First set of Problems. First part.

1. Compute $(1.01)_{2}^{(1.21)_{3}}$.
2. In 1958 Moscow State University developed a balanced ternary computer called Setun. Balanced ternary is a base 3 numeral system using the digits $-1,0,1$.
(a) Explain how to add, substract, multiply and divide two numbers in this representation.
(b) Suppose you have a two-pan balance and only one weight for all powers of 3 . Interpret how to weight a body in terms of the balanced ternary system.
(c) Convert the following numbers to balanced ternary: $10,-4,1 / 2,-13.4$.
(d) Think of how you would represent balanced ternary computer representable floating point numbers. Do you see any advantage in this system? What about representing numbers in the standard base 3 ?
3. Notice that $19=(19)_{10}=(10011)_{2}=(201)_{3}$. What base is more economical for representing numbers? To answer this question, consider the economy function

$$
E(b, N)=b\left\lfloor\log _{b}(N)+1\right\rfloor .
$$

This function is supposed to measure the cost of storing number N in base b. Explain this last assertion and find the best base.
4. Let $\left\{x_{i}\right\}_{0 \leq i<N}$ be a sequence of computer representable floating point numbers. There are two ways of computing their sum $S=\sum x_{i}$:
(a) $\mathrm{s}=0$;
for (i = 0; i < N; i++)
\{
s = s+x[i];
\}
//s is the solution
(b) (Kahan summation algorithm).
$\mathrm{s}=0 ;$
c = 0;
for (i = 0; i < N; i++)
\{
$y=x[i]-c$;
$\mathrm{t}=\mathrm{s}+\mathrm{y}$;
$c=(t-s)$;
$c=c-y$;
$\mathrm{s}=\mathrm{t}$;
\}
//s is the solution
Which one is better? Discuss both.
5. One way of increasing the precision of how to represent numbers is by combining several doubles. Let x, y be two non-overlapping doubles (x and y do not overlap if there exists integers r and s such that $x=r 2^{s}$ and $|y|<2^{s}$ or $y=r 2^{s}$ and $\left.|x|<2^{s}\right)$. Then, $x+y$ represents a number with larger precision. How will you add two double-doubles? More precisely, given the two doubles a, b, how will you find non-overlapping doubles x, y such that $a+b=x+y$?
6. We have discussed during the lectures how to represent \mathbb{R} with a computer. Explain how you will represent the following spaces: $\mathbb{R}^{n}, \mathbb{C}^{n}, \mathcal{C}([a, b], \mathbb{R})$.

