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A COMPUTER-ASSISTED PROOF 

OF THE FEIGENBAUM CONJECTURES 

BY OSCAR E. LANFORD III1 

1. Introduction. Let M denote the space of continuously differentiable 
even mappings \p of the interval [-1, 1] into itself such that 

Ml. i//(0)= 1, 
M2. JC^ ' ( JC)<0 f o r x ^ O . 

M2 says that \p is strictly increasing on [-1, 0) and strictly decreasing on (0, 1], 
so M is a space of mappings which are unimodal in a strict sense. 

Condition Ml says that the unique critical point 0 is mapped to 1. We want 
to consider i//'s which map 1 slightly — but not too far — to the left of 0. It may 
then be possible to find nonoverlapping intervals I0 about 0 and It near 1 which 
are exchanged by \p. Technically, we proceed as follows: Write a for -i//(l) = 
-i//2(0) and b for i//(#); we suppress from the notation the dependence of a and b 
on \p. Define XKJ) to be the set of all i//'s in M such that: 

Dl. a> 0, 
D2. b>a, 
D3. \p(b)<a. 

The two intervals I0 = [-a, a] and It = [b, 1] are then nonoverlapping and \p 
maps I0 into Ix and vice versa. If \Jj E ViT), then \p o \p\r has a single critical 
point, which is a minimum. By making the change of variables x —> -ax, we 
replace IQ by [-1, 1] and the minimum by a maximum, i.e., if we define 

THx) = - - ^ o M-ax) for x e [-1, 1] 

then Ti// is again in M. Thus, T defines a mapping of V(T) into M. (In general, 
Ti// need not lie in V(T). If a is small, then T\p(l) will be approximately 1 so 
T*p will not satisfy Dl. On the other hand, if \jj(b) is near a, then Ti//(1) will be 
near -1 from which it follows that T\jj does not satisfy D2.) 

M. Feigenbaum [6] has proposed an explanation for some universal features 
displayed by infinite sequences of period doubling bifurcations based on some 
conjectures about T. We will not review has argument here; a version with due 
regard for mathematical technicalities may be found in Collet and Eckmann [3], 
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Collet, Eckmann and Lanford [4], or in Lanford [8]. The purpose of this note 
is to announce a proof of essentially all of these conjectures and to indicate the 
kind of analysis used. 

2. Statement of results. 

THEOREM 1. There exists a function g, analytic and even on {z EC: \z\ 
< \J&} whose restriction to [-1, 1] is a fixed point for T. The Schwarzian deri
vative of g is negative on [-1, 1]. 

Let £1 denote {z G C: \z2 - 1| < 2.5} and write 
$> for the Banach space of even functions bounded and analytic on £1, real 

on real points, equipped with the supremum norm. 
{£>0 for the subspace of Q consisting of those functions vanishing (to 

second order) at 0. 
$ ! for $ 0 + 1. 

PROPOSITION 2. There is an open neighborhood 1/ o f g in &x such that 
Every i// G (/ is in V(T) (i.e., its restriction to [-1, 1] is). 
lfxpev,Tte $t. 
T is infinitely differentiatie as a mapping from M into Jp j , 
The derivative DTty) is compact operator on Sp0 for each \p E \J. 

THEOREM 3. DT(g) is hyperbolic on 3?0 with one-dimensional expanding 
subspace; the expanding eigenvalue 3 is positive. 

In other words: The spectrum of DT(g) does not intersect the unit circle, 
and the part of the spectrum outside the unit circle consists of a single simple 
positive eigenvalue ô. 

It then follows from invariant manifold theory that T admits locally invar
iant local stable and local unstable manifolds, of codimension one and dimension 
one respectively. Because of the noninvertibility of T, we do not construct 
global stable and unstable manifolds; we will let Ws and Wu denote respectively 
some particular local stable and local unstable manifolds. 

Let 2 0 denote the bifurcation surface for the simple period-doubling bi
furcation. By this we mean the following: Any \jj in M has exactly one fixed 
point x0 in [0, 1] ; S0 then denotes {\p G M: \p'(x0) = - 1 ; (\jj o \jj)'"(x0) < 0}. 
As a one-parameter family of i//'s crosses 2 0 (in the appropriate direction) the 
fixed point JC0 loses stability in favor of an attracting orbit of period 2. 

THEOREM 4. There is a positive integer ƒ and an element gj of Wu such 
that VgfE 2 0 . 

