
CHAPTER 2

The Cauchy-Kovalevskaya Theorem

We shall start with a discussion of the only “general theorem” which
can be extended from the theory of ODE’s, the Cauchy-Kovalevskaya The-
orem, as it allows to introduce the notion of principal symbol and non-
characteristic data and it is important to see from the start why analyticity
is not the proper regularity for studying PDE’s most of the time.

1. The Cauchy-Kovalevskaya theorem for ODE’s

1.1. Scalar ODE’s. As a warm up we will start with the correspond-
ing result for ordinary di↵erential equations.

Theorem 1.1 (ODE Version of Cauchy–Kovalevskaya, I). Suppose a >
0 and F : (a, a) ! R is real analytic near 0 and u(t) is the unique solution
to the ODE

(1.1)
d

dt
u(t) = F (u(t)) with u(0) = 0.

Then u is also real analytic near 0.

We will give four proofs. However it is the last proof that the reader
should focus on for understanding the PDE version of Theorem 3.1. Observe
that the existence and uniqueness of solutions is granted by Picard-Lindelöf
theorem. However existence and uniqueness arguments could be devised
using the arguments below as well. Observe also that it is enough to show
the regularity in a neighbourhood of 0, even small, as then the argument can
be performed again around any point where u is defined and F is analytic.

Proof 1 of Theorem 1.1. We follow here the same strategy as for
solving an ODE by “separation of variables”. If F (0) = 0 then the solution
is u = 0 which is clearly analytic and we are done. Assume F (0) 6= 0, then
let us define the new function

G(y) =

ˆ y

0

1

F (x)
dx, y 2 (�a0, a0) ⇢ (�a, a)

which is again real analytic in a neighbourhood of 0. Then we have by the
chain rule in the (possibly smaller) neighbourhood where u is defined and

29



30 2. THE CAUCHY-KOVALEVSKAYA THEOREM

G is analytic:

d

dt
G(u(t)) =

u̇(t)

F (u(t))
= 1

which implies, together with G(u(0)) = G(0) = 0, that G(u(t)) = t. Then
u(t) = G�1(t) is analytic near 0 as G0(0) = 1/F (0) 6= 0. ⇤

Proof 2 of Theorem 1.1. Let us consider, for z 2 CC, the solution
uz(t) to

(1.2) u̇z(t) = zF (uz(t)).

Observe that if u is analytic, it extends to neighbourhood in the complex
plane, and satisfies there the equation (1.2). One can show by calculations
that for any solution to (1.2) one has

@

@t

@uz(t)

@z̄
= zf 0(uz(t))

@uz(t)

@z̄

which implies, together with the initial condition uz(0) = 0, that @uz(t)/@z̄ =
0 in the t-neighbourhood of 0, which are the Cauchy-Riemann equations.
Let us recall the notation

@

@z
=

1

2

✓
@

@x
� i

@

@y

◆
,

@

@z
=

1

2

✓
@

@x
+ i

@

@y

◆
.

One then construct by Picard-Lindelöf a solution to (1.2) on a neighbour-
hood |t|  " and |z|  2 (the Lipshitz influences the size of the neighbour-
hood), and since z 7! uz(t) satisfies the Cauchy-Riemann equations in this
neighbourhood we deduce

u1(t) =
1X

n=0

1n

n!

✓
@nuz(t)

@zn

◆ ���
z=0

.

Now we use that for z 2 R real we always have u(t) = u(zt), which implies
that ✓

@nuz(t)

@zn

◆ ���
z=0

=

✓
@nu(zt)

@zn

◆ ���
z=0

= tnu(n)(0)

which yields

u(t) = u1(t) =
1X

n=0

tn

n!
u(n)(0)

and shows the real analyticity of u. ⇤
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Proof 3 of Theorem 1.1. This proof is left as an exercise: go back
to the proof of Picard-Lindelöf theorem by fixed-point argument, and re-
place the real variable by a complex variable and the real integral by a
complex path integral:

un+1(z) =

ˆ z

0

F (un(z
0)) dz0 =

ˆ 1

0

F (un(zt))z dt

and show that the contraction property and the fixed point can be per-
formed in the space of holomorphic functions. ⇤

Proof 4 of Theorem 1.1. This is the most important proof, as it
is the historic proof of A. Cauchy (improved by S. Kovalevskaya) but also
because it is beautiful and this is the proof we shall use in a PDE context.
This is called the “method of majorants”. Let us do first an a priori exam-
ination of the problem, assuming the analyticity (actually here it could be
justified by using Picard-Lindelöf to contruct solutions, and then check by
boostrap that this solution is C1). Then we compute the derivatives

8
>><

>>:

u(1)(t) = F (0)(u(t)),

u(2)(t) = F (1)(u(t))u(1)(t) = F (1)(u(t))f (0)(u(t)),

u(3)(t) = F (2)(u(t))f(u(t))2 + F (1)(u(t))2F (u(t)) . . .

Remark 1.2. The calculation of these polynomials is connected to a
formula devised in the 19th century by L. Arbogast in France and Faà di
Bruno in Italy. It is now known as Faà di Bruno’s formula and it is good
to keep it in one’s analytic toolbox:

dn

dtn
F (u(t)) =

X

m1+2m2+···+nmn=n

n!

m1!1!m1m2!2!m2 . . .mnn!mn
F (m1+···+mn)(u(t))

nY

j=1

�
u(j)(t)

�mj
.

Now the key observation is that there are universal (in the sense of being
independent of the function F ) polynomials pn with non-negative integer
coe�cients, so that

u(n)(t) = pn
�
F (0)(u(t)), . . . , F (n�1)(u(t))

�
.

