D)2

(
1− 4(a−1

a
+r)

a(1−D)

) 3
2

,

from which we obtain h = (1−λ)−2bρ. Fixing D, for a > 0 sufficiently big, we obtain h < 1
2

and then there is a unique invariant torus close to initial data K. In particular, for D = 0.1,

we obtain the crude lower bound a > 4.6 (for which h < 0.45).

Computer validation After showing the existence of the repelling curve for values a >

4.6, we prove (computer-assisted) the existence of the family of the repelling curve for

3.157065 ≤ a ≤ 5, starting at a = 5. This validation has been done, using expression (4.4),

by computing the initial data using the algorithms presented in subsection §4.4.2 with 30

Fourier modes (This choice of number of modes is done in order to ensure that the discarded
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modes are of magnitude less than 10−8). We emphasize that the width of the intervals of

validation shorten as they approach to the period doubling bifurcation value a ' 3.143. The

algorithm stops when the width of the intervals is less that 10−6, reaching a = 3.157065.

See figure 4.9(a).

Remark 4.4.4. The algorithm stops at a distance 1.5 ·10−2 of the predicted bifurcation value

because the Lyapunov multiplier (bounded by λ) of the invariant curve goes to 1, where it

undergoes a smooth bifurcation.

Remark 4.4.5. In this computation we apply the validation algorithm 2800 times and the

time of computation is around 307 minutes. This means that each validation step, which

consists in computing the initial data, validating the existence and uniqueness of a FHIT

near it, and then, checking the matching, takes around 6.5 seconds.

In order to show how the upper bounds of the validation algorithm behave near the

bifurcation value, we apply the validation algorithm for values a = 3.16 + 0.01 · j, with

j = 0, . . . , 184, using 30 Fourier modes. The results are displayed in figures 4.9(b), 4.9(c)

and 4.9(d).

Remark 4.4.6. Interestingly, while the numerically computed initial data is produced with

a non-rigorous estimate of the error of order 10−14, and although the validations are done

using the FILIB++ library, which operates with intervals in double precision, the rigorous

error bounds achieve order 10−10.

Validation of the period 2 attracting curve

The goal in this subsection is to validate period 2 attracting curves near the predicted non-

smooth bifurcation value a∗ ≈ 3.271. To do so, we considered the 2 times composition of

the driven logistic map (4.4):

(F, ω)2 : R× T −→ R× T
(z, θ) −→ (F (F (z, θ), θ + ω), θ + 2ω)

. (4.11)

First, we perform a numerical study of the regularity of the initial data: the torus K,

the transformations P1 and P2, and the normalized cocycle Λ. Since the associated transfer

matrix M is noninvertible, we use the almost-reducibility method to compute P1, P2 and

Λ. Figure 4.10 shows with respect to parameter a, a numerical estimate of the maximum

slope of the computed initial data. Note that P1 is the initial datum with the biggest slope.

For example, at a = 3.265 the slope of P1 is 4.3 · 104, while the slopes of the torus and the

normalized cocycle are 2.4 · 101 and 3.07 · 103, respectively. Notably, at a = 3.269 the slope

of P1 is 4.25 · 106. Hence, P1 is used in order to determine the number of Fourier modes in

the validation process, because it is the initial datum with the biggest Fourier coefficients.

We choose the number of modes in order that the discarded ones are of magnitude less than

10−8. Figure 4.11 shows the initial data K (and M), P1 and Λ for a = 3.265 and a = 3.269.

Notice that a small change in the value of a leads to a dramatic change in the initial data.
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Figure 4.9: Data obtained of the validations of the repelling curve for D = 0.1.
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Figure 4.11: Graphs of the initial data close to the breakdown of the period 2 curve.
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The validation results for different values of the parameter a are shown in table 4.7.

The initial data used as input are computed with high accuracy because at these parameter

values, the period 2 attracting curve is near the repellor curve. Note also that in all these

validations the time computation depends heavily on the regularity of the initial data,

because less regularity implies the use of more Fourier modes to represent the initial data,

which implies more computational time.

Remark 4.4.7. Note that in table 4.7, for the parameter value a = 3.269, we do not have

an estimation of ρΛ. This is because the validation algorithm can not compute it due to

the fact that the upperbound µ, see point 5.2) of theorem 4.1.2, is bigger than 1
4
. This

means that, although we could validate the existence (and local uniqueness) of the period

2 invariant torus, we could not validate the distance between the initial data Λ0 and the

transfer operator of the truly invariant torus of the system.

a 3.265 3.268 3.269
h 3.046383e-05 2.248226e-03 4.203495e-01
r0 5.365990e-09 1.701127e-07 3.635973e-06
ρΛ 5.815762e-03 4.542701e-04 -

order 3000 17000 27000
time (minutes) 5 130 361

Table 4.7: Validation results of the period 2 invariant torus of the driven logistic map for

different values of a close to breakdown.
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4.5 Example 3: computer validations on the verge of

the hyperbolicity breakdown of a saddle torus

In this section we report computer validations of existence of saddle tori on the verge of their

hyperbolicity breakdown for a quasiperiodically forced standard map. This phenomenon

was described in [HdlL07, HdlL06a] for similar models. See also chapter §2 for a detailed

exposition of this phenomenon.

4.5.1 Two bifurcation scenarios of saddle tori in the quasiperiod-

ically forced standard map

The quasiperiodically forced standard map is the map (F, ω) : T×R×T→ T×R×T defined

as 
x̄ = x+ ȳ

ȳ = y − κ
2π

sin(2πx)− ε sin(2πθ)

θ̄ = θ + ω

, (4.12)

where we fix ω = 1
2
(
√

5− 1).

Remark 4.5.1. This map has been studied extensively in chapter §2. See this chapter for a

detailed description of it.

For every κ > 0, there exists a family Kε(θ) of FHIT (saddle type), with ε ∈ (−εc, εc),
such that K0(θ) =

(
1
2
, 0
)
. Notice that K−ε(θ) = −Kε(θ). An interesting problem is to

approach as closely as possible the limiting value εc, the critical parameter value, and study

the obstructions to fiberwise hyperbolicity.

Remark 4.5.2. Since (4.12) is area preserving, the product of the Lyapunov multipliers

associated to the 1-dimensional stable and unstable subbundles is equal to 1. Then, by an

abuse of notation, we refer by the Lyapunov multiplier to the maximal Lyapunov multiplier.

We perform a numerical exploration and we find that the bifurcation mechanism around

εc depends on κ. Here we report two main examples, see also chapter §2 for a detailed

exposition of these and other phenomena:

1. For low values of κ, e.g. κ = 0.3 with εc ≈ 1.3364054, there is a smooth bifurcation:

the hyperbolicity is broken down because the Lyapunov multiplier goes to 1 as ε goes

to εc, but the invariant subbundles collide smoothly.

2. For high values of κ, e.g. κ = 1.3 with εc ≈ 1.2352755, there is a non-smooth bifur-

cation: the hyperbolicity is broken down because the invariant bundles collide non-

uniformly as ε goes to εc, and the Lyapunov multiplier stays far from 1.

See figures 4.12 and 4.14 for a graphical representation of the invariant tori and their

invariant subbundles, represented by the angle α that form them with the positive semi-axis
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x > 0, near these two bifurcations. Notice the difference between these two bifurcations: in

the smooth one the invariant subbundles collide uniformly, while in the nonsmooth one the

invariant subbundles collide creating sharp peaks in the collisions. Figures 4.13 and 4.15

show the Lyapunov multipliers and minimum distance between the invariant subbundles as

a function of ε. Note also that, depending on the bifurcation scenario, these observables

behave asymptotically differently. For a more detailed explanation of these phenomena see

[HdlL07].
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Figure 4.12: Smooth bifurcation: invariant torus and its subbundles for κ = 0.3 near the

bifurcation value εc ≈ 1.3364054.

