The Krein–Milman Theorem
A Project in Functional Analysis

Samuel Pettersson

November 29, 2016
Outline

1. An informal example
Outline

1. An informal example

2. Extreme points
Outline

1. An informal example
2. Extreme points
3. The Krein–Milman theorem
Outline

1. An informal example

2. Extreme points

3. The Krein–Milman theorem

4. An application
Outline

1. An informal example

2. Extreme points

3. The Krein–Milman theorem

4. An application
Convex sets and their “corners”

Observation
Some convex sets are the convex hulls of their “corners”.
Observation
Some convex sets are the convex hulls of their “corners”.

\[\|x\|_1 \leq 1 \]
Observation
Some convex sets are the convex hulls of their “corners”.

\[\|x\|_1 \leq 1 \]
Convex sets and their “corners”

Observation
Some convex sets are the convex hulls of their “corners”.

\[\|x\|_1 \leq 1 \quad \|x\|_2 \leq 1 \]
Convex sets and their “corners”

Observation
Some convex sets are the convex hulls of their “corners”.

\[\|x\|_1 \leq 1 \quad \text{and} \quad \|x\|_2 \leq 1 \]
Convex sets and their “corners”

Observation
Some convex sets are the convex hulls of their “corners”.

\[
\|x\|_1 \leq 1 \quad \|x\|_2 \leq 1 \quad \|x\|_\infty \leq 1
\]
Convex sets and their “corners”

Observation
Some convex sets are the convex hulls of their “corners”.

\[
\|x\|_1 \leq 1 \\
\|x\|_2 \leq 1 \\
\|x\|_\infty \leq 1
\]
Convex sets and their “corners”

Observation
Some convex sets are not the convex hulls of their “corners”.
Convex sets and their “corners”

Observation
Some convex sets are not the convex hulls of their “corners”.

$x_1, x_2 \geq 0$
Convex sets and their “corners”

Observation
Some convex sets are not the convex hulls of their “corners”.

\[x_1, x_2 \geq 0 \]
Convex sets and their “corners”

Observation
Some convex sets are **not** the convex hulls of their “corners”.

\[
x_1, x_2 \geq 0
\]

\[
\|x\|_\infty < 1
\]
Objectives

▶ Formalize the notion of a corner of a convex set (extreme point).
▶ Find a sufficient condition for a convex set to be the closed convex hull of its extreme points (Krein–Milman).
Objectives

- Formalize the notion of a corner of a convex set (extreme point).
Objectives

- Formalize the notion of a corner of a convex set (extreme point).
- Find a sufficient condition for a convex set to be the closed convex hull of its extreme points (Krein–Milman).
Outline

1. An informal example
2. Extreme points
3. The Krein–Milman theorem
4. An application
Definition of an extreme point

Definition
An extreme point of a convex set $K \subseteq E$ in a vector space E is a point $z \in K$ not in the interior of any line segment in K:

$$z \neq (1-t)x + ty, \quad \forall t \in (0,1), \forall x, y \in K, x \neq y$$

Remark
In a normed space,
▶ interior points are never extremal
▶ boundary points may be extremal
▶ boundary points (inside the set) of strictly convex sets are always extremal
Definition of an extreme point

Definition
An extreme point of a convex set $K \subseteq E$ in a vector space E is a point $z \in K$ not in the interior of any line segment in K:

$$z \neq (1 - t)x + ty, \quad \forall t \in (0, 1), \forall x, y \in K, \ x \neq y$$
Definition of an extreme point

Definition
An extreme point of a convex set $K \subseteq E$ in a vector space E is a point $z \in K$ not in the interior of any line segment in K:

$$z \neq (1 - t)x + ty, \quad \forall t \in (0, 1), \forall x, y \in K, \ x \neq y$$

Remark
In a normed space,
Definition of an extreme point

Definition
An extreme point of a convex set $K \subseteq E$ in a vector space E is a point $z \in K$ not in the interior of any line segment in K:

$$z \neq (1 - t)x + ty, \quad \forall t \in (0, 1), \forall x, y \in K, \ x \neq y$$

Remark

In a normed space,

- interior points are never extremal
Definition of an extreme point

Definition
An extreme point of a convex set \(K \subseteq E \) in a vector space \(E \) is a point \(z \in K \) not in the interior of any line segment in \(K \):

\[z \neq (1 - t)x + ty, \; \forall t \in (0, 1), \; \forall x, y \in K, \; x \neq y \]

Remark
In a normed space,
- interior points are never extremal
- boundary points may be extremal
Definition of an extreme point

Definition
An extreme point of a convex set $K \subseteq E$ in a vector space E is a point $z \in K$ not in the interior of any line segment in K:

$$z \neq (1 - t)x + ty, \quad \forall t \in (0, 1), \forall x, y \in K, \ x \neq y$$

Remark

In a normed space,

- interior points are never extremal
- boundary points may be extremal
- boundary points (inside the set) of strictly convex sets are always extremal
Examples of extreme points

Extreme points of the closed unit ball:
Examples of extreme points

Extreme points of the closed unit ball:

<table>
<thead>
<tr>
<th>Space</th>
<th>Extreme points</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ell_1)</td>
<td>±e_i = (0, ..., 0, (i)th term (±1), 0, ...)</td>
</tr>
<tr>
<td>(\ell_p) (1 < (p) < (∞))</td>
<td>Entire unit sphere</td>
</tr>
<tr>
<td>(\ell_∞)</td>
<td>(±1, ±1, ...)</td>
</tr>
</tbody>
</table>
Examples of extreme points

Extreme points of the closed unit ball:

<table>
<thead>
<tr>
<th>Space</th>
<th>Extreme points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ^1</td>
<td></td>
</tr>
</tbody>
</table>
Examples of extreme points

Extreme points of the closed unit ball:

<table>
<thead>
<tr>
<th>Space</th>
<th>Extreme points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ^1</td>
<td>$\pm e_i = (0, \ldots, 0, \overset{i\text{th term}}{\pm 1}, 0, \ldots)$</td>
</tr>
</tbody