We deduce by monotonicity

|u(n)(0)|  pn
�|F (0)(0)|, . . . , |F (n�1)(0)|�  pn

�
G(0)(0), . . . , G(n�1)(0)

�
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for any function G with non-negative derivatives at zero and such that
G(n)(0) � |f (n)(0)| for all n � 0. Such a function is called a majorant
function of F .

But for such a function G the RHS in the previous equation is exactly

pn
�
G(0)(0), . . . , G(n�1)(0)

�
= v(n)(0) = |v(n)(0)|

where v solves the auxiliary equation

d

dt
v(t) = G(v(t)).

Hence if v is analytic near zero, the series

Sv(t) :=
X

n�0

v(n)(0)
tn

n!

has a positive radius of convergence and by comparison so does the series

Su(t) :=
X

n�0

|u(n)(0)| t
n

n!
,

which shows the analyticity near zero and concludes the proof.
We finally need to construct the majorant function G. We use the

analyticity of F to deduce readily (comparing series. . . )

8n � 0, |F (n)(0)|  C
n!

rn

uniformly in n � 0, for some some constant C > 0 and some r > 0 smaller
than the radius of convergence of the series, and we then consider

G(z) := C
1X

n=0

⇣z
r

⌘n
= C

1

1� z/r
=

Cr

r � z

which is analytic on the ball centred at zero with radius r > 0. Since
G(n)(0) = Cn!/rn we have clearly the majoration G(n)(0) � |f (n)(0)| for all
n � 0.

To conclude the proof we need finally to compute the solution v to the
auxiliary equation

d

dt
v(t) = G(v(t)) =

Cr

r � v(t)
, v(0) = 0,

which can be solved by usual real di↵erential calculus, using separation of
variables:

(r�v) dv = Cr dt =) � d(r�v)2 = Cr dt =) v(t) = r±r

r
1� 2Ct

r
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and using the initial condition v(0) = 0 one finally finds

v(t) = r � r

r
1� 2Ct

r

which is analytic for |t|  r/(2C). This hence shows that the radius of
convergence of Sv(t) is positive, which concludes the proof. ⇤

Observe the profound idea in this last proof: instead of coping with
the combinatorial explosion in the calculation of the derivatives (due to the
nonlinearity), one uses a monotonicity property encoded in the abstract
structure, reduce the control to be established to a comparison with a sim-
pler function, and then go back to the equation without computing the
derivatives anymore.

1.2. Systems of ODE’s. We now consider the extension of this the-
orem to systems of di↵erential equations.

Theorem 1.3 (ODE Version of Cauchy–Kovalevskaya, II). Suppose a >
0 and F : (a, a)m ! Rm, m 2 N, is real analytic near 0 2 (�a, a)m and
u(t) is the unique solution to the ODE

(1.3)
d

dt
u(t) = F(u(t)) with u(0) = 0.

Then u is also real analytic near 0.

Proofs of Theorem 1.3. All but the first proof of Theorem 1.1 can
be adapted to cover this case of systems.

Exercise 10. Extend the proofs 2 and 3 to this case.

Let us give some more comments-exercises on the extension of the last
proof, the method of majorants.

Exercise 11. Suppose F : (�a, a)m ! Rm is real analytic near 0 2
(�a, a)m, prove that a majorant function is provided by

G(z1, . . . , zm) := (G1, . . . , Gm), G1 = · · · = Gm =
Cr

r � z1 � · · ·� zm

for well-chosen values of the constants r, C > 0.

With this auxiliary result at hand, check that one can reduce the proof
to proving the local analyticity of the solution to the system of ODE:

d

dt
v(t) = G(v(t)), v(t) = (v1(t), . . . , vm(t)), v(0) = 0.



34 2. THE CAUCHY-KOVALEVSKAYA THEOREM

Exercise 12. Prove that by symmetry one has vj(t) = v1(t) =: w(t)
for all 1  j  m, and that w(t) solves the scalar ODE

d

dt
w(t) =

Cr

r �mw(t)
, w(0) = 0

so that w(t) = (r/m)(1�p1� 2Cdt/r).

With the two last results it is easy to conclude the proof. ⇤

2. The analytic Cauchy problem in PDE’s

We consider a k-th order scalar quasilinear PDE1

(2.1)X

|↵|=k

a↵(rk�1u, . . . , u, x)@↵xu+ a0(rk�1u, . . . , u, x) = 0, x 2 U ⇢ R`

where
rlu :=

⇣
@xi1

. . . @xil
u
⌘

1i1,...,il`
, l 2 N,

is the l-th iterated gradient, and

@↵x := @↵1
x1

. . . @↵`
x`

for a multi-index ↵ = (↵1, . . . ,↵`) 2 N`, and U is some open region in R`

(` � 2 is the number of variables), and u : U ! R.

Remark 2.1. The word “quasilinear” relates to the fact that the coe�-
cient of the highest-order derivatives only depend on derivatives with strictly
lower order. The equation would be semilinear if a↵ = a↵(x) does not de-
pend on u and the nonlinearity is only in a0. The equation is linear when
of course both a↵ and a0 do not depend on u, and it is a constant coe�cient
linear equation when a↵ and a0 do not depend on x either.

We consider a smooth (`� 1)-dimensional hypersurface � in U , equiped
with a smooth unit normal vector n(x) = (n1(x), . . . , n`(x)) for x 2 �. We
then define the j-th normal derivative of u at x 2 �

@ju

@nj
:=
X

|↵|=j

n↵@↵xu =
X

↵1+...↵`=j

@ju

@x↵1
1 . . . @x↵`

`

n↵1
1 . . . n↵`

` .