Except for the difficulties in defining a global unstable manifold, we could 
formulate this theorem by saying that the unstable manifold crosses S0 . We 
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would like to know more, viz., that the crossing is transversal. This - properly 
formulated — is almost certainly true, but we have not proved it. 

Let 4f^\x) denote the quadratic mapping 1 - ivc2. 

THEOREM 5. There is a positive integer ƒ and a parameter value jit̂  (be
tween 1.4011550 and 1.4011554) such that ^<°> is in V(V) for JU sufficiently 
near to fx^ and such that the curve T7*//^ crosses Ws transversally at fx = /x^. 

Except for technicalities, this says thati//^0^ crosses the stable manifold 
transversally at JU^. 

3. Remarks on the method of proof. The heart of the proof is a set of 
complicated numerical estimates proved rigorously with the aid of a computer. 
To formulate these estimates, we have first to establish some notation. We will 
work, initially, not in &1 but in a subspace equipped with a stronger norm. The 
idea is that we want to write \p as 

\p(x) = 1 - x2h(x2) 

and to use the I1 norm for the Taylor coefficients of h at 1. Formally, given an 
element (u, v) of R 0 ll, we associate with it an element \p of Jp x by 

(3.1) *(*) = 1 - *2 jM/10 + £ vn{^^-)n } . 

We denote the set of \jj's obtained in this way by A , and we equip A with the 
norm \u\ + 2|vw|. Note that A contains any element of Jpj which is analytic 
on the closure of £1. (Of course, R 0 / 1 could have been identified with I1, but 
we have singled out the u component — and introduced the factor of 10 in the 
formula (3.1) for \jj(x) — for convenience later on.) For the remainder of this 
section, the norm of an element of A will always mean the norm of I1 type just 
introduced. 

The first step is to choose an explicit polynomial i//0 which will turn out 
to be a good approximate fixed point. We will take \jjQ to be the polynomial of 
degree 20 defined by the first ten terms of the series given in Table 1 below. It 
can be checked without difficulty that 

For any \p E A with ||i// - \p0\\ < .01, T\p G A 
T is infinitely differentiable from {\\\p - \p0\\ < .01} to A. 
For any \jj in this ball, DT(\p) is a compact operator on A. 
Identifying A with R 0 1 1 , we can represent DT(i//) as a matrix 

<*«>) M 0 

7W 5«/) 
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with a E R; j3 E (71)*; 7 E Z1 ; 5 E L(/*, Z1). In this notation, we can formulate 
ESTIMATE 1. If \\\jj - \JJ0\\ < .01, then 

|a - 4.6691 < .148; ||/?|| < .560; H7II < .756; ||5|| < .719. 

These bounds imply that the inequality 

(3.2) [a0/0 - 1] [1 - ||Ô(i//)||] > | |W)| | • H7WII 

holds uniformly on the ball of radius .01 about \jjQ. If J has a fixed point g in 
this ball, then hyperbolicity of DTig) acting on A follows readily from (3.2). 

To prove the existence of a fixed point, we use a variant of Newton's 
method. Instead of studying 

we replace (DT(\p) - 1 )~1 by the approximation 

/ 3.669 

'V 
and we apply the contraction mapping principle to the mapping 

which has the same fixed points as T. 
A simple calculation using Estimate 1 shows that 

||Z>$(4/)|| < .9 for | | ^ - * 0 1 | < .01. 

It will then follow from the contraction mapping theorem that $ has a fixed 
point in this ball provided that 

IWo)-*ol l 
1 - .9 •< .01 . 

For this we have 
ESTIMATE 2. 

I W o ) - M < 4 x 10"6-
Thus T has a fixed point in A, and DT at the fixed point, acting on A, 

has the hyperbolicity properties stated in Theorem 3. Domains of analyticity 
may be enlarged using the functional equation for g, and in this way we arrive at 
Theorems 1 and 3 as formulated. 

Furthermore, Estimate 1 makes it possible to establish the existence of a 
system of expanding and contracting cones for T on {\jj: \\\jj - \jjQ\\ < .01}, which 
in turn makes it possible to construct local stable and unstable manifolds which 
are not too small. This facilitates the proofs of Theorems 4 and 5. 