Numerical estimate of the breakdown value In both examples, we compute the in-

variant tori and their invariant bundles, and estimate the critical values εc, using the different

Fourier methods of [HdlL06b] and computing periodic orbits for rational approximations p
q

of the rotation number ω. These methods produce similar results. Table 4.8 reports the
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Figure 4.13: Smooth bifurcation: observables for κ = 0.3 near the bifurcation value εc ≈
1.3364054. See text for further details.

results using rational approximations of ω with κ = 1.3.

p q εc Λc

610 987 1.235277250097 1.417569758833
987 1597 1.235276717863 1.427183182503

1597 2584 1.235275424968 1.432628905747
2584 4181 1.235275700525 1.433722000980
4181 6765 1.235275563425 1.436571048918
6765 10946 1.235275611145 1.436207590892

10946 17711 1.235275532096 1.438434241268
17711 28657 1.235275530445 1.438634421523
28657 46368 1.235275526435 1.438911614742
46368 75025 1.235275527297 1.438984187196
75025 121393 1.235275526916 1.439054814648

121393 196418 1.235275527050 1.439063207687
196418 317811 1.235275526794 1.439115016429
317811 514229 1.235275526794 1.439117250462
514229 832040 1.235275526885 1.439118021353
832040 1346269 1.235275526763 1.439124814800

1346269 2178309 1.235275526763 1.439124666214
2178309 3524578 1.235275526763 1.439124723263
3524578 5702887 1.235275526763 1.439124701574

Table 4.8: Critical εc, computed with double precision, where the transition occurs and the

associated Lyapunov multiplier Λc for each of the partial convergent of the golden mean

with denominator less than 6 · 106. κ = 1.3. The bold digits represent the coincident digits,

with respect to the values obtained for the biggest denominator.
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(c) x-coordinate projection of the invariant torus. ε =
1.235275.
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(d) Invariant subbundles. ε = 1.235275.

Figure 4.14: Nonsmooth bifurcation: invariant torus and its subbundles for κ = 1.3 near

the bifurcation value εc ≈ 1.2352755. See text for further details.
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Figure 4.15: Nonsmooth bifurcation: observables for κ = 1.3 near the bifurcation value

εc ≈ 1.2352755.

4.5.2 Computer Validations

In this section we report computer validations of the invariant tori for the non-smooth

bifurcation scenario, for κ = 1.3 with εc = 1.2352755. This is a challenging example

because the invariant subbundles near the bifurcation are quite wild (SNA behavior in the

projectivized cocycle, see [HP06]). Thousands of Fourier modes are needed in order to

obtain good initial data for the validation algorithm.

Remark 4.5.3. In the smooth bifurcation scenario, the initial data required in order to

obtain successful validations near the bifurcation value need no more than one hundred

Fourier modes. For κ = 0.3, we validate the FHIT for ε = 1.3364, which is at a relative

distance of 3 · 10−4 from the estimated bifurcation value εc ≈ 1.3364054.

To summarize the validations that we will present in detail, we have:

Proposition 4.5.4. 1. For the range of parameters ε ∈ [0, 1.073969] of the system (4.12)

there exists a continuous family of local uniqueness invariant saddle curves.

2. For the parameters ε = 10−2j, j = 0, . . . , 123 of the system (4.12) there exists local

unique invariant saddle curves.

3. For every parameter ε = 1.235270, 1.235273, 1.235275 of the system (4.12) there exists

a local unique invariant saddle curve.

4.5.3 Validations

In a first run, we validate tori Kε for values of ε in a grid of step size ≤ 10−2 of the parameter

interval [0, 1.2351]. Note that the difference between the predicted breakdown value εc and

the last validation ε = 1.2351 is less than of order 1.8 · 10−4. The results of this first run are
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reported in figure 4.16. We observe that, as ε increases, the upper bounds of the validation

algorithm h and r0, which measure the quality of the approximate invariant torus, increase,

while the lower bound of r1, which measures the size of the uniqueness strip, decreases. We

also observe that the upper bounds µ and ρΛ, which measure the quality of the approximate

invariant bundles, increase. The number of Fourier modes required in the validations goes

from 0 to 1280.
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Figure 4.16: Data output obtained from the validations of the invariant tori and their

invariant bundles for κ = 1.3 with respect to ε. See text for further details.

In order to illustrate the validation algorithm for families of FHIT, we use it to validate

the whole family in the parameter interval ε ∈ [0, 1.073969], with Fourier models of order

100. The main problem if we try to validate the family further is that the width of the

parameter intervals required in the algorithm is too small, of order 10−6.

Remark 4.5.5. A possible way, not developed in this chapter, to refine the validation al-

gorithm for families of FHIT is to reformulate it in terms of Fourier-Taylor models, where

one can expand the Fourier coefficients of the initial data with respect to the parameters of
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the family in Taylor polynomials. The authors plan to come back to this issue in the near

future.

In a final run, we validate the initial data for the values ε = 1.235270, 1.235273, 1.235275,

with Lyapunov multipliers Λ = 1.442582, 1.441463, 1.440193, respectively, in order to check

the applicability of the validation algorithm extremely close to the non-smooth bifurcation.

The obtained results are shown in table 4.9. Note that the difference between 1.235275 and

the predicted bifurcation value, 1.2352755, is less than 5.3 · 10−7.

ε 1.235270 1.235273 1.235275
h 2.853269e-03 8.140590e-03 8.928078e-02
r0 1.302039e-07 2.490723e-07 1.035418e-06
r1 9.100589e-05 6.069352e-05 2.107294e-05
µ 1.825306e-03 5.188943e-03 3.841927e-02
ρΛ 1.370355e-03 3.900239e-03 2.985134e-02

order 5802 7918 27692
time (minutes) 103 154 1094

Table 4.9: Validation results of invariant tori of the quasiperiodically forced standard map

for three ε values near the predicted breakdown. Note that the order of the Fourier models

and the time of validation, increase as ε increase.

4.6 Final comments

A moral of this chapter is that good numerics lead to successful validations. Notably,

knowledge of the dynamics around the torus is an important ingredient for an accurate

numerical computation.

An issue is the precision (single, double, long double, multiple) of the interval

package. The one used, FILIB++, is double precision. This, of course, has its limitations,

and if we want to validate invariant tori more precisely, then we will need a multiprecision

library, but the procedure for validate the invariant tori remains the same. An example

where a multiprecision library is needed is [CS10].

The computational time of the validation algorithms depends heavily on the regularity

of the initial data, and hence, their number of Fourier modes. The most time-consuming

computations with Fourier models are the product and the evaluation. Although the times

reported in this chapter correspond to computations with a single processor, we have also

used the library OpenMP (see [CJvdP07]) in order to have parallel computations (by dis-

tributing the product and evaluation routines on the processors).

The models worked out in this chapter have simple analytic expressions. But our val-

idation algorithms can be applied to more general models, as long as we are capable of

evaluating the map (and its first and second derivatives). For instance, for a skew product

flow, we can consider its Poincaré map with the variationals [BM98, WZ07].



Chapter 5

Numerical tools

In this chapter we present the notable computer tools used in the thesis: computation of

invariant tori via the periodic orbits method, computation of the invariant bundles and

Lyapunov exponents of a linear cocycle, computation of the fibered rotation number and

spectrum of a Schrödinger operator, and rigorous manipulation of Fourier models for the

computer-assisted proofs of FHIT. Other numerical techniques, like integration of ODEs

[Sim90], or computation of Fast Fourier Transforms (which are done with the C package

FFTW, see [FJ05]), used in the thesis are not discussed in this chapter because they are quite

standard and are not in the main focus of the thesis.

Remark 5.0.1. In few pages we summarize the codes we developed, which are of considerable

length. We estimate that there are around 500.000 lines of code.

5.1 Computation of invariant tori in quasiperiodic skew

products

In this thesis we compute two types of tori: attracting tori in dissipative systems and saddle

type tori in area, and volume, preserving skew product systems of the form

(F, ω) : Rn × T −→ Rn × T
(z, θ) −→ (F (z, θ), θ + ω)

, (5.1)

where ω is an irrational number and F is differentiable enough, even analytic. The invariance

equation of an invariant torus z : T −→ Rn is

F (z(θ), θ) = z(θ + ω). (5.2)

For the computation of an attracting torus, we use the iteration method: Given an initial

point (z0, θ0), near the invariant torus, iterate it forwards a fixed amount of times N . After

these iterations, the point is near the invariant torus, so iterating another fixed amount of

times, the orbit described by it approximates the torus.

107
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For the computation of saddle type tori the iteration method does not work, due the

hyperbolic nature of the objects, hence it is needed more refined techniques to compute

them. In the literature there are several methods to numerically compute them. These

methods can be splitted in two big families:

5.1.1 Fourier’s method:

To solve (1.2) write down the torus z via its Fourier series as

z(θ) =
∑
k∈Z

zke
2πikθ

and try to find the unknowns zk. As we are dealing with a numerical problem we truncate

the Fourier series as a finite sum of terms with index |k| < N . Then, apply Newton’s

method for the non-linear system of equations with unknowns zk. See [Jor01], [HdlL06b] for

a discussion of several applications and variations of this method.

Remark 5.1.1. Fourier methods inspire the numerical tools used in the Computer-Assisted

Proofs in chapter §4.

Remark 5.1.2. The Fourier’s method is applied, in the form presented in [HdlL06b], in the

computation of the initial data of the FHIT for the computer validations presented chapter

§4.