1Actually when k = 1 (first order) another simpler proof than the one we shall do
here can be performed by the so-called characteristics method. This method can be
understood as the natural extension of the ODE arguments in proofs 1-2-3 above using
trajectories for the PDE. However this method fails for systems, and therefore is unable
to treat k-th order PDE’s as we shall see, which justifies the need for a more general
proof.
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Now let g0, . . . , gk�1 : � ! R be k given functions on �. The Cauchy
problem is then to find a function u solving (2.1), subject to the boundary
conditions

(2.2) u = g0,
@u

@n
= g1, . . . ,

@k�1u

@nk�1
= gk�1, x 2 �.

We say that the equation (2.2) prescribes the Cauchy data g0, . . . , gk�1 on
�.

If one wants to compute an entire series for the solution, certainly all the
derivatives have to be determined from equations (2.1)-(2.2). In particular
all partial derivatives of u on � should be computed from the boundary
data (2.2). The basic question is now: what kind of conditions do we need
on � in order to so?

2.1. The case of a flat boundary. In order to gain intuition into
the problem, we first examine the case where U = R` and � = {x` = 0}
is a vector hyperplan. We hence have n = e` (the `-th unit vector of the
canonical basis) and the boundary prescriptions (2.2) read

u = g0,
@u

@x`

= g1, . . . ,
@k�1u

@xk�1
`

= gk�1, x 2 �.

Which further partial derivatives can we compute on the hyperplan �? First
since u = g0 on � by di↵erentiating tangentially we get that

@u

@xi

=
@g0
@xi

, 1  i  `� 1

is prescribed by the boundary data. Since we also know from (2.2) that

@u

@x`

= g1

we can determine the full gradient on �. Similarly we can calculate induc-
tively

@↵

@x↵

@ju

@xj
`

=
@↵

@x↵
gj, ↵ = (↵1, . . . ,↵`�1, 0), |↵i|  k � 1, 0  j  k � 1.

Remark that actually the ↵i in the previous equation could be taken in N.
The di�culty now, in order to compute the k-th derivative, is to compute
the k-th order normal derivative

@ku

@xk
`
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We now shall use the PDE in order to overcome this obstacle. Observe that
if the coe�cient a↵ with ↵ = (0, . . . , 0, k) is non-zero on �:

A(x) := a(0,...,0,k)(rk�1u, . . . , u, x)

= Function(gk�1(x), gk�2(x), . . . , g0(x), x) 6= 0, x 2 �,
(observe that it only depends on the boundary data) then we can compute
for x 2 �

@ku

@xk
`

= � 1

A(x)

2

4
X

|↵|=k, ↵`k�1

a↵(rk�1u, . . . , u, x)@↵xu+ a0(D
k�1u, . . . , u, x)

3

5

where the coe�cients in the RHS again only depend on the boundary data
by the previous calculations, and consequently we can therefore compute
rku on �.

We say therefore that the surface � = {x` = 0} is non-characteristics
for the PDE (2.1) if the function A(x) = a(0,...,0,k) never cancels on �.

Now the question is: can we calculate still higher derivatives on �,
assuming of course this non-degeneracy condition? The answer is yes, here
is a concise inductive way of iterating the argument:

Let us denote

gk(x) :=
@ku

@xk
`

= � 1

A(x)

2

4
X

|↵|=k, ↵`k�1

a↵@
↵
xu+ a0

3

5 , x 2 �,

as computed before. We now di↵erentiate the equation along x` (we al-
ready know how to compute all the derivatives along the other coordinates,
provided we have less than k derivatives along x`), which results into a new
equation
X

|↵|=k

a↵(rk�1u, . . . , u, x)@↵x@x`
u+ ã0(rku, . . . , u, x) = 0, x 2 U ⇢ R`,

which results following the same argument into

@k+1u

@xk+1
`

= � 1

A(x)

2

4
X

|↵|=k, ↵`k�1

a↵(rk�1u, . . . , u, x)@↵x@x`
u+ ã0(rku, . . . , u, x)

3

5

(observe that the RHS only involves derivatives in x` of order less than k),
which allows to calculate the k+1-derivative in x` from the boundary data.
One can then continue inductively and calculate all derivatives.
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2.2. General surfaces. We shall now generalize the results and def-
initions above to the general case, when � is a smooth hypersurface with
normal vector field n.

Definition 2.2. We say that the surface � is non-characteristic for the
PDE (2.1) if

A(x) :=
X

|↵|=k

a↵n
↵ 6= 0, x 2 �

(where the RHS only depends on the boundary data).

Let us prove the theorem corresponding the calculation of the partial
derivatives

Theorem 2.3 (Cauchy data and non-characteristic surfaces). Assume
that � is C12 and non-characteristic for the PDE (2.1). Then if u is a C1

solution to (2.1) with the boundary data (2.2), we can uniquely compute all
the partial derivatives of u on � in terms of �, the functions g0, . . . , gk�1,
and the coe�cients a↵, a0.

Proof of Theorem 2.3. We consider a base point x 2 �, and using
the smoothness of the � we find C1 maps �, defined on open sets of R`

to R` so that

�(� \ B(x, r)) = ⇥ ⇢ {y` = 0}, �(x) = y,  = ��1

for some r > 0, where ⇥ is the new Cauchy surface in the new coordinates,
and with the property

@ 

@y`
(y) = �(y)n(y) and n = n(y1, . . . , y`�1) does not depend on y`,

for some �(y) 6= 0 on ⇥: this means for instance that

 (ȳ, y`) =  ̄(ȳ) + y`n(ȳ) with ȳ = (y1, . . . , y`�1) and  ̄(ȳ) 2 �.
Then we define

v(y) := u( (y))

and it is a straightforward calculation to show that v satisfies a new equation
of the form

(2.3)
X

|↵|=k

b↵(rk�1
y v, . . . , v, y)@↵y v + b0(rk�1

y u, . . . , u, y) = 0, y 2 V ⇢ R`

2This means defined by a C1 function.
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Figure 1. Local rectification of the flow.

for some open set V ⇢ R`. The new boundary data are
8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

v(y) = g0( (y)) =: h0(y),

@v

@y`
(y) = (rxu)( (y))

@ 

@y`
(y)

= � (y)
@u

@n
( (y)) = � (y)g1( (y)) =: h1(y),

@2v

@y2`
(y) = (r2

xu)( (y)) :

✓
@ 

@y`
(y)

◆⌦2

+
@� 
@y`

g1( (y))

= � (y)
2 @

2u

@n2
( (y)) +

@� 
@y`

g1( (y))

= � (y)
2g2( (y)) +

@� 
@y`

g1( (y)) =: h2(y)

@3v

@y3`
(y) = · · · =: h3(y)

.