PROOF OF THE FEIGENBAUM CONJECTURES 431 

The proofs of Estimates 1 and 2 are completely straightforward, if long. 
Consider, for example, Estimate 1. Since A is essentially I1, we can think of DT(\p) 
as an infinite matrix. Norms of matrices acting on Z1 are easy to compute in 
terms of the matrix elements. Any matrix element can be expressed in terms of 
i//. All but finitely many of these matrix elements are estimated analytically. 
For the remainder, strict upper and lower bounds are computed numerically from 
bounds on the Taylor coefficients for \p. The arithmetic operations are performed 
in finite precision floating point arithmetic; the methods of interval arithmetic 
are used to control the effect of round-off error. 

4. Supplementary remarks. 1. The results described here are descendants 
of (and improvements on) the results announced in [7]. Since that announce
ment, a completely different proof for the existence of g has been given by 
Campanino, Epstein, and Ruelle [1]. 

2. The approach to proving Theorem 1 outlined in the preceding section 
produces strict bounds on the difference between an approximate fixed point and 
the exact one. These estimates can be applied to higher precision calculations. 
Let 

40 

where the g^ are given by Table 1. 

We then have strict bounds 

1.5 x 10"2 3 for \z\2 < 1.5, 

5.5 x 10" 1 3 for \z\2 < 2 , 

* ) - ^ V ) i < 5 i < 1 0 . , towa<6i 

1 . 7 x 1 0 - ' for fel2 < 8. 

These bounds are probably very conservative. 
3. The domain £2 used in the statements of Proposition 2 and Theorem 3 

was chosen for convenience. Many other domains, including arbitrarily small 
open neighborhoods of [-1, 1], could have been used instead. The hyperbolicity 
statement of Theorem 3 is formally stronger for small domains than for larger ones. 
(For Sl1 C £l2, any eigenfunction for DT(g) on £22 is also an eigenfunction on 
£2j). It can be shown, however, that any function analytic on a neighborhood 
of [-1, 1] and satisfying there the formal functional equation for an eigenvector 
of DT(g) is actually analytic and bounded on the domain £2. 

4. It follows easily from the functional equation for g that g is analytic 
on a neighborhood of the whole real axis. H. Epstein (private communication) 
has observed that a similar argument shows that it is analytic on a neighborhood 
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n | 

M 
2 
3 
4 
5 
6 

7 
! 8 

9 

10 
11 
12 
13 
14 
15 
16 

17 
18 
19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 
30 
31 
32 

33 
34 
35 
36 
37 
38 
39 

| 40 

TTül 
an -1.52763 29970 36301 45403 58903 10240 

0.10481 51947 87303 73321 67426 13801 
0.02670 56705 25193 35403 26520 94944 

-0.00352 74096 60908 70917 02341 90769 
0.00008 16009 66547 53174 51721 90486 
0.00002 52850 84233 96353 61762 62552 

-2.55631 71662 78493 84635 32541 xl0~6 

-9.65127 15508 91203 21637 25768 xl0"8 

2.81934 63974 50409 13707 56629 xlO"8 

-2.77305 11607 99011 72437 xlO"10 

-3.02842 70221 30566 32983 xlO"10 

2.67058 92807 48075 55396 xlO"11 

9.96229 16410 28482 31059 xlO~13 

-3.62420 29829 04156 08455 xlO~13 

2.17965 77448 27070 47701 xl0~14 

1.52923 28994 80962 60560 xlO -15 

-3.18472 87899 52775 xlO'16 

1.13467 21062 11871 xlO"17 

1.88167 60568 25439 xlO~18 

-2.27561 25646 32121 xlO~19 

-9.82244 76294 21762 xlO"22 

2.06412 97560 04508 xlO -21 

-1.24932 00592 43689 xlO"22 

-1.07706 12046 xlO~23 

1.87274 68082 xlO"24 

-2.57770 82101 xlO-26 

-1.55419 04560 xlO"26 

1.28044 34650 xlO"27 

5.58505 87986 xlO"29 

-1.52783 46925 xlO -29 

5.04174 26639 xlO"31 

1.01653 68070 xlO"31 

-1.00690 xlO~32 

-5.24253 xlO"34 

1.72437 xlO"34 

-1.31439 xlO"35 

-1.85830 xlO-38 

8.05506 xlO"38 

-6.26717 xlO"39 

1.76882 xlO-40 

TABLE 1. 
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of the imaginary axis. On the other hand, it is essentially certain that g is not 
entire. Indeed, it appears — but has not been proved — that the singularities of g 
nearest to the origin occur at a set of 4 periodic points of period 2 for z \-> 
g(-Az), X = -#(1), located approximately at 

z* =-3.8428 ± i 9.8215. 

