FINAL EXAMINATION

1MA208 Ordinary Differential Equations II

Code/Name:

Problem 1. (Continuity of solutions)
Suppose that f : R xR +— R and g : R x R — R are continuous and each are Lipschitz
with respect to the second argument.

Suppose that x(t) is the global solution to 2’ = f(t,z), x(t9) = a, and y(t) is the
global solution to ¢y = g(t,y), y(to) =b.

1) If f(t,p) < g(t,p) for every (t,p) € R? and a < b, show that z(t) < y(t) for every
t > 1.

2) If f(t,p) < g(t,p) for every (t,p) € R? and a < b, show that z(t) < y(t) for every
t >t

Problem 2. (Hartman-Grobman and conjugacies)
Let a and b be distinct constants and consider the equations ' = ax and ' = bx for
x € R. Under what conditions on a and b does their exist a topological conjugacy h
taking solutions of one equation to solution of the other?

Let f(x) = az, g(x) = bx. The equation for the topological conjugacy

o1 (h(x)) = h(9](x)),  ¢f(x) =ae™, ¢](z) =z

tells us that
h(z)e™ = h(ze®).

Try a power function h(zx) = Clz|",r > 0 (we want this to be defined for both
positive and negative x, that is why x comes with the absolute values sign):

Clz|"e™ = Clz|"e™) = r = a/b.
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However, for a fixed C, h(x) is not a topological conjugacy (it is not injective). But
we do not need to fix C: choose C' =1 for z > 0, C =0 for x = 0 and C' = —1 for

x <0, i.e., take
h(z) = {Jﬁ'xﬂ‘l’f #0
x = 0.

This is a conjugating homeomorphism if a/b > 0.

Problem 3. (Limit sets, Stability)
Consider the system

(1) = y(t),

10) = sin? (s ) lt) = (),

1) Show that the origin is a fized point. Is it stable or unstable?

We have

at the origin, while
hence

and ¢y = 0 at the origin.

2) Show that the circles x(t)? + y(t)* = L, for integer n > 1, are periodic orbits.

and at 72 = 1/n,

At the same time
Z'(t) =y(t) = r'(t)cos(6(t)) — r(t)sin(6(¢))0'(t) = r(t) sin(t),
y'(t) = —x(t) = r'(t)sin(0(t)) + r(t) cos(0(t))0' (t) = —r(t) cos(t),



multiplying the first equation by sin, the second by cos and subtracting:
r(t)d'(t) = —r(t) = 6'(t) = —1,if r #0,

and the system has no equilibria other than the origin. Hence, every level set
r? = 1/n is a closed orbit (of period 27).

3) Draw the phase portrait.

Trajectories spiral clockwise from {r? =1/(n + 1)} to {r? =1/n}, n € N.

4) Determine all o and w-limit sets.

The origin is the w/a-limit set of itself only, since any trajectory with a non-zero
initial condition will be separated from the origin by an invariant curve {r? = 1/n}
for some n € N.

Circles {r? = 1/n} are w-limit sets of points in {1/(n +1) < r* < 1/n}, n € N,
and a-limit sets of points {1/n < r? < 1/(n — 1)}, n € N (here, by convention,
1/0 = oo: this happens for n = 1).

Problem 4. (Poincaré-Bendixson, Limit cycles)
Consider the system

2 (t) = —y(t) +x(t) (1 —x(t)* —y(t)?),
y'(t) = z(t) +y(t) (1 —xz(t)* — y(t)?).

2) Prove that all trajectories eventually enter the region r < C' for some constant C'.

rr’ = xx’ +yy = r?(1 —r?),

For all r > 1, ' = r(1 — r?) < 0. Hence, given any C' > 1, any trajectory with
r(0) > C enters {r < C'}.



3) Use the Poincaré-Bendizson theorem to prove that the system has a limit cycle.

The origin is unstable: for small g, r(t) = roe’ +O(r2), hence there is an open disk
D, of radius ¢, such that ¢, (R?\ D.) C R?\ D..

Let A ={(z,y) € R:e <r < C}. Thisis an invariant compact set, thus it contains
an equilibrium or a closed orbit by Corollary 2 of PB. We now verify that the only
equilibrium of the system is at zero: suppose r is non-zero (we can divide by it),
then

vy —ya' =r* = r®(cos(0(t))*0'(t) +sin(6(1))%0' (1)) =r* = () = 1.

Thus the angular projection of the vector field is never 0 if r # 0.

By Corollary 2 of PB, there is a closed orbit in A.

One of these orbits is at » = 1 (this is the only one, but we will not prove that),
and since 7' < 0 for » > 1 and ' > 0 for r < 1, this orbit is a double-sided w-limit
cycle.

Problem 4. (Lyapunov function)
Consider the system

¥ =xz(a+bx + cy),
y' =y(d+ex+ fy).
Suppose that this “two species Lotka-Volterra” system has a unique equilibrium point

(z*,y*) in the first quadrant R%,. Thus bf — ce # 0.
Show that

L(z,y) :oz(x—x* (1—1n%)> +6(y—y* (1—11%)),

is a Lyapunov function for the system with an appropriate choice of a > 0 and > 0.

Find the conditions on a,b,c,d,e, f so that the equilibrium would be asymptotically
stable.

L(z*,y*) = 0 and L(z,y) > 0 for all (z,y) # (2, y*) (proved by using the fact that
In(t) <t — 1 for all positive t # 1).
Moreover, in the first quadrant

L= Lo(x,y)2’ + Ly(x,y)y =

*

:a(1—§>x(a+bx+cy)+ﬁ(1—‘%)y(d—|—e:c+fy)
—afr— 7] (a+bo+ey) + Bly—y] (d+ ex + ).
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Subtract in the first parenthesis a + bz* + cy* = 0 and d + ex* + fy* = 0, and rename
x—ax* =& y—y*=mn. Then

L = a€(bé+cn)+B(eé+ fn) = ab&®+Bfn+(act+Be)én = [§ 1) [: ch] {g 2} m '

Denote A = [: ﬂ, D = [g g] The transpose of a scalar is the scalar itself:

L=[¢ nA™D [f]} =[¢ nDTA [ﬂ, therefore, ATD = DA and
~ 1
L=3l¢ (A"D + D" A) m :

Hence if we can choose the parameters b, ¢, d, e such that the symmetric matrix
ATD + DA is negative definite, we will have L < 0 with equality if and only if
(&,n) =(0,0), i.e. x =2a"y=y* Therefore we require that

2bac cf + ex
cf + ea Qfﬁ}

has negative eigenvalues. This is the case if trace(M) < 0 and det(M) > 0. That is

M:ATD+DA:[

ba+ fB <0, 4fbaf— (cB+ ea)? > 0.