.

.

@k�1v

@yk�1
`

(y) = · · · =: hk�1(y)
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and one checks by induction that they can be computed only in terms of
the boundary conditions.

Then we have again the non-characteristic property in the new coordi-
nates on the new Cauchy surface

b(0,...,0,k)(rk�1
y v, . . . , v, y) 6= 0, y 2 ⇥ = V \ {y` = 0}.

Indeed we calculate for ↵ = (0, . . . , 0, k) that

@↵u

@x↵
(x) =

@kv

@yk`
(y) (r�(x))↵ + lower-order terms

where the lower-order terms only involve partial derivatives with order less
than k � 1 in y`. We hence deduce that

b(0,...,0,k)(rk�1
y v, . . . , v, y) =

X

|↵|=k

a↵(rk�1
x u, . . . , u, x)n↵ = A( (y)) 6= 0.

Exercise 13. Check the previous calculation.

Then using the previous case of a flat boundary it concludes the proof.
⇤

3. The Cauchy-Kovalevskaya Theorem for PDE’s

We shall now prove the following result:

Theorem 3.1 (Cauchy-Kovalevakaya Theorem for PDE’s). Under ana-
lyticity assumptions on all coe�cients, and the non-characteristic condition,
there is a unique local analytic solution u to the equations (2.1)-(2.2).

This result was first proved by A. Cauchy in 1842 on first order quasi-
linear evolution equations, and formulated in its most general form by S.
Kovalevskaya in 1874. At about the same time, G. Darboux also reached
similar results, although with less generality than Kovalevskaya’s work.
Both Kovalevskaya’s and Darboux’s papers were published in 1875, and
the proof was later simplified by E. Goursat in his influential calculus texts
around 1900. Nowadays these results are collectively known as the Cauchy-
Kovalevskaya Theorem.
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3.1. Reduction to a first-order system with flat boundary. We
now consider an analytic3 Cauchy surface � and the PDE (2.1) with bound-
ary data (2.2), where all the coe�cients a↵, a0, g0, . . . , gk�1 are analytic in
all their variable.4

- First, upon flattening out the boundary by an analytic mapping, we
can reduce to the situation that � = {x` = 0}.

- Second, upon dividing properly by a(0,...,0,k) locally around �, we can
assume that a(0,...,0,k) = 1 by changing the coe�cients to new (still analytic)
coe�cients.

- Third, by substracting o↵ appropriate analytic functions, we may as-
sume that the Cauchy are identically zero.

- Fourth, we transform the equation to a first-order system by defining

u :=

✓
u,

@u

@x1
, . . . ,

@u

@x`

,
@2u

@xi@xj

, . . .

◆

where the vector includes all partial derivatives with total order less than
k � 1. Let m denotes the number of components of this vector. It results
into the following system with boundary conditions

(3.1)

8
>><

>>:

@u

@x`

=
`�1X

j=1

bj(u, x
0)
@u

@xj

+ b0(u, x
0), x 2 U

u = 0 on �,

with matrix-valued functions bj : Rm ⇥ R`�1 7! Mm⇥m and vector-valued
function b0 : Rm⇥R`�1 7! Rm which are locally analytic around (0, 0), and
where x0 = (x1, . . . , x`�1). Observe that we have assume that the coe�cients
bj, j = 0, . . . , ` � 1, do not depend on x`. This can obtained by adding a
further component um+1 = x` if necessary.

Remark 3.2. Observe that the reduction in this subsection uses cru-
cially the non-characteristic condition. It means at a physical level that
we have been able to use one of the variables as a time variable in or-
der to reframe the problem as an evolution problem. However finding a
non-characteristic Cauchy surface to start with can be di�cult, this is for
instance one of the issues in solving the Einstein equations in general rela-
tivity, as in the Choquet-Bruhat Theorem.

3In the sense of being implicitly defined by an analytic function, or equivalently
locally rectifiable with analytic maps.

4Let us recall that for a real function of several variables, this means to be locally
equal to the Taylor series in all the variables.
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3.2. The proof in the reduced case. We now consider a base point
on �, say 0 w.l.o.g., and, as in the ODE case, we calculate the partial
derivatives at this point by repeatedly di↵erentiating the equation.

We have first obviously u(0) = 0.
Second by di↵erentiating the boundary data in x0 we get

@↵xu(0) = 0, for any ↵ with ↵` = 0.

Then for ↵ with ↵` = 1 we calculate using the PDE (3.1) (denoting
↵0 = (↵1, . . . ,↵`�1, 0)):

@↵xu =
`�1X

j=1

@↵
0

x

✓
bj(u, x

0)
@u

@xj

◆
+ @↵

0

x b0(u, x
0)

which yields at x = 0 (using the previous step):

@↵xu(0) = 0 +
⇣
@↵

0

x b0(u, x
0)
⌘
��x=0

=
⇣
D↵0

2 b0

⌘
(0, 0)

where D2 means the partial derivatives according the second argument of
b0.