5. Proposition 2 and Theorem 3 remain true if the requirement that \p be 
even is dropped. In other words: No new expanding eigenvectors are introduced 
if we let DT(g) act on functions which are not necessarily even (but which vanish 
to second order at 0). 

6. Theorem 4 can be extended considerably. To formulate the extension, 
we need the theory of kneading sequences for unimodal mappings as developed, 
for example, in Chapter III.l of Collet-Eckmann [3]. Let ƒ[ be a finite kneading 
sequence. Except for the simple case AT = RC, there are associated with K_ three 
hypersurfaces in M: 

The set of superstable i//'s with kneading sequence K. 
The saddle-node or period-doubling bifurcation surface where the attracting 

periodic orbit passing through the critical point on the preceding surface appears. 
The period-doubling bifurcation surface where that periodic orbit becomes 

unstable. 
It can be shown that, intuitively, the unstable manifold crosses these three 

surfaces for each K\ a precise version of this statement must be formulated with 
the same circumspection as Theorem 4. There is no reason to doubt that these 
crossings are all transverse. 

A simple argument using the apparatus developed in [3] reduces the proof 
of Theorem 4 and the above extension to establishing the existence, on the local 
unstable manifold, of one point whose kneading sequence strictly precedes, and 
one whose kneading sequence strictly follows, that of g (in the combinatorial 
ordering for kneading sequences). The proof proceeds by finding with sufficient 
precision two points on the unstable manifold and computing initial segments 
of their kneading sequences. 

7. Although done by computer, the computations involved in proving the 
results stated are just on the boundary of what it is feasible to verify by hand. 
I estimate that a carefully chosen minimal set of estimates sufficient to prove 
Theorems 1 and 3 could be carried out, with the aid only of a nonprogrammable 
calculator, in a few days. 

ACKNOWLEDGEMENTS. It is a pleasure for me to thank: 
P. Collet, J. P. Eckmann, H. Epstein, D. Ruelle, and S. Smale for helpful 

discussions and encouragement. 
L. Michel for his assistance in making available the computing facilities 

needed to carry out this work. 



434 O. E. LANFORD III 

Director N. Kuiper for his very gracious hospitality at the IHES. 
The Stiftung Volkswagenwerk for financial support during my visit to the 

IHES. 
The National Science Foundation for continuing financial support under 

Grant MCS 78-06718. 

REFERENCES 

1. M. Campanino, H. Epstein and D. Ruelle, On Feigenbaum's functional equation, 
(IHES preprint P/80/32 (1980)) Topology (to appear). 

2. M. Campanino and H. Epstein, On the existence of Feigenbaum's fixed point, 
(IHES preprint P/80/35 (1980)) Comm. Math. Phys. (1981), 2 6 1 - 3 0 2 . 

3. P. Collet and J. P. Eckmann, Iterated maps of the interval as dynamical systems, 
Birkha'user, Boston-Basel-Stuttgart, 1980. 

4. P. Collet, J. P. Eckmann and O. E. Lanford, Universal properties of maps on an 
interval, Comm. Math. Phys. 76 (1980) , 2 1 1 - 2 5 4 . 

5. M. Feigenbaum, Quantitative universality for a class of non-linear transformations, 
J. Statist. Phys. 19 (1978) , 2 5 - 5 2 . 

6. , The universal metric properties of non-linear transformations, J. Statist. 
Phys. 21 (1979) , 6 6 9 - 7 0 6 . 

7. O. E. Lanford, Remarks on the accumulation of period-doubling bifurcations, 
Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, vol. 116, Springer-
Verlag, Berlin and New York, 1980, pp. 3 4 0 - 3 4 2 . 

8. , Smooth transformations of intervals, Séminaire Bourbaki, 1980 /81 , No. 
563 , Lecture Notes in Math., vol. 9 0 1 , Springer-Verlag, Berlin, Heidelberg and New York, 
1981 , pp. 3 6 - 5 4 . 

INSTITUT DES HAUTES ETUDES SCIENTIFIQUES, 35 , ROUTE DE CHARTRES, 
91440, BURES-SUR-YVETTE, FRANCE 

DEPARTMENT O F MATHEMATICS, UNIVERSITY O F CALIFORNIA, BERKELEY, 
CALIFORNIA 94720 (Current address) 


