Second set of exercises: Continuous random variables. The normal distribution.

1. Consider the following function

$$
f(x)= \begin{cases}x & \text { if } x \in[-2,2] \\ 1 & \text { if } x \in(2,3) \\ 0 & \text { otherwise }\end{cases}
$$

Is it a density function of a continuous random variable?
2. Consider the following function

$$
f(x)= \begin{cases}2 & \text { if } x \in[-2,2] \\ 0 & \text { otherwise }\end{cases}
$$

Is it a density function of a continuous random variable?
3. Let X be a random variable with density function

$$
f(x)=\left\{\begin{array}{cc}
1 & \text { if } x \in[2,3] \\
0 & \text { otherwise }
\end{array}\right.
$$

Compute its expected value, variance and standard deviation.
4. Let X be a random variable with density function

$$
f(x)= \begin{cases}3 x^{2} & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Compute $E[X], E[2 X+3], \operatorname{Var}(X)$ and $\operatorname{Var}(4 X+2)$.
5. Let X be a random variable with density function

$$
f(x)= \begin{cases}e^{-x} & \text { if } x \in(0,+\infty) \\ 0 & \text { otherwise }\end{cases}
$$

Compute $E[X]$ and $\operatorname{Var}(X)$. Sketch its distribution function.
6. Let X be a random variable with density function

$$
f(x)= \begin{cases}\frac{1}{2} x e^{-x} & \text { if } x \in(0,+\infty) \\ 0 & \text { otherwise }\end{cases}
$$

Compute $E[X]$ and $\operatorname{Var}(X)$. Sketch its distribution function.
7. Let X be a random variable with density function

$$
f(x)= \begin{cases}\frac{1}{2} & x \text { if } \in[2,4] \\ 0 & \text { otherwise }\end{cases}
$$

Compute $P(X<3)$ and $P(2.5<X<3.5)$.
8. Let X be a random variable with density function

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ 2 x & \text { if } x \in\left(0, \frac{1}{2}\right) \\ 1 & \text { if } x \in\left[\frac{1}{2}, \frac{5}{4}\right) \\ 0 & \text { if } x \geq \frac{5}{4}\end{cases}
$$

Compute its expected value, variance and standard deviation. Compute $P(X<0.3)$ and $P(X>0.5)$.
9. Let X be a normally distibuted random variable with $X \sim \mathcal{N}(4,2)$. Is $Y=3 X+2$ normally distributed? Compute $E[Y]$ and $\operatorname{Var}(Y)$.
10. Let X_{1}, X_{2} be independent normally distibuted random variables, with $X_{1} \sim \mathcal{N}(0,2)$ and $X_{2} \sim \mathcal{N}(1,3)$. Is $X_{1}+X_{2}$ normally distributed? Compute its expected value and variance.
11. We know that if $X \sim \mathcal{N}(0,1)$, then $P(X<1.644854)=0.95$ (approximately). Let $Y=3 X+2$. For which value $\alpha, P(Y<\alpha)=0.95$?
12. The IQs of students of a high school are normally distributed with expected value equal 125 and standard deviation equal to 10 . What is the minimum IQ of the top 0.05 ? And the maximum IQ of the lowest 0.05 ?