5.1.2 Periodic orbits method:

Approximate the irrational number ω by a rational number ω̂ = p
q

(a partial convergent) and

replace the skew product (F, ω) by (F, ω̂). Since the invariant torus that we want to compute

persists under small perturbations of the skew product, see chapter §1, an invariant torus

of (F, ω̂) approximates an invariant torus of (F, ω), if q is large enough. Now, the invariant

torus of (F, ω̂) is foliated by periodic orbits, so compute one of these periodic orbits.

Remark 5.1.3. The periodic orbits method is applied in the computation of the FHIT of

chapters §2, §3 and §4. The periodic orbits method allows to “compute” the invariant objects

that remain after the breakdown of the invariant tori.

Remark 5.1.4. One of the goals of the periodic orbits method is to give hints of renormal-

ization. In this line, it has some similarities with the methods used in KAM context, see

for example [Gre79, Har98], where KAM tori are computed by approximating them by the

Birkhoff periodic orbits that surround them. The main difference of both methods is that,

in KAM context, the computed periodic orbits does not belong to an invariant torus, while

in the FHIT context, they belong to an invariant torus in a nearby skew product.

The error produced by the periodic orbits method can be estimated as follows: given

a skew product (F, ω) and a rational approximation of ω, ω̂ = p
q
, let z : T −→ Rn be an
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invariant torus of the skew product (F, ω̂), computed by the peridic orbits method. Then,

it is satisfied that ||F (z(θ), θ)− z(θ + ω̂)|| ≤ ε1. Hence, the error that produces z as a

parameterization of an invariant torus of (F, ω) is

e = ||F (z(θ), θ)− z(θ + ω)|| = ||(F (z(θ), θ)− z(θ + ω̂)) + (z(θ + ω̂)− z(θ + ω))|| .

Now, using |ω − ω̂| < ε2 we have that

e ' ε1 + ||Dz(θ)|| ε2.

Remark 5.1.5. Since the irrational rotation ω is approximated by its partial convergents
p
q
, the difference

∣∣∣ω − p
q

∣∣∣ is less than 1
q2
√

5
, with equality only if ω is the golden mean, see

[HW08].

Now, let’s explain the algorithm: Fix the rational approximation ω̂ = p
q

and θ0 ∈ T. The

goal is to compute the periodic points z0 = z(θ0), z1 = z(θ0 + ω̂), . . . , zq−1 = z(θ0 + (q −
1)ω̂), zq = z(θ0 + qω̂) = z(θ0) = z0. This computation is done by applying Newton’s method

on the system of non-linear equations (shooting method)

F (zq−1, θ0 + (q − 1)ω̂)− z0 = 0

F (z0, θ0)− z1 = 0

F (z1, θ0 + ω̂)− z2 = 0
...

F (zq−2, θ0 + (q − 2)ω̂)− zq−1 = 0

. (5.3)

The main obstruction to solve (5.3) via Newton’s method is the dimension of the system,

which is nq, because, at each step, it is needed to solve a linear system with dimension

nq × nq, which is prohibitive, in terms of memory, for moderate values of q. We handle

this problem by taking advantage of the sparseness nature of the system: it is applied a

taylored version of LU method with row partial pivoting. That is, we apply the LU method

with partial pivoting to q × q block-matrices of the form

x 0 · · · x

x x 0 0

0 x x 0

0 x x 0
...

. . . . . .

0 x x 0

0 0 · · · 0 x x


, (5.4)

where the x’s are the only non-zero n× n block-coefficients. Let’s denote by A0 the block-

matrix (5.4), that is the 0th step of the LU factorization. Then, the block-coefficients of A0

are

A0(i, j) =

{
x if j = i or j = i− 1 (mod q)

0 otherwise
.
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After the first iteration of LU, the block-matrix A1 has the form

x x 0 · · · x

0 x 0 x

0 x x 0 0

0 x x 0
...

. . . . . .

0 x x 0

0 0 · · · 0 x x


, (5.5)

and after the second iteration, the block-matrix A2 has the form

x x 0 · · · x

0 x x 0 x

0 x 0 x

0 x x 0 0
...

. . . . . .

0 x x 0

0 0 · · · 0 x x


. (5.6)

In general, after k iterations of LU, the block-coefficients of the matrix Ak are

Ak(i, j) =


x if i < k, and j = i, j = i+ 1, or j = q − 1

x if i = k, and j = i, or j = q − 1

x if q > i > k, and j = i or j = i− 1

0 otherwise

.

Observe that the memory storage of the matrix Ak, at each step k, requires only q rows

with three n × n non-zero coefficients. This implies that there is no need to store all the

matrix A0 for the computation of the LU method, but only q rows with 3 n × n non-zero

coefficients.

Remark 5.1.6. The time computation depends linearly with respect nq. When n is equal 2

or 3, we have solved non-linear systems like 5.3 of order q ' 107 with less than 1 minute on

a desktop computer.

Remark 5.1.7. In some examples, like the “non-linear Schrödinger equations” in chapters

§2 and §3, we use this special “non-linear Schrödinger” structure to adapt the LU method

to solve the system of non-linear equations (5.3).

We finish this subsection by showing how to compute the derivatives of an invariant

torus z : T −→ Rn of (5.1). Without loss of generality, we explain here the first derivative.

This satisfies the equation

DzF (z(θ), θ)z′(θ) +DθF (z(θ), θ) = z′(θ + ω). (5.7)
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Note that (5.7) is a linear equation that, if we implement it using a system like (5.3), we

obtain that its matrix is the same as of the system (5.3) that arises when computing the

invariant torus, and its independent term is the evaluations of DθF (z(θ), θ) at θk = θ0 + kω

for k = 0, . . . , q − 1. Hence, we use the adapted LU method to solve this system.

5.2 Invariant bundles of linear cocycles and Lyapunov

exponents

Let
(M,ω) : Rn × T −→ Rn × T

(v, θ) −→ (M(θ)v, θ + ω)
(5.8)

be a linear cocycle with invertible transfer matrix M . Here we describe how to compute its

invariant bundles when ω is rational, p
q
, because we are interested in the invariant bundles

of the approximations of FHIT computed using the periodic orbits method described in the

previous section. See [HdlL06b, HdlL07, PS10, PS11] for a collection of papers using similar

techniques of the ones described here.

First, we present the 2D case and then, derive the 3D case.

5.2.1 2D cocycles:

The invariant unstable and stable bundles, if they exist, are 1D. Since the stable bundle

is the unstable bundle under the action of the inverse of (5.8), we only detail here the

computation of the unstable bundle.

Fix (v0, θ0) ∈ R2×T at random, with ||v0|| = 1, and fix Nprev, Nmax, M (with M < Nmax)

and ε (tolerance) small. Denote by

v̂k+1 =
M(θ0 + kω)v̂k

Lk
,

where Lk = ||M(θ0 + kω)v̂k||, v̂0 = v0.

Then, the algorithm for the computation of the unstable bundle goes as follows:

1. IterateNprevq times the point (v̂0, θ0) to obtain the point (v̂Nprevq, θNprevq) = (v̂Nprevq, θ0).

2. Set λ0 = 0.

3. Iterate, as in the first point, the point (v̂Nprevq, θ0). Compute also λk+1 = λk +

log(Lk+Nprevq). After mq iterations, 1 ≤ m ≤ Nmax, check if∣∣∣∣λmqmq
−

λ(m−1)q

(m− 1)q

∣∣∣∣ < ε. (5.9)

Stop the algorithm when the condition (5.9) has been satisfied at least M times or

when k = Nmaxq.
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When the algorithm finishes, the q last iterations approximate the unstable bundle and λmq

mq

approximates the Lyapunov exponent.

Remark 5.2.1. This method resembles the power method used to compute leading eigenval-

ues of matrices.

Remark 5.2.2. The fibered rotation number associated to the unstable bundle can be com-

puted at the same time as the computation of the Lyapunov exponent. At point 2. of the

algorithm, we define a counter R = 0. Then, at point 3., every time we compute the unit

vectors v̂k, we check if v̂k−1v̂k < 0, if so, we add one to R. Then, at the end of the algorithm,

an approximation of the fibered rotation number is R
mq

.

Remark 5.2.3. If one knows in advance that the Lyapnov exponent is near some value, say

Λ, then one can choose as Nprev the integer part of e
1
Λ .

Remark 5.2.4. In general, we have obtained good results with the choice of Nmax = 10Nprev,

M = Nmax

100
and ε = 10−6. We have observed that when the invariant bundles are continuous

we can achieve errors of order ε ' 10−14.

