Homework set.

Instructions: You must solve the exercises individually. Submit all codes.
Deadline: 18 January 2015.

1. Compute all prime numbers below N. Check the prime number theorem.
2. Compute all integral solutions of the inequality

$$
x^{2}+y^{2} \leq N
$$

3. Consider a domain $\Omega \in \mathbb{R}^{2}$ with two boundaries $\delta \Omega_{i}, i=0,1$. Compute $u(p), p \in \Omega$, solving the problem

$$
\left\{\begin{array}{l}
\Delta u=0 \\
u_{\mid \delta \Omega_{i}}=i
\end{array}\right.
$$

using a Monte-Carlo method.
4. Consider the trigonometric polynomial $f: \mathbb{T}^{2} \rightarrow \mathbb{R}$,

$$
f(t)=\sum_{|k| \leq N} c_{k} e^{2 \pi i k t}
$$

Find all extrema and classify them (Morse index).
(Extra) Compute the attached invariant manifolds of the points.
5. Integrate the PDE

$$
u_{t}=\Delta u+F(u)
$$

defined on the unit interval with Dirichlet conditions

$$
u(0, t)=p_{1}(t), u(1, t)=p_{2}(t),
$$

where p_{i} are 1 periodic functions.
Choose between two types of discretized versions: Fourier expansions or finite differences.
6. Consider the functional equation

$$
f(g(z))=g(\lambda z)
$$

where $\lambda=0.5, f(z)=\lambda z+z^{2}$ and g is an (unknown) analytic function with $g(0)=0$. Compute its n-th Taylor expansion.

