Fourth set of exercises:
 χ^{2} tests.

1. We casted a 6 sided die and got the following results:

1	2	3	4	5	6
32	28	20	10	50	30

Is the die fair? $(\alpha=0.05)$.
2. We performed an opinion poll about which Soda brands is preferred among the students. We got the following results:

Cola Loca	Pipse Cola	Jalisco Rico Cola	Itchy Cola
130	140	230	50

We wonder if the proportions of preference is $2 / 2 / 4 / 1$. Is this true? $(\alpha=0.05)$.
3. We refined the previous poll, taking into account the ages. We got the following results:

	Cola Loca	Pipse Cola	Jalisco Rico Cola	Itchy Cola
<35	80	90	185	12
≥ 35	50	50	45	38

Is it true that the preference is independent of the age? $(\alpha=0.05)$.
4. The following table represents the number of bike accidents in Uppsala in 2013. The data is sorted by age group and gender:

	Male	Female
$14-18$	3250	4321
$19-30$	2241	1441
$31-65$	3245	3753
>65	532	212

Are the gender and age associated (independent)? $(\alpha=0.05)$.
5. Students from a high school where asked about their ice-cream preferences. From this poll we got the following data:

	Chocolate	Vanilla	Berries
$12-14$	234	512	123
$14-16$	112	243	78
$16-18$	80	212	324

Is the preference of the students homogeneous with respect to their age? $(\alpha=0.05)$.