5.2.2 3D cocycles:

The invariant unstable and stable bundles, if they exist, satisfy that the sum of their dimen-

sions is 3. Without loss of generality, we suppose that the unstable bundle, Eu, is 2D and

it is spanned by the invariant fast and slow unstable subbundles; and the stable bundle, Es,

is 1D.

The computation of the 2D unstable bundle is done using the same iteration scheme in

the 2D case explained above with the adjoint cocycle explained in chapter §1. Also, the 2D

invariant bundle that is spanned by the slow unstable subbundle and the stable bundle is

computed by the iteration of the inverse of the 2 exterior cocycle.

The computation of the 1D stable bundle is done via the iteration of the inverse of the

cocycle (5.8). Also, the 1D fast unstable subbundle is computed via the iteration method

applied to the cocycle (5.8).

Finally, once the 2D invariant bundle Eu and the 2D invariant bundle, spanned by the

slow unstable subbundle and the stable bundle, are computed, the slow unstable subbundle

is simply the intersection of the former two.

5.3 Fibered rotation number and spectrum of Schrödinger

operators

Here we describe the numerical computation of the fibered rotation number and the spec-

trum of Schrödinger operators. See [MMS89, Har98] and [Pui04b, PS10, PS11] for similar

algorithms.
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Let’s denote by H be the Schrödinger operator

(Hx)n = xn+1 + xn−1 + V (θ0 + nω)xn, (5.10)

where V : T → R is continuous and ω is irrational, and consider the truncated operator

H(N,M), acting on RM−N , defined as

(H(N,M)x)n =


V (θ0 + nω)xn + xn+1 if n = 0

xn−1 + V (θ0 + nω)xn + xn+1 if 0 < n < M −N − 1

xn−1 + V (θ0 + nω)xn if n = M −N − 1

(5.11)

This linear operator has, as matrix representation, a tridiagonal matrix with 1 in the sub-

diagonals and V (θ0 + nω) in the diagonal. Let’s denote by the averaged signature of the

matrix H(N,M) the number of eigenvalues less than 0 divided by |N −M |.
As we saw in chapter §1, the averaged signature of H(N,M) , as |N −M | → ∞, stabilizes

and the limit is the fibered rotation number, up to a factor 2π, that is, the fibered rotation

number is 2π times the signature.

In order to compute the fibered rotation number, we have used an algorithm based on

the following theorem, see [GVL96]:

Theorem 5.3.1 (Sturm Sequence Property). Lets denote by Tr, where r = M −N − 1, the

matrix H(N,M) and denote by Ts, s < r, its dominant (s + 1)× (s + 1) matrix. Lets denote

by ai the diagonal components of Tr. If we denote by ∆s the determinant of Ts, there is the

recursion formula

∆s = as∆s−1 −∆s−2 (5.12)

where ∆−1 = 1 and ∆0 = a0.

Then the number of sign changes in the sequence

{∆−1,∆0,∆1, . . . ,∆r} (5.13)

is equal to the signature of Tr.

This theorem can not be applied directly to the computation of the fibered rotation

number due to numerical instabilities: ∆s grows exponentially. In order to do applicable

this theorem we control the growth of the determinants. To do this we use the fact that

computing ∆s, under the action of (5.12), is the same as computing it under the action of

the cocycle with transfer matrix A(θ) (
V (θ) −1

1 0

)
,

where the initial data is θ = θ0 and v0 = (∆−1,∆0), so vk = (∆k−1,∆k). Since we are only

interested in the number of sign changes of (5.13), when iterating the cocycle we normalize

by the norm.
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To compute the spectrum we use the result, see chapter §1, that the spectrum are the λ’s

that the fibered rotation number of the Schrödinger operator H −λId is increasing. So, the

spectrum is computed by applied the previous method to compute fibered rotation numbers

with combination of the bisection method with respect the variable λ.

Remark 5.3.2. All the spectra and fibered rotation numbers computed in chapter §2 are

done by substituting ω in equation (5.10) by a partial convergent.

5.4 Rigorous manipulation of Fourier models

Here we detail the implementation of Fourier models, assuming the reader is familiar with

interval computations [Moo66, Tuc11, Zgl]. In what follows, when we refer to as a interval

we mean a compact interval. The result of an operation with intervals is an interval that

encloses the result. This is what one can do when implementing interval operations in a

computer.

Notation 5.4.1. Given an interval J = [a, b], we denote J− = a, J+ = b. The modulus of

an interval is |J | = max(|J−|, |J+|).

Remark 5.4.2. We have coded a C++ package to manage rigorously Fourier models. The

intervalar arithmetic is done with the help of the fi-lib++ package, see [HK97].

Definition 5.4.3. A (one dimensional, real) Fourier model of order m ≥ 0 is a couple

Ĝ = (G(θ), R), where

G(θ) = A0 +
m∑
k=1

(
Ak cos(2πkθ) +Bk sin(2πkθ)

)
is a trigonometric polynomial with interval coefficients A0, . . . , Am, B1, . . . Bm, and the re-

mainder R = R(Ĝ) is an interval. Abusing notation, we denote B0 = {0}, and for all k > m

we define Ak = Bk = {0}. We also mean by Fourier model of order −1 as an interval R.

We say that a continuous function f : T → R belongs to the Fourier model Ĝ, denoted

f ∈ Ĝ, if for all θ ∈ T, f(θ) ∈ A0 +
∑m

k=1 (Ak cos(2πkθ) +Bk sin(2πkθ)) +R.

Let Ĝ, Ĥ be two Fourier models. We say that Ĝ is enclosed by Ĥ, Ĝ ⊂ Ĥ, iff for any

continuous periodic function f : T→ R, f ∈ G implies f ∈ H.

Given an interval J , the image of J under the Fourier model Ĝ is defined as Ĝ(J) =

G(J) + R(Ĝ), where G(J) is the interval image of J under the trigonometric polynomial

with interval coefficients G. That is, Ĝ(J) = {f(θ) ∈ R | f ∈ Ĝ, θ ∈ J}. The image of Ĝ

is Ĝ([0, 1]). The supremum norm is the non-negative number ||Ĝ|| = |Ĝ([0, 1])|. An upper

bound of the supremum norm is the `1-norm ||Ĝ||1 = |A0|+
∑m

k=1 (|Ak|+ |Bk|) + |R|.
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Remark 5.4.4. The computer implementation of Ĝ(J) obtains an enclosure E of the result,

i.e. Ĝ(J) ⊂ E. In order to avoid large overestimations, specially in cases in which the

functions f ∈ Ĝ behave wildly, we consider suitable subdivisions J =
⋃n
i=1 Ji in subintervals

Ji, computing the enclosures Ei of the Ĝ(Ji).

Definition 5.4.5. Let Ĝ = (G(θ), R) be a Fourier model of order m, and ` ≥ 0. We

define the `-tail of Ĝ as Ĝ>` = (G>`(θ), R), where G>`(θ) is the intervalar Fourier poly-

nomial
∑m

k=`+1 (Ak cos(2πkθ) +Bk sin(2πkθ)). We define the `-enclosure of Ĝ as Ĝ≤` =

(G≤`, Ĝ>`([0, 1])), where G≤`(θ) = A0 +
∑`

k=1

(
Ak cos(2πkθ) + Bk sin(2πkθ)

)
. Abusing no-

tation, Ĝ>−1 = Ĝ, Ĝ≤−1 = Ĝ([0, 1]).

Given a d-variable function ϕ(x1, . . . , xd), and d Fourier models Ĝ1, . . . , Ĝd, we are in-

terested in computing a Fourier model Ĥ enclosing the composition ϕ ◦ Ĝ, where Ĝ =

(Ĝ1, . . . , Ĝd). That is, we want that, for all θ ∈ T, ϕ(Ĝ(θ)) ⊂ H(θ). We will consider here

the case that ϕ is elementary (in the Liouville sense), that is we will assume the ϕ is a

combination of finitely many arithmetic operations and compositions with simple functions

(or intrinsic functions [RMB05]) such as the power function, the exponential function or the

trigonometric functions.

The arithmetic operations with Fourier models are defined as follows. Addition and

subtraction of two Fourier models Ĝ and Ĥ is defined componentwise:

Ĝ+ Ĥ = (G(θ) +H(θ), R(Ĝ) +R(Ĥ)) , Ĝ− Ĥ = (G(θ)−H(θ), R(Ĝ)−R(Ĥ)).

If J is an interval, we define the multiplication of Ĝ with J as

J · Ĝ = (JG(θ), JR).

