First computer lab.

1. Write a program that computes the machine epsilon.
2. Implement Kahan summation algorithm and discuss its accuracy with examples.
3. Write a program that switches the rounding mode of your computer.
4. Consider the infinite series

$$
\zeta(s)=\sum_{k \geq 1} \frac{1}{k^{k}} .
$$

Compute rigorous lower and upper bounds of $\zeta(s)$ for $s=2,3,4,5,6$. Are your results tight?
5. Compute rigorous lower and upper bounds of the integrals

$$
\begin{aligned}
& \int_{0}^{1} e^{\sin \left(x^{2}\right)} d x ; \\
& \int_{1}^{\infty} \sin \left(x^{2}\right) x^{-3} d x .
\end{aligned}
$$

6. How many times does the function

$$
\sin (x) \cos (x)+\frac{1}{2}-(x+1) \sin \left(\left(x+\frac{1}{2}\right)^{2}\right)+\exp (-x)
$$

vanish in the interval $[0,2]$?