Then for ↵ with ↵` = 2 we calculate again (denoting ↵0 = (↵1, . . . ,↵`�1, 1)):

@↵xu =
`�1X

j=1

@↵
0

x

✓
bj(u, x

0)
@u

@xj

◆
+ @↵

0

x b0(u, x
0)

which yields at x = 0:

@↵xu(0) = · · · = polynomial(@bj(0, 0), @u(0))

where is in the RHS it only involves derivatives of u with ↵`  1, which
then can be expressed in terms of derivatives of bj again.

We can continue the calculation inductively, and prove by induction
that there are universal (independent of u) polynomials with integer non-
negative coe�cients so that

@↵ui

@x↵
= p↵,i(derivatives of b, c . . . ).

We perform then the same argument as for ODE’s with the majorant
function

b⇤
j =

Cr

r � (x1 + . . . x`�1)� (z1 + · · ·+ zm)
M1, j = 1, . . . , `� 1,

where M1 is the m⇥m-matrix with 1 in all entries, and

b⇤
0 =

Cr

r � (x1 + . . . x`�1)� (z1 + · · ·+ zm)
U1
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where U1 is the m-vector with 1 in all entries, resulting in the solution

v =
1

m`
(r � (x1 + · · ·+ x`�1))�

⇥
(r � (x1 + · · ·+ x`�1))

2 � 2m`Crx`

⇤1/2
U1

which yields the analyticity in all variables.
To give a proof of the last sentence we shall decompose several steps,

given in exercises.

Exercise 14. Using the exercise 11 on all entries of bj, j = 0, . . . , `�1
(which depend on m+ `� 1 variables), find C, r > 0 so that

g(z1, . . . , zm, x1, . . . , x`�1) =
Cr

r � (x1 + . . . x`�1)� (z1 + · · ·+ zm)

is a majorant of all these entries.

Exercise 15. Defining b⇤
j = gM1, j = 1, . . . , ` � 1, and b⇤

0 = gU1,
check that the solution v = (v1, . . . , vm) to

8
>><

>>:

@v

@x`

=
`�1X

j=1

b⇤
j(v, x

0)
@u

@xj

+ b⇤
0(v, x

0)

v = 0 on �,

can be searched in the form vl = v1 =: w, l = 1, . . . ,m, and

w = w(x1 + x2 + · · ·+ x`�1, x`) = w(y, x`), y := x1 + · · ·+ x`�1.

Then it reduces the problem to solving the following scalar simple trans-
port equation (relabeling x` = t for conveniency)

(3.2) @tw =
Cr

r � y � �1w
(�2@yw + 1) , w(0, y) = 0, t, y 2 R.

Exercise 16. Show the w defining the solution v to the majorant prob-
lem above satisfies the equation (3.2) with �2 = (`� 1)m and �1 = m.

Finally we can solve the equation (3.2) by the so-called characteristic
method (which we shall study in much more details in the chapter on hy-
perbolic equations). Let us sketch the method in this case: if we can find
y(t) and z(t) solving

8
>><

>>:

y0(t) =
�Cr�2

r � y � �1z
, y(0) = y0,

z0(t) =
Cr

r � y � �1z
, z(0) = z0,
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then if we set z0 = 0 and now define w(t, y) by the implicit formula
w(t, y(t)) = z(t), it solves by the chain-rule

z0(t) = (@tw)(t, y(t)) + y0(t)(@yw)(t, y(t)) =
Cr

r � y(t)� �1z(t)

which writes

(@tw)(t, y(t))� Cr�2
r � y � �1w(t, y(t))

(@yw)(t, y(t)) =
Cr

r � y(t)� �1w(t, y(t))

with the initial data w(0, y0) = z(0) = 0. This is exactly the desired
equation at the point (t, y(t)). Hence as long as the map y0 7! y(t) is
invertible and smooth, we have a solution to the original PDE problem.5

Therefore let us solve locally in time the ODE’s for y(t) and z(t). Since
obviously y0(t) + �2z

0(t) = 0, we deduce the key a priori relation

8 t � 0, y(t) + �2z(t) = y0.

Whe thus replace y(t) in the ODE for z(t):

z0(t) =
Cr

r � y0 + (�2 � �1)z
, z(0) = 0.

Here observe that �2 � �1 (remember that ` � 2). If �1 = �2 then

w(t, y(t)) = z(t) =
Crt

r � y0
, y(t) = y0 � C�2rt

r � y0

which provides analyticity of the solution and concludes the proof. If (�2 �
�1) = (`� 2)m > 0, then

Crt =
1

2

�
(�2 � �1)z(t)

2 + 2(r � y0)z(t)
�

=
1

2

�
(�2 � �1)z(t)

2 + 2(r � y(t))z(t) + 2�2z(t)
2
�

= ��1 + �2
2

z(t)2 + (r � y(t))z(t)

from which we deduce immediately (using z(0) = 0 to decide on the root)

z(t) = w(t, y(t)) =
1

�1 + �2

⇣
(r � y(t))�

p
(r � y(t))2 � 2(�1 + �2)Crt

⌘

which gives

w(t, y) =
1

`m

⇣
(r � y)�

p
(r � y)2 � 2`mCrt

⌘

5The first time where this maps stops being invertible is called a caustic of shock wave
depending on the context, and will be studied in details in the chapter on hyperbolic
equations.
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and concludes the proof.

Exercise 17. Check that the previous formula for w indeed provides a
solution.