The product of Ĝ and Ĥ is

Ĝ · Ĥ = (G(θ)H(θ), G([0, 1])R(Ĥ) +H([0, 1])R(Ĝ) +R(Ĝ)R(Ĥ)).

In order to bound the order of the Fourier models through the operations in a computation,

we in fact compute enclosures of the products. For instance, if Ĝ and Ĥ are two Fourier

models of order m, their m-product is the m-enclosure of the product, i.e. (Ĝ · Ĥ)≤m.

Once we have defined the arithmetic operations with Fourier models, compositions with

polynomials are straightforward. If P (x) = C0 + C1x + C2x
2 + . . . + Cnx

n is a polynomial

with interval coefficients, we compute the composition P ◦ Ĝ using a Hörner scheme:

P (Ĝ) = C0 + Ĝ ·
(
C1 + Ĝ ·

(
C2 + · · ·+ Ĝ ·

(
Cn−1 + Cn · Ĝ

)
· · ·
))

.

Since the order of the composition is n times the order m of Ĝ, we usually substitute each

product of Fourier models in the Hörner scheme by the corresponding m-product. Hence,

we obtain an enclosure of order m of the composition of Ĝ with P .
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Enclosures of the compositions of Fourier models with simple functions, such as the expo-

nential, power function, logarithm, etc. can be performed with the aid of the corresponding

Taylor polynomial approximations (and bounds of the Lagrange errors). We consider here

the composition with the sine and cosine functions, which are the ones that appear in our

examples.

Given ` > 0, let S`(x), C`(x) be the Taylor polynomials of degree ` of the sine and cosine

functions, respectively. Let

Ŝ`(x) = S`(x) +
[−1, 1]

(`+ 1)!
xl+1 , Ĉ`(x) = C`(x) +

[−1, 1]

(`+ 1)!
xl+1

be the corresponding polynomials with Lagrange error bounds. Then, the compositions of

(F, ω) with the sine and cosine functions are enclosed in

sin`(Ĝ) = sin(A0) · Ĉ`(Ĝ>0) + cos(A0) · Ŝ`(Ĝ>0) ,

cos`(Ĝ) = cos(A0) · Ĉ`(Ĝ>0)− sin(A0) · Ŝ`(Ĝ>0) ,

respectively. In computer implementations, the order ` of the Taylor polynomials is chosen

such that
∣∣∣ 1

(l+1)!
(Ĝ>0[0, 1])l+1

∣∣∣ is less than a given tolerance. We also use m-products in the

intermediate computations.

Another operation used is the shift of a Fourier model Ĝ = (G(θ), R) by an (in-

terval) rotation ω. This is the Fourier model Sω(Ĝ) = (S(θ), R), with S(θ) = A0 +∑m
k=1 (A′k cos(2πkθ) +B′k sin(2πkθ)), where

A′k = Bk cos(2πkω)− Ak sin(2πkω) , B′k = Ak cos(2πkω) +Bk sin(2πkω).

Remark 5.4.6. For the validation algorithms, we also use vector and matrix Fourier models,

that are implemented straightforwardly.



Appendix A

Strange Non-Chaotic Saddles in

projective 3D cocycles

In this appendix we present two simple examples of 3D continuous linear cocycles which

satisfy that their M spectrum are annuli containing the unit circle but they do not have

continuous 1D bundles. This question was explored in the paper [Joh87], where the au-

thor found an example in the context of continuous linear cocycles with almost-periodic

coefficients.

We want to point out that a 3D cocycle with positive Lyapunov exponent with no

continuous 1D bundles has a Strange Non-Chaotic Saddle in its projective cocycle. This

goes as follows: the 3D cocycle has three measurable 1D invariant bundles, one expanding,

one contracting and one with Lyapunov exponent equal zero (central bundle). The central

bundle is the Strange Non-Chaotic Saddle, because the planes that pass through it and

both the expanding and contracting bundles are its unstable and stable bundles (in the

projective cocycle). It is Strange because because it is only measurable and not continuous,

it is non-Chaotic because its inner dynamics is quasiperiodic, and it is a Saddle because it

has non zero Lyapunov exponents.

A.1 The symmetric cocycle

Let A : T −→ SL(2,R) be a matrix-valued map, and ω an irrational number. Consider the

vector spaces M(2,R), the space fo 2 × 2 matrices, and Ms(2,R) the space of symmetric

2× 2 matrices. Consider the 4D cocycle defined as

(⊗A, ω) : M(2,R)× T → M(2,R)× T
(G, θ) → (Ḡ, θ + ω) := (A(θ)GA(θ)T , θ + ω)

. (A.1)

Remark A.1.1. The notation ⊗A comes from the fact that if we vectorize the matrix G, then

the transfer matrix of the cocycle (⊗A, ω) is the Kronecker product of the matrix-valued

map A by itself [Hal74].

117
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The cocycle (⊗A, ω) has a first integral: the determinant. This is because the transfer

matrix A(θ) has determinant equal 1. Also, (⊗A, ω) leaves invariant the 1D subspace of

skew-symmetric matrices Msk(2,R), which are of the form(
0 d

−d 0

)
, d ∈ R.

It is satisfied that M(2,R) decomposes in the two invariant subspaces Ms(2,R)⊕Msk(2,R).

Note that Ms(2,R) ∼= R3.

The following lemma relates the singular values of the iterations of the cocycles (A, ω)

and (⊗A, ω).

Lemma A.1.2. If an = σ1(A(n, ω)) and bn = σ2(A(n, ω)) are the singular values of the n-th

iteration of the cocycle (A, ω), then the four singular values of the n-th iteration of (⊗A, ω)

are a2
n ≥ 1 = 1 ≥ b2

n.

Proof. This comes from the fact that, if we vectorize G, vec(G), we have that the transfer

matrix of the linear cocycle (⊗A, ω) is the Kronecker’s product A(θ) ⊗ A(θ). Then, using

Oseledet’s theorem, see chapter §1, and the basic properties of the Kronecker’s product, the

desired singular values are all products of two elements of the singular values of the matrix

A(n, θ).

With the help of Oseledet’s theorem, see theorem 1.2.6 in chapter §1, and lemma A.1.2,

we can connect the Lyapunov spectrum of the 2D cocycle (A, ω) with the Lyapunov spectrum

of (⊗A, ω).

Corollary A.1.3. If Λ1, Λ2 are the Lyapunov exponents of the cocycle (A, ω), then 2Λ1, 0

and 2Λ2 are the Lyapunov exponents of the cocycle (⊗A, ω).

Now we can define the symmetric cocycle.

Definition A.1.4. The symmetric cocycle is the linear cocycle defined as (⊗A, ω) restricted

to the vector bundle Ms(2,R)× T.

From now on, we will denote by (⊗A, ω) the symmetric cocycle.

Remark A.1.5. By corollary A.1.3, the symmetric cocycle has Lyapunov exponents 2Λ1, 0

and 2Λ2, with Λ1 ≥ 0 and Λ2 ≤ 0.

A consequence of lemma A.1.2 and the general theory of Kronecker’s products of cocycles

described in [HdlL05] is the following result.

Corollary A.1.6. (A, ω) is uniformly hyperbolic if and only if (⊗A, ω) has an exponential

trichotomy (also called uniform partial hyperbolic splitting): it has three invariant 1D sub-

bundles, one with positive Lyapunov exponent, one with negative Lyapunov exponent, and

one with zero Lyapunov exponent.
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A tool to undersand the dynamics of the symmetric cocycle is its associated projective

cocycle. It is defined as the skew product

P(⊗A, ω) : S2 × T → S2 × T

(G, θ) →
(

A(θ)GA(θ)T

||A(θ)GA(θ)T ||
, θ + ω

)
. (A.2)

Since the determinant of a matrix G is preserved under the action of (⊗A, ω), we have

that the sign (of the determinant) of the points on S2 is preserved under A.2, so there are

three invariant sets on S2, see figure A.1:

• Positive sign: This set is diffeomorphic to a disjoint union of two open disks.

• Negative sign: This set is diffeomorphic to an open cylinder.

• Zero sign: this set is diffeomorphic to a disjoint union of two circles. These two circles

come from the intersection of the cone, formed by the matrices with determinant zero,

and the 2 sphere.

Figure A.1: Schematic representation of the invariant sets on S2 under the projective sym-

metric cocycle.

From the previous geometrical decomposition of the phase space in terms of the sign of

the determinant, it can be proved that:

Lemma A.1.7. Let G : T −→ R3 be an invariant 1D bundle of (⊗A, ω) with determinant

different of 0 at some point θ0, and let ω be irrational. Then there exists two 2D invariant

bundles that, for each θ, contain G(θ) and are tangent to the cone of the determinant equal

to 0. Moreover, if the determinant of G is negative, the two 2D invariant bundles are real,

and if the determinant of G is positive, they are complex.



