Fifth set of exercises: Correlation and linear regression.

1. Compute the covariance and the correlation coefficient of the following paired sample:

-0.53	-2.08	-0.98	-0.28	-1.20
-2.63	-6.41	-0.77	-1.93	-3.67

Plot these points.

2. Compute the covariance and the correlation coefficient of the following paired sample:

	0.46			
3.30	0.22	0.33	1.34	1.05

Plot these points.

- 3. Compute the z-points of the previous two exercises. Also, plot them.
- 4. Compute the coefficients of the linear regression, and the coefficient of determination, of the following table:

0.790.240.010.730.922.591.491.022.462.86

- 5. Can we accept that the points in the second exercise are uncorrelated? (Use $\alpha = 0.05$). And what about the points in the first exercise?
- 6. Compute a confidence interval for the correlation coefficient for the data in the second exercise.
- 7. Compute confidence intervals for the coefficients of the linear regression done in the fourth exercise.
- 8. Some theoretical reasons suggest that the data in the second exercise could satisfy a formula of the type

$$Y = a \cdot X^2 + b + \epsilon,$$

where ϵ is an unknown random variable with zero mean (noise/error). Compute the coefficients a, b and also their confidence intervals.