4. Examples, counter-examples, and basic classification

4.1. Failure of the Cauchy-Kovalevaskaya Theorem and evolu-
tion problems. If we consider the heat equation with initial conditions
(this counter-example is due to S. Kovalevskaya)

@tu = @2xu, u = u(t, x), (t, x) 2 R2

around the point (0, 0), with the initial condition

u(0, x) = g(x)

we have, in the previous setting, � = {t = 0}, and the normal unit vector in
R2 is simply (1, 0) = e1. The non-characteristic condition writes ak,0 6= 0,
where k is the order of the equation (here k = 2), which is not true here.
Hence the initial value problem for the heat equation is characteristic. This
reflects the fact that the equation cannot be reversed in time, or in other
words, the Cauchy problem is ill-posed for negative times. In particular,
consider the following initial data (considered by S. Kovalevskaya)

g(x) =
1

1 + x2

which are clearly analytic. Then let us search for an analytic solution

u(t, x) =
X

m,n�0

am,n
tm

m!

xn

n!
.

Then the PDE imposes the following relation on the coe�cients

8m,n � 0, am+1,n = am,n+2,

with the initialization

8n � 0, a0,2n+1 = 0, a0,2n = (�1)n(2n)!

We deduce that
8m,n � 0, am,2n+1 = 0

using the inductive relation, and then

8m,n � 0, am,2n = (�1)m+n(2(m+ n))!

Now since
(2(m+ n))!

m!(2n)!
=

(4n)!

n!(2n)!
⇠ Cn1/2�nnn �! +1
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(using the Stirling formula) as m = n ! 1, in a way which cannot be
damped by geometric factors tnx2n, and we deduce that the entire series
defining u has a radius of convergence equal to zero.

In words, what we have exploited in this proof is that the equation im-
plies @kt u = @2kx u for all k 2 N, and the strongest bound on the x-derivatives
for general analytic initial data u(0, x) are of the form cst(2k)!/rk, whereas
on the LHS the t-derivatives should grow at most, in order to recover an-
alyticity, as cstk!/⇢k, and these two things are contradictory. Hence by
equating more spatial derivatives on the right hand side with less deriva-
tives on the left hand side, one generates faster growth in the right hand
side than is allowed for the left hand side to be analytic.

This example shows how the notion of characteristic boundary condition
highlights some key physical and mathematical aspects of the equation at
hand. It can easily be seen that a necessary and su�cient conditions for an
evolution problem

@kt u =
X

|↵|=l

a↵@
↵
xu

is that l  k.

Exercise 18. Check the last point, and formulate a similar conditions
for systems.

Hint: For ki time derivatives on the i-th component, no spatial deriva-
tives on this component should be of order higher than ki.

4.2. Principal symbol and characteristic form. Let P be a scalar
di↵erential operator of order k:

Pu :=
X

|↵|k

a↵(x)@
↵
xu, u = u(x), x 2 R`.

For convenience let us assume here that the a↵(x) are smooth functions.
Then the total symbol of the operator is defined as

�(x, ⇠) :=
X

|↵|k

a↵(x)⇠
↵, ⇠↵ := ⇠↵1

1 . . . ⇠↵`
`

and the principal symbol of the operator is defined as

�p(x, ⇠) :=
X

|↵|=k

a↵(x)⇠
↵,

where ⇠ 2 C. This principal symbol is also called the characteristic form
of the equation.
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Remark 4.1. For geometric PDE’s in an open set U of some manifold
M, the principal symbol is better thought of as a function on the cotangent
bundle: �p : T ⇤U ! R.

Exercise 19. Show that the principal symbol is an homogeneous func-
tion of degree k in ⇠, i.e.

�p(x,�⇠) = �k�p(x, ⇠), � 2 R.

Then the non-characteristic condition at x 2 � becomes in this context

�p(x,n(x)) 6= 0.

Remark 4.2. With a more geometric intrinsic formulation, we could
say that for any ⇠ 2 T ⇤

xU \ {0}, x 2 � ⇢ U , with h⇠, wi = 0 for all w 2 T ⇤
xU

tangent to � at x 2 U , then �p(x, ⇠) 6= 0.

We also introduce the characteristic cone6 of the PDE at x 2 R`:

Cx :=
�
⇠ 2 R` : �p(x, ⇠) = 0

 
.

Then a surface is characteristic at a point if the normal to the surface at
that point belongs to the characteristic cone at the same point.

4.3. The main linear PDE’s and their characteristic surfaces.
Let us go through the main linear PDE’s and study their characteristic
surfaces. We shall study in the next chapters some paradigmatic examples:

• Laplace’s equation and Poisson’s equation

�u = 0 or �u = f, u = u(x1, . . . , x`),

 
� =

X̀

j=0

@2xj

!
.

In this case as we discussed the characteristic form is �p(x, ⇠) = |⇠|2
and the characteristic cone is Cx = {0} for any x 2 R`, and any real
surface cannot be characteristic to the Laplace equation. Equation
without real characteristic surfaces are called elliptic equations.

• The wave equation

⇤u = 0, u, u = u(t, x1, . . . , x`),

 
⇤ := �@2t +

X̀

j=1

@2xj
= �@2t +�

!
.

The wave equation is obtained from the Laplace equation by
the so-called Wick rotation x` 7! ix`. Its characteristic form is
�p(x, ⇠) = ⇠21 + · · · + ⇠2`�1 � ⇠2` and its characteristic cone is the

6The name “cone” is related to the homogeneity property described above: the
characteristic cone is hence invariant by multiplication by a real number.
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so-called light cone Cx = {⇠2` = ⇠21 + · · · + ⇠2`�1} for any x 2 R`.
Any surface whose normal makes an angle ⇡/4 with the direction
e` is a characteristic surface.

• The heat equation

@x`
u��u = 0, u = u(t, x1, . . . , x`),

 
� :=

`�1X

j=1

@2xj

!
.

Its characteristic form is �p(x, ⇠) = ⇠21 + · · · + ⇠2`�1 and its charac-
teristic cone is Cx = {⇠1 = · · · = ⇠`�1 = 0} for any x 2 R`, and
so the characteristic surfaces are the horizontal planes {x` = cst}
(hence corresponding to an initial condition).