120 APPENDIX A. SNS IN PROJECTIVE 3D COCYCLES

Proof. First of all, let’s introduce coordinates (a, b, c) in Ms(2,R), which correspond to the

matrix form (
a b

b c

)
.

Note that the cone of determinant equals zero corresponds to the equation ac − b2 = 0.

Also, a plane tangent to the cone has equation Aa + Bb + Cc = 0, where the coefficients

A,B and C satisfy that there exists a point (a0, b0, c0) in the cone of determinant zero, i.e.

a0c0 − b2
0 = 0, such that A = c0, B = −2b0 and C = a0.

Finally, if G(θ) = (g1(θ), g2(θ), g3(θ)), then the two 2D invariant bundles that pass

through G(θ) and are tangent to the cone of determinant zero have coefficients A(θ), B(θ)

and C(θ) of the form A(θ) = 1, B(θ) = −2
√
C(θ) and

C(θ) =

(
g2(θ)

g1(θ)
±
√
g2(θ)2 − g1(θ)g3(θ)

g1(θ)

)2

,

hence the 2D bundles are real if and only if the determinant of G(θ) is less than zero.

From corollary A.1.6 we have that if (A, ω) is uniformly hyperbolic, then the cocycle

(⊗A, ω) is partially hyperbolic. One can ask what happens when (A, ω) is not uniformly

hyperbolic. Since (⊗A, ω) is not partially hyperbolic we have, by Oseledet’s theorem, that

the 1D contracting and expanding subbundles are not continuous but only measurable. Is

the central subbundle, the one with associated zero Lyapunov exponent, continuous? The

following theorem answers this question.

Theorem A.1.8. Let ω be irrational and (A, ω) a 2D linear cocycle with positive Lyapunov

exponent. Then the central subbundle of (⊗A, ω) is continuous if and only if (A, ω) is

uniformly hyperbolic.

Proof. Let’s prove that if (A, ω) is uniformly hyperbolic, then (⊗A, ω) has a 1D continuous

invariant subbundle with Lyapunov exponent equal 0:

Since (A, ω) is uniformly hyperbolic, there exist continuous matrix-valued maps P : R/(2Z) −→
GL(2,R) and Λ: R/(2Z) −→ GL(2,R), with

Λ(θ) =

(
Λ1(θ) 0

0 Λ2(θ)

)
,

such that (A, ω) is conjugated to Λ through P , that is,

A(θ)P (θ) = P (θ + ω)Λ(θ). (A.3)

Note that, since A(θ) is in SL(2,R),

λ̂i =

∫
T

log |Λi(θ)| dθ,
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i = 1, 2, satisfy that λ̂1 + λ̂2 = 0.

Now, define G(θ) = P (θ)RP (θ)T , where

R =

(
0 1

1 0

)
.

Using (A.3), it is easy to verify that

A(θ)G(θ)A(θ)T = Λ1(θ)Λ2(θ)G(θ + ω),

and, using λ̂1 + λ̂2 = 0, it is proved that G(θ) has Lyapunov exponent equal 0.

Let’s prove now that if (⊗A, ω) has a 1D continuous invariant subbundle, G, with zero

Lyapunov exponent, then (A, ω) is uniformly hyperbolic:

Since ω is irrational and the determinant is preserved by (⊗A, ω), the sign of the deter-

minant remains constant along G(θ) with respect θ. There are three possible cases:

• det > 0: This case is not possible. If the determinant of G(θ) is positive, we have

that the two 2D bundles that are tangent to the cone of determinant zero and pass

through G(θ) are invariant and complex, see lemma A.1.7. Then, the two 1D complex

subbundles that lie in the cone of determinant zero and belong to the 2D bundles,

are invariant and conjugated one to the other. Hence, their Lyapunov exponents are

equal. This implies that the maximal Lyapunov exponent of (⊗A, ω) is zero, which

implies that the Lyapunov exponent of (A, ω) is zero.

• det < 0: There are two (real) 2D invariant bundles that containG(θ) and are tangent to

the cone of determinant 0, see lemma A.1.7. The intersection of this two bundles with

the cone creates another two (real) 1D invariant subbundles and, since G is continuous,

they are continuous. Now, using the hypothesis that the Lyapunov exponent of (A, ω)

is positive and corollary A.1.6, we have that (A, ω) is uniformly hyperbolic.

• det = 0: For every G(θ), the plane tangent to the cone of determinant 0 and that

contains G(θ) generates a 2D invariant bundle. Because the Lyapunov exponent of

(A, ω) is positive, this 2D invariant bundle contains another 1D invariant subbundle,

which has non-zero Lyapunov exponent. Without loss of generality we will think that

it has positive Lyapunov exponent. Since the dynamics constrained on this invariant

2D bundle is also a 2D cocycle and has one 1D continuous invariant subbundle an

another that is measurable, then the measurable must be continuous also. Then,

the other 1D invariant subbundle is constructed by the intersection of the other 2D

invariant bundle that is tangent to the cone of determinant zero.
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A.1.1 A numerical example of a symmetric cocycle without con-

tinuous 1D invariant bundles

Let (AE, ω), with ω the golden mean, the linear cocycle with transfer matrix

AE(θ) =

(
E − 3 cos(2πθ) −1

1 0

)
.

(AE, ω) is called the Harper map with parameter E, see chapter §4 for a more detailed

description of this cocycle and its properties.

The Harper map satisfies that, for E > Ec, where Ec ≈ 3.386230716705, is uniformly

hyperbolic, while for E = Ec, it is not uniformly hyperbolic, but with positive Lyapunov

exponent.

From the results of theorem A.1.8, the symmetric cocycle (⊗AE, ω) associated to the

Harper map satisfies that for E > Ec, it has three 1D invariant subbundles, while for E = Ec
it has no 1D continuous invariant subbundles. Also, from the construction of theorem A.1.8,

we observe that the central subbundle, for E > Ec, satisfies that it has negative determinant

and it seems plausible that, as E approaches Ec, this determinant gets close to zero.

Remark A.1.9. We emphasize that the maximal Lyapunov exponent is just two times the

Lyapunov exponent of the linear cocycle (AE, ω) and, as a consequence of theorem A.1.8, the

minimum distance between the 1D invariant subbundles is proportional to the determinant

along the central subbundle.

Remark A.1.10. The symmetric cocycle (⊗AE, ω) has transfer matrix(E − 3 cos(2πθ))2 −2 (E − 3 cos(2πθ)) 1

(E − 3 cos(2πθ)) −1 0

1 0 0

 .

In order to see how the central subbundle of (⊗AE, ω) behaves as E approaches Ec, for a

fixed E, we compute it using the projective cocycle (A.2). Also, we compute the minimum of

the absolute value of the determinant along θ. Figure A.2 show the minimum of the absolute

value of the determinant of the central bundle with respect E. As we observe in subfigure

A.1.1, it seems that the minimum determinant goes to zero like a parabola, subfigure A.1.1

shows the square root of the minimum determinant with respect E. Observe that this

subfigure is almost a straight line. In order to see that it is a straight line, we performed a

fitting, using the fit function in gnuplot, and obtained that the square root of the minimum

determinant is like

a · (E − Ec),

where a ≈ 0.531769514695.

Also, for several values of the parameter value E, near the critical value Ec, we compute

the graphs of the determinant along the central bundle, see figure A.3. As we observe in
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Figure A.2: Minimum of the absolute value of the determinant of the central subbundle

with respect E (left) and the square root of it with respect E (right).

this figure, as E gets close to Ec, the determinant along the central subbundle approaches

zero. This figure resembles the ones that are obtained when computing pinched SNA [Kel96,

FKP06, Jäg07].



124 APPENDIX A. SNS IN PROJECTIVE 3D COCYCLES

(a) E = 3.4. (b) E = 3.39.

(c) E = 3.387. (d) E = 3.3863.

(e) E = 3.38624. (f) E = 3.386230717.

Figure A.3: Absolute value of the determinant of the central subbundle with respect θ (x

axis) for several values of E near Ec. On the y axis there is the 1
4
th power of the absolute

value of the determinant.
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A.2 Triangular linear cocycle

Let (Â, ω) be a 2D linear cocycle, with ω irrational, and let b : T −→ R2 a continuous vector-

valued map. The triangular linear cocycle is the 3D linear cocycle (A, ω) with transfer matrix

A(θ) =

(
Â(θ) b(θ)

0 1

)
.

