Allowed aids: writing material. For the grades 3, 4 and 5 one should obtain at least 18, 25 and 32 points, respectively. Solutions should be accompained with explanatory text.

1. (6p) Consider the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}+\sin (\varepsilon) y=0 \\
y(0)=1
\end{array}\right.
$$

Compute the first three terms of the Taylor expansion

$$
y(t ; \varepsilon)=y_{0}(t)+\varepsilon y_{1}(t)+\varepsilon^{2} y_{2}(t)+\text { h.o.t., }
$$

centered at $\varepsilon=0$.
2. (6p) Consider the equation

$$
\sin \left(\varepsilon x^{4}+x-1\right)=0
$$

When $\varepsilon=0, x_{0}=1$ is a solution. Compute the first three terms of the Taylor expansion

$$
x(\varepsilon)=x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\text { h.o.t., }
$$

centered at $\varepsilon=0$, with $x(0)=1$.
3. (6p) Determine all equilibrium points (a.k.a. stationary solutions) of the system

$$
\left\{\begin{array}{l}
x^{\prime}=x^{2}+y \\
y^{\prime}=2 x
\end{array}\right.
$$

Determine if they are asymptotically stable.
4. (6p) Find all solutions of the PDE

$$
u_{t x}=1
$$

that satisfy $u(x, 0)=\cos (x)$ and $u(0, t)=\sin (t)+1$.
5. (6p) Find all extremal solutions of the functional

$$
\mathcal{J}(y)=\int_{0}^{1}\left(y(x)+y^{\prime}(x)\right)^{2}+y(x)^{2} d x
$$

where y is twice-differentiable and subject to the boundary conditions $y(0)=0$ and $y(1)=0$. Is any of these extremals a global minimum? (A global minimum y_{*} is a function such that for all other functions $\left.y, \mathcal{J}(y) \geq \mathcal{J}\left(y_{*}\right)\right)$.
6. (5p) Solve the Volterra equation

$$
u(y)=1+5 \int_{0}^{y} u(s) d s, 0 \leq y \leq 1
$$

7. (5p) Consider the Fredholm equation

$$
u(y)=1+\varepsilon \int_{0}^{1} u(s) d s, 0 \leq y \leq 1
$$

When $\varepsilon=0$, a solution is $u_{0}(y)=1$. Find the first three terms of the Taylor expansion

$$
u(y ; \varepsilon)=u_{0}(y)+\varepsilon u_{1}(y)+\varepsilon^{2} u_{2}(y)+\text { h.o.t. }
$$

of the solution.

May the Math be with you.