• The Schrödinger equation

i@tu+�u = 0, u = u(t, x1, . . . , x`) 2 C,
 
� :=

X̀

j=1

@2xj

!
.

The Schrödinger equation is obtained from the heat equation by the
Wick rotation x` 7! ix`. Its characteristic form is again �p(x, ⇠) =
⇠21 + · · ·+ ⇠2`�1 � ⇠2` and its characteristic cone is again Cx = {⇠1 =
· · · = ⇠`�1 = 0} for any x 2 R`, and so the characteristic surfaces
are again the horizontal planes {x` = cst} (hence corresponding to
an initial condition).

• The transport (including Liouville) equation

X̀

j=1

cj(x)@xju = 0, u = u(x1, . . . , x`).

Then its characteristic form is

�p(x, ⇠) =

 
X̀

j=1

cj(x)⇠j

!

and its characteristic cone is

Cx = c(x)?, c = (c1, . . . , c`)

for any x 2 R`. This means that a characteristic surface is everywhere
tangent to c(x). Then all our transport equation tells us is the behaviour
of u along the characteristic surface, and what u does in the transversal
direction is completely “free”. This means that the existence is lost unless
the initial condition on the surface satisfies certain constraints, and if a so-
lution exists, it will not be unique. The situation is reminiscent to solving
the linear system Ax = b with a non-invertible square matrix A. Another
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viewpoint is to observe that the characteristic surfaces are the only surfaces
along which two di↵erent solutions can touch each other, for if two solu-
tions are the same on a non-characteristic surface, by uniqueness they must
coincide in a neighbourhood of the surface.

Remark 4.3. The equations all share the property that they are linear,
and they often occur when linearising more complicated equations which play
a role in Mathematical Physics, or by other types of limits.

4.4. What is wrong with analyticity? The complex analytic set-
ting is completely natural for the Cauchy-Kovalevskaya theorem. This is
because any real analytic function uniquely extends to a complex analytic
one in a neighbourhood of R` considered as a subset of C`, and more im-
portantly this point of view o↵ers a better insight on the behaviour of
analytic functions. Hence the complex analytic treatment contains the real
analytic case as a special case. However, it is known that if we allowed
only analytic solutions, we would be missing out on most of the interest-
ing properties of partial di↵erential equations. For instance, since analytic
functions are completely determined by its values on any open set however
small, it would be extremely cumbersome, if not impossible, to describe
phenomena like wave propagation, in which initial data on a region of the
initial surface are supposed to in uence only a specific part of spacetime.
A much more natural setting for a di↵erential equation would be to re-
quire its solutions to have just enough regularity for the equation to make
sense. For example, the Laplace equation �u = 0 already makes sense
for twice di↵erentiable functions. Actually, the solutions to the Laplace
equation, i.e. harmonic functions, are automatically analytic, which has a
deep mathematical reason that could not be revealed if we restricted our-
selves to analytic solutions from the beginning. In fact, the solutions to
the Cauchy–Riemann equations, i.e. holomorphic functions, are analytic
by the same underlying reason, and complex analytic functions are nothing
but functions satisfying the Cauchy–Riemann equations. From this point
of view, looking for analytic solutions to a PDE in R` would mean coupling
the PDE with the Cauchy–Riemann equations and solving them simulta-
neously in R2`. In other words, if we are not assuming analyticity, C` is
better thought of as R2` with an additional algebraic structure. Hence the
real case is more general than the complex one, and from now on, we will
be working explicitly in real spaces such as R`, unless indicated otherwise.

As soon as we allow non-analytic data and/or solutions, many interest-
ing questions arise surrounding the Cauchy-Kovalevskaya theorem. First,
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assuming a setting to which the Cauchy-Kovalevskaya theorem can be ap-
plied, we can ask if there exists any (necessarily non-analytic) solution
other than the solution given by the Cauchy-Kovalevskaya theorem. In
other words, is the uniqueness part of the Cauchy-Kovalevskaya theorem
still valid if we now allow non-analytic solutions? For linear equations an
a�rmative answer is given by Holmgren’s uniqueness theorem. Moreover,
uniqueness holds for first order equations, but fails in general for higher
order equations and systems. Such a uniqueness result can also be thought
of as a regularity theorem, in the sense that if u is a solution then it would
be automatically analytic by uniqueness.

The second question is whether existence holds for non-analytic data,
and again the answer is negative in general. A large class of counter-
examples can be constructed, by using the fact that some equations, such
as the Laplace and the Cauchy-Riemann equations, have only analytic so-
lutions, therefore their initial data, as restrictions of the solutions to an
analytic hypersurface, cannot be non-analytic. Hence such equations with
non-analytic initial data do not have solutions. In some cases, this can
be interpreted as one having “too many” initial conditions that make the
problem overdetermined, since in those cases the situation can be remedied
by removing some of the initial conditions. For example, with su�ciently
regular closed surfaces as initial surfaces, one can remove either one of the
two Cauchy data in the Laplace equation, arriving at the Dirichlet or Neu-
mann problem. Starting with Hans Lewy’s celebrated counter-example of
1957, more complicated constructions along similar lines have been made
that ensure the inhomogeneous part of a linear equation to be analytic, thus
exhibiting examples of linear equations with no solutions when the inho-
mogeneous part is non-analytic, regardless of initial data. The lesson to be
learned from these examples is that the existence theory in a non-analytic
setting is much more complicated than the corresponding analytic theory,
and in particular one has to carefully decide on what would constitute the
initial data for the particular equation.