The triangular cocycle has the property that, for any vector-valued map b, its M spectrum

is the union of the M spectrum of the cocycle (A, ω) with the unit circle. Also, the 2D bundle

E = {((x, y, z), θ) |z = 0}

is invariant.

Proposition A.2.1. If the M spectrum of (Â, ω) is an union of two circles that do not lie

on the unit circle, then (A, ω) has a continuous invariant 1D bundle with associated zero

Lyapunov exponent.

Proof. If the M spectrum of (Â, ω) does not contain the unit circle, then the linear functional

equation

Â(θ)v̂(θ) + b(θ) = v̂(θ + ω)

has a continuous solution v̂ : T −→ R2. Now, define the bundle v(θ) = (v̂(θ), 1). It is easy

to see that this 1D bundle satisfies

A(θ)v(θ) = v(θ + ω).

Related to propostion A.2.1, we have the following result

Lemma A.2.2. The 3D linear cocycle (A, ω) has a continuous 1D invariant bundle with

zero Lyapunov exponent if and only if there exists a continuous v̂ : T −→ R2 that solves the

equation

Â(θ)v̂(θ)− v̂(θ + ω) = −b(θ).

Proof. Note that if v : T −→ R3 is invariant under the linear cocycle (A, ω) and has zero

Lyapunov exponent, then it satisfies(
A(θ) b(θ)

0 1

)
v(θ) = Λ(θ)v(θ + ω),

with ∫
T

log |Λ(θ)|dθ = 0.
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If we denote v(θ) = (v̂(θ), z(θ)), with v̂ : T −→ R2 and z : T −→ R, then the zero Lyapunov

exponent implies that the cohomology equation

z(θ) = Λ(θ)z(θ + ω)

has the only non-trivial solution z(θ) = 1. Hence, v(θ) has the form (v̂(θ), 1).

The other implication of the lemma is done in proposition A.2.1.

Before stating the main theorem of this section, we want to remember a classical result

in Functional analysis, see [Con00] for a general reference.

Theorem A.2.3. Let L : X −→ X be a bounded linear operator on a Banach space X.

Then, z is in the Weyl spectrum of L, but not in the point spectrum, if and only if, there

exists a residual set B ∈ X such that the linear equation

Lx− zx = b (A.4)

has no solutions for b ∈ B. This is the same as saying that L − zId is injective but

(L− zId)(X) is not closed in X.

Remark A.2.4. Remember that a residual set is the countable intersection of open dense

sets, which is dense by Baire theorem.

Theorem A.2.5. Let (Â, ω) be a non-uniformly hyperbolic 2D linear cocycle, i.e. its M spec-

trum is an annulus containing the unit circle. Then, there exists a residual set of b : T −→ R2

in the Banach space of continuous vector-valued maps C0(T,R2), such that the triangular

linear cocycle associated to (Â, ω) and b has no continuous 1D invariant subbundle with zero

Lyapunov exponent.

Proof. Given a vector-valued map b : T −→ R2, we will denote by (Ab, ω) the triangular

linear cocycle associated to (Â, ω) and b.

By lemma A.2.2, (Ab, ω) has a continuous 1D invariant subbundle if an only if the

functional equation

Â(θ − ω)x(θ − ω)− x(θ) = −b(θ − ω). (A.5)

has a continuous solution x : T −→ R2.

Equation A.5 is equation (A.4) for the transfer operator, Â, associated to the linear

cocycle (Â, ω), that is, (Â − Id)x = b. Using the fact that the spectrum of a transfer

operator, M spectrum, is equal to the Weyl spectrum, see chapter §1, that (Â, ω) is not

uniformly hyperbolic, and using theorem A.2.3, we conclude that (Ab, ω) has no continuous

1D invariant subbundles with zero Lyapunov exponent for a residual set of b’s.



Open questions

In the course of our work we have solved some problems, but many questions have been

raised. Here we present several of these questions and possible future lines of work.

• Study in detail the gradient flow and its fixed points that arise when studying FHIT

in area preserving skew product systems. See chapter §2 for a detailed description of

this flow.

• Study the renormalization properties of the breakdowns exposed in chapters §2 and

§3.

• Does the folding breakdown, see chapter §2, appear in higher dimensional skew prod-

ucts with irrational rotation?

• What is the invariant object that remains after the fractalization route in volume

preserving skew products like the one exposed in chapter §3?

• The gradient flow for the volume preserving skew product described in §3 does not

work, but it is still possible to define a flow in `2(Z) which has as fixed points FHIT.

Study the properties of this flow.

• Develop the theory to perform computer-assisted proofs of invariant tori, as explained

in chapter §4, using not only the Banach space C0, but also other Banach spaces like

Cr, with r > 0, Sobolev spaces, analytic spaces...

• Develop the theory for the rigorous computer validation of FHIT in skew product

systems where the dynamics on the base space Td is not a rigid rotation but a more

general diffeomorphism.

• Develop the theory for the rigorous computer validation of Normally Hyperbolic In-

variant Tori in dynamical systems which are not skew product systems.

• Apply the Fourier models machinery for other problems. For example, for the val-

idation of periodic orbits of dissipative PDEs. (This part is work in progress with

professor Rafael de la Llave).

• Explain the pinched structure of the determinant of the central subbundle of the

symmetric cocycle described in appendix §A.
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Resum

El comportament a llarg termini d’un sistema dinàmic està organitzat pels seus objectes in-

variants. Per tant, és important entendre com aquests objectes invariants persisteixen sota

pertorbacions del sistema, donar resultats de la seva existència, regularitat i dependència

respecte paràmetres, i classificar les seves bifurcacions i mecanismes de trencament. En aque-

sta tesi, treballarem aquestes qüestions per a una classe particular de sistemes dinàmics i ob-

jectes invariants. Els sistemes que considerarem són els que estan forçats quasiperiòdicament,

és a dir, acoplats a una rotació irracional, i els objectes invariants són tors invariants amb

dinàmica irracional. Aquests tors surgeixen com a resposta del forçment quasiperiòdic i es

representen geomètricament com a grafs dels angles de la rotació [Sta97]. Es sabut que

la persistència (en un conjunt obert de paràmetres) de varietats invariants està fortament

lligada al concepte d’hiperbolicitat normal [Fen72, HPS77, Mañ78, Sac65]. En aquesta tesi

considerarem el concepte anàleg per als sistemes forçats quasiperiòdicament. Per tant, els

tors invariants que tractarem són fibrats hiperbòlics (FHIT). Sense entrar en massa detall,

un tor continu invariant està fibrat hiperbòlicament si hi ha una dicotomia en la linealització

de la dinàmica al seu voltant: el fibrat normal es descomposa en fibrats estables i inestables

a on la dinàmica es uniformement contractiva i repulsiva, respectivament. Cal notar que

la dinàmica sobre el fibrat tangent està dominada per la dinàmica en el fibrat normal, ja

que els exponents de Lyapunov són zero. Aquest fet implica que els tors fibrats hiperbòlics

persisteixen (en un conjunt obert de paràmetres) i tenen el mateix grau de diferenciabilitat

que el sistema [HdlL06c].

En particular, en aquesta tesi considerem exemples en els quals els tors bifurquen suau-

ment i exemples a on els tors es trenquen. Un dels objectius principals és definir bons

observables per a l’estudi dels diferents tipus de bifurcacions. Els fenoments de trencament

de tors han sigut estudiats amb molta profunditat en la literatura, en el context d’Atractors

Extranys no Caòtics (SNA), desde el seu descobriment [Her83, GOPY84]. En aquests articles

un tor atractor suau bifurca en un objecte atractor amb geometria molt complicada (no és ni

continu) però s’observa que la seva dinàmica interna és no caòtica, de fet, és quasiperiòdica.

Aquest comportament d’objectes invariants ha sigut clau per a la f́ısica teòrica. Es considera

que aquest és el preludi per a comportaments caòtics en els sistemes, i per tant hi ha hagut

molts estudis tant numèrics com experimentals per a estudiar els mecanismes de formació

dels SNA (vegeu [FKP06, PNR01] i les referències que allà s’esmenten). També hi ha hagut

esforços teòrics per a explicar rigorosament com funcionen aquests mecanismes (vegeu per

129



130 APPENDIX A. SNS IN PROJECTIVE 3D COCYCLES

exemple [BO96, Bje09, HP06, Jäg09, Kel96, Sta99, SS00]). Ara però, l’atenció que s’ha

prestat als mecanismes de trencament de tors tipus sella, al contrari que els tors atractors,

és força minsa. Aquests tors, amb les seves varietats invariants associades, són molt més

dif́ıcils de calcular numèricament. En aquesta tesi hem estudiat, doncs, què passa després

dels trencament, posant especial èmfasi en la natura geomètrica i dinàmica dels objectes

que queden després del trencament.

