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FINAL EXAMINATION

1MA208 Ordinary Differential Equations II

Due March 20, 2017

Name:

45% to 62% of the maximum point total - 3

62% to 80% of the maximum point total - 4

≥ 80% of the maximum point total - 5

Problem 1. (Picard-Lindelöf Theorem). 10 points

a) Consider the equation

y′(x) =
−xy(x)

ln(y(x))
.

- Where in R is the vector field a Lipschitz continuous function?

- For which initial conditions and for which x-intervals the IVP has a unique solution?

- Solve the IVP y(0) = e2. Does it have a unique solution, for which x?

b) Derive several first terms in the Taylor series for sin 2t by applying Picard’s iterations

to the first-order system corresponding to the second-order initial value problem

x′′ = −4x, x(0) = 0, x′(0) = 2.

Problem 2. (Dependence on the initial conditions), 9 points

a) Let F (x, t) be a continuous non-autonomous vector field on Rn × R that satisfies

‖F (x, t)− F (y, t)‖ ≤ L(t)‖x− y‖.

Show that the solution φt(x0) of

x′ = F, x(0) = x0
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satisfies

‖φt(x0)− φt(y0)‖ ≤ ‖x0 − y0‖e|
∫ t
0 L(s)ds|.

b) Suppose that F (x, t) is a continuous non-autonomous vector field on R×R which is

continuously differentiable in x. Show that we have

∂φt(x)

∂x
= exp

(∫ t

0

F1(φs(x), s)ds

)
,

where F1(x, t) := ∂F (x,t)
∂x

,

Remark: This expression shows how quickly the solution for a smooth vector field

in the 1D case (n=1) changes as the initial condition is changed.

Problem 3. (Linearization. Bifurcations). 10 points

Consider the system

x′(t) = x(t)2 + y(t),

y′(t) = x(t)− y(t) + a,

where a is a real parameter.

a) Find all equilibrium points and compute the linearized equation at each.

b) Describe the behaviour of the linearized system at each equilibrium point.

c) Describe any bifurcation that occur.

Problem 4. (Lyapunov function). 10 points

Consider the system

x′(t) = (εx(t) + 2y(t))(z(t) + 1),

y′(t) = (−x(t) + εy(t))(z(t) + 1),

z′(t) = − z3(t).

a) Show that the origin is not asymptotically stable when ε = 0.

b) Construct a Lyapunov function and show that when ε < 0, the basin of attraction of

the origin contains the region z > −1.
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Problem 5. (Poincare-Bendixson Theorem), problem 8 page 223 in HSD, 10

points

Let A be an annular region in R2 (Fig. 10.12). Let F be a planar vector field in

R2 that points inward along the two boundary curves in A. Suppose that F has no

equilibria.

a) Prove that A contains a closed orbit.

b) If there are exactly seven closed orbits in A, show that one of them has orbits spiraling

toward it from both sides.

Problem 6. (Limit cycles), 10 points

Consider the system

r′(t) = µr(t) + ar(t)3,

θ′(t) = ω + br(t)2.

a) For which values of parameters µ, a and b there is a periodic orbit?

b) Suppose a < 0 is fixed. For which values of µ there is a periodic orbit? For which

there is none? Is the periodic orbit an ω- or an α-limit cycles? What happens to the

equilibrium at the origin at the critical value of µ? (This is the so called supercritical

Poincaré-Andronov-Hopf bifurcation)

c) Suppose a > 0 is fixed. Answer the same questions. (This is the so called subrcritical

Poincaré-Andronov-Hopf bifurcation)

Problem 7. (Lorenz attractor), problems 14.1 and 14.8 in HSD, pages 325-

326, 15 points

a) Consider the non-zero equilibria Q± of the Lorenz flow. Linearize the flow at those

points, and consider the linear stability of Q±. For which values of parameters are they

stable, for which are they unstable?

b) Consider the system

x′(t) = − 3x(t),

y′(t) = 2y(t),

z′(t) = − z(t),
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Let R1 to be a piece of of the upper face of the unit box in R3, that is R1 is given

by |x| ≤ 1, 0 < y ≤ 1 and z = 1.

Let R2 to be a piece of of the right face of the unit box in R3, that is R2 is given

by |x| ≤ 1, 0 < z ≤ 1 and y = 1.

Consider the “flow map” h that takes a point from R1 to R2. Show that it is given

by

(x̃, z̃) = h(x, y) = (xy
3
2 , y

1
2 ).

c) Consider a map Φ on a rectangle R as shown in Fig. 14.13, where Φ has similar

properties to the model Lorenz map. How many periodic points of period n does Φ

have?

(Hint: use the Schauder fixed-point theorem: Let C be a nonempty closed convex

subset of a Banach space V , if f : C 7→ C is continuous with a compact image, then f

has a fixed point.)