Indeed, there is an illuminating way to detect the poor behaviour of
some equations discussed in the previous paragraph with regard to the
Cauchy problem, entirely from within the analytic setting, that runs as
follows. Suppose that in the analytic setting, for a generic initial datum  
it is associated the solution u = S( ) of the equation under consideration,
where S :  7! u is the solution map. Now suppose that the datum is
non-analytic, say, only continuous. Then by the Weierstrass approximation
theorem, for any " > 0 there is a polynomial  " that is within an " distance
from  . Taking some sequence "! 0, if the solutions u" = S( ") converge
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locally uniformly to a function u, we could reasonably argue that u is a
solution (in a generalized sense) of our equation with the (non-analytic)
datum  . The counter-examples from the preceding paragraph suggest that
in those cases the sequence u" cannot converge. Actually, the situation is
much worse, as the following example due to J. Hadamard shows.

Consider the Cauchy problem for the Laplace equation

@2ttu+ @2xxu = 0, u(x, 0) = a! sin(!x), @tu(x, 0) = b! sin(!x)

for some parameter ! > 0, whose solution is explicitely given by

u(x, t) =

✓
a! cosh(!t) +

b!
!

◆
sin(!x).

Then if we choose a! = 1/!, b! = 1 and ! >> 1, we see that the initial
data is small: u(x, 0) = O(1/!), @tu(x, 0) = 0, whereas the solution grows
arbitrarily fast as ! tends to infinity: u(x, 1) = sin(!x)(cosh!)/!. Hence
the relation between the solution and the Cauchy data becomes more and
more di�cult to invert as we go to higher and higher frequencies ! !
1. For instance if the initial data is the error of an approximation of
non-analytical data in the uniform norm as ! ! 1, then the solutions
with initial data given by the approximations diverge unless a! and b!
decay faster than exponential. But functions that can be approximated
by analytic functions with such small error form a severely restricted class,
being between the smooth functions C1 and the analytic functions.

Exercise 20. In the exercise we give a slightly amplified version of the
example of J. Hadamard: consider the problem

@2ttu+ @2xxu = 0, u(x, 0) = �(x), @tu(x, 0) =  (x).

For a given " > 0 and an integer k > 0, construct initial data � and  so
that

k�k1 +
���(1)

��
1 + · · ·+ ���(k)

��
1 + k k1 +

�� (1)
��
1 + · · ·+ �� (k)

��
1 < "

and

ku(·, ")k � 1

"
.

Repeat the exercise with the condition on the initial data replaced by

8 k � 0,
���(k)

��
1 +

�� (k)
��
1 < ".

Let us contrast the previous (elliptic) example with the following (hy-
perbolic) one: consider the Cauchy problem for the wave equation

@2ttu� @2xxu = 0, u(x, 0) = �(x), @tu(x, 0) =  (x),
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whose solution is given by d’Alembert’s formula

u(t, x) =
�(x� t) + �(x+ t)

2
+

1

2

ˆ x+t

x�t

 (y) dy.

We deduce that

|u(x, t)|  sup
[x�t,x+t]

|�|+ |t| sup
[x�t,x+t]

| |

showing that small initial data lead to small solutions (and also showing
domain of dependency). The explicit solution constructed cannot also be
shown to be the unique solution by energy methods (see later in the next
chapters).

This is in response to these considerations that Hadamard introduced
the concept of well-posedness of a problem that we have introduced in the
first chapter.

4.5. Basic classification. Roughly speaking, the (1) hyperbolic, (2)
elliptic, (3) parabolic, and (4) dispersive classes arise as one tries to identify
the equations that are similar to, and therefore can be treated by extensions
of techniques developed for, the (1) wave (and transport), the (2) Laplace
(and the Cauchy-Riemann), the (3) heat, and the (4) Schrödinger equations,
respectively.

Indeed, the idea of hyperbolicity is an attempt to identify the class of
PDE’s for which the Cauchy-Kovalevskaya theorem can be rescued in some
sense when we relax the analyticity assumption. The simplest examples of
hyperbolic equations are the wave and transport equations. In contrast,
trying to capture the essence of the poor behaviour of the Laplace and
Cauchy-Riemann equations in relation to their Cauchy problems leads to
the concept of ellipticity. Hallmarks of elliptic equations are having no real
characteristic surfaces, smooth solutions for smooth data, overdeterminacy
of the Cauchy data hence boundary value problems, and being associated
to stationary phenomena.

The class of parabolic equations is a class for which the evolution problem
is well-posed for positive times, but failes for negative times. The initial
condition is characteristic and the Cauchy-Kovalevskaya Theorem fails. The
informations is transmitted at infinite speed, and there is instanteneous
regularisation: the solution becomes analytic for positive times. The latter
phenomenon is extremely important and obviously cannot be captured in
analytic setting.

The class of dispersive equations is a class which is close to transport-
wave equations in the sense that their “extension” in the space-frequency
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phase space has the structure of a transport equation. Moreover the evo-
lution is reversible and well-posed at the level of the linear equation, but
the Cauchy-Kovalevskaya is not adapted again. And they both transport
information at finite speed. However let us discuss the crucial di↵erence
between these two classes which justifies the name “dispersive”.

Consider a plane wave solution u(t, x) = cos(k(t + x)) to the wave
equation

@2ttu = @2xxu, t, x 2 R,

with the initial data u(0, x) = cos(kx), @tu(0, x) = 0. Then the information
travels at speed 1, whatever the frequency k 2 R of the wave. Next consider
again a plane wave solution u(t, x) = ei(kx�|k|2t) to the Schrödinger equation

i@tu+ @2xxu = 0, t, x 2 R,

with the initial data u(0, x) = eikx. The information then travels at speed
|k| which now depends on the frequency! In physics words, the dispersion
relation is !(k) = ±|k| for the wave equation, and !(k) = �|k|2. In the first
case, the dispersion relation is linear and there is no wave packet dispersion,
while there is in the second case. This dispersive feature results in numerous
mathematical consequences which are key to many Cauchy theorems. . .