També considerem en aquesta tesi la qüestió d’existència dels FHIT, fins i tots en casos

on els tors són a prop de trencament. Aqúı presentem un nova metodologia per a donar

proves rigoroses, via Computer-Assisted Proofs (CAPs), de l’existència i unicitat (loca) de

FHIT en sistemes forçats qüasiperiòdicament. Un punt clau per a fer CAPs és formular

el problema d’invariància d’aquests objectes en termes funcionals [HdlL06c]. Aplicacions

de CAPs usant eines funcionals en el camp dels sistemes dinàmics té una llarga història.

Un dels precursors va ser la demostració de les conjectures de Feigenbaum en aplicacions

unimodals [Lan82, Lan87], però també hi ha, per exemple, la demostració d’universalitat

de les cascades de doblaments de periode en aplicacions que conserven àrea [EKW84], la

prova de l’existència de l’atractor extrany de Lorenz [Tuc02], i, més recentment, l’existència

de tors invariant cŕıtics en sistemes Hamiltonians [Koc08]. Vegeu també el caṕıtol 7 en el

llibre [dlL01] i l’article de divulgació [KSW96]. Un denominador comú en totes aquestes

demostracions és que es proposa un marc funcional per a l’objecte que es vol demostrar

la seva existència, es troba una aproximació numèrica d’aquest, i després es demostra la

seva existència d’una solució propera a l’aproximació. Tot això es fa usant que l’objecte

a demostrar es pot parametritzar com un zero d’una equació funcional en un espai de

Banach i veient que es compleixen condicions d’existència (usant per exemple mètodes estil

Newton). Nosaltres, per a validar els FHIT, un espai natural de Banach és l’espai de funcions

cont́ınues periòdiques amb la norma del suprem. Resultats teòrics en [HdlL06c] ens aseguren

a posteriori que els objectes validats seran tant diferenciables com el sistema skew product

a on viuen. Cal notar que hi ha una diferència força gran entre els mètodes exposats en la

literatura i el que aqúı desenvolupem. Els primers tenen l’aventatge de que treballen amb

operadors compactes, mentres que nosaltres treballem amb operadors acotats no compactes.

Resumint, la tesi es pot descompondre amb dos objectius principals: l’estudi dels possi-

bles trencaments de FHIT i la demostració rigorosa d’aquests usant tècniques CAPs.

Aquesta tesi ha sigut organitzada en diferents caṕıtols.

1.- Marc teòric dels FHIT.

En aquest caṕıtol es descriu el marc tèoric dels FHIT i dels skew products quasiperiòdics.

Aquests últims són aplicacions no lineals de la forma

(F, ω) : Rn × T −→ Rn × T
(z, θ) −→ (F (z, θ), θ + ω)

a on ω és un nombre irracional. Un tor invariant és un graf d’una funció cont’inua K : T −→
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Rn que satisfà l’equació d’ invariancia

F (K(θ), θ) = K(θ + ω).

Direm que un tor invariant és FHIT si la seva dinàmica normal infinitessimal al voltant seu

és uniformement hiperbòlica. És a dir, que el seu cocicle associat

(DzF, ω) : Rn × T −→ Rn × T
(v, θ) −→ (DzF (K(θ), θ)v, θ + ω)

deixa invariant una suma de Whitney de fibrats Eu ⊕ Es tal que la seva dinàmica és expo-

nencialment contractiva en Es i exponencialment expansiva en Eu.

Es descriu breument la dinàmica lineal de cocicles. Aquesta descripció és necessària per

entendre la dinàmica al voltant dels tors invariants.

També s’estudia les relacions dinàmiques i funcionals dels tors invariants, com per ex-

emple l’espectre associat a un tor invariant.

Finalment s’introdueix el concepte d’operador de Schrödinger discret. Aquest serà de

gran ajuda per a entendre les bifurcacions de tors hiperbòlics en sistemes que preserven àrea

forçats qüasiperiòdicament.

2.- Trencament de FHIT en sistemes que preserven àrea forçats qüasiperiòdicament

En aquest caṕıtol es descriuen i es comparen els diferents tipus de trencament de tors FHIT

en sistemes que preserven àrea forçats qüasiperiòdicament. Aquests mecanismes són la bi-

furcació suau, el trencament no suau i el trencament per plegaments. Aquests trencaments

han sigut estudiats numèricament usant el mètode de còmput dels tors invariants aprox-

imant aquests per òrbites periòdiques. Per a cadascun dels trencaments hem estudiat el

comportament de l’exponent de Lyapunov, la distància entre els fibrats invariants, etc.

La bifurcació suau, o bifurcació sella-el.ĺıptic, és la transició d’un FHIT a un tor el.ĺıptic,

el qual té tors al voltant amb dimensió més alta. Tant l’exponent de Lyapunov com la

distància mı́nima entre els fibrats va a zero quan la bifurcació es produeix. Aquesta bifurcació

és ben entesa usant tècniques KAM, vegeu [BHS96].

El trencament no suau satisfà que la distància mı́nima entre els fibrats va a zero, però

tant l’exponent de Lyapunov com la distància màxima entre els fibrats romanen positius

quan la bifurcació té lloc. Això, aparentment, és contraintuitiu. També s’observa que el

pendent del tor roman acotat quan es produeix la bifurcació, mentres que la seva derivada

segona es dispara i va a infinit. Després de la bifurcació detectem que hi ha un objecte

invariant que persisteix, però aquest no és un tor continu.

El trencament per plegaments comparteix algunes similituds amb el trencament no suau,

com per exemple el comportament de la distància mı́nima entre els fibrats, l’exponent de

Lyapunov i la distància màxima entre els fibrats. Ara però, s’observa que la derivada primera

del tor es dispara prop del trencament i va cap a infinit. Després del trencament s’observa

que, per a cada òrbita periòdica computada que aproximi el tor, aquesta no descriu el graf

d’una funció, però és sobre una corba cont́ınua. Això és degut a que la corba, foliada
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d’òrbites periòdiques, té plegaments. S’observa també que si es canvia el nombre racional

de la corba, les corbes amb plegaments són similars. Això ens fa conjecturar que quan la

rotació és irracional, hi ha un objecte hiperbòlic, que no pot ser una corba mesurable, que

roman invariant sota el skew product.

3.- Ruta de fractalització de FHT en sistemes skew product que preserven volum.

En aquest caṕıtol presentem una nova ruta de fractalització de FHIT en sistemes skew prod-

uct que preserven volum. Aquest tipus de trencament ha sigut observat en sistemes dissi-

patius, vegeu per exemple [Kan84, HdlL06a, JT08] però mai en sistemes conservatius. Aqúı

presentem un exemple en un skew product 3D que preserva volum. Veiem que el fenòmen

de fractalització també esdevé. Amb l’ajuda d’aquest tipus de trencament en sistemes con-

servatius podem donar un un marc teòric unificat que engloba tant el cas conservatiu com

el dissipatiu.

5.- Validació de FHIT via CAPs.

En aquest caṕıtol presentem una nova metodologia per a fer CAPs de FHIT usant el marc

funcional d’invariància d’aquests objectes. Aquesta metodologia representa un pas enda-

vant dels resultats, tant teòrics com numèrics, presentats en els articles [HdlL06c, HdlL06b,

HdlL07]. La metodologia podria ser descrita de la següent forma: Donada una aproximació

del FHIT que es vol validar, aquest és modelat com una aplicació de l’espai de Banach de les

funcions periòdiques usant tècniques intervalars, vegeu [Moo79, KM84] com a referència en

anàlis intervalar. Després, s’usa aquest model per a validar l’existència d’una solució propera

usant el teorema de Newton-Kantorovich adaptat al problema que estem treballant.

Aquesta metodologia és aplicada en diversos exemples: validació de cotes superiors de

la mesura de l’espectre d’operadors de Schrödinger, validació de FHIT en sistemes no in-

vertibles prop de trencament no suau i validació de FHIT en sistemes que preserven àrea.

6.- Eines numèriques.

En aquest caṕıtol descrivim breument les eines numèriques més rellevants usades durant la

tesi, com la computació de tors invariants en skew products, la computació dels seus fibrats

invariants i alguns dels aspectes més tècnics relacionats en les CAPs del caṕıtol 5.

La tesi acaba amb un apèndix i una llista de problemes oberts. En l’apèndix donem

alguns exemples de cocicles 3D a on demostrem que no existeixen fibrats 1D continus,

només mesurables. En la llista de problemes oberts donem possibles ĺınies de recerca cara

el futur.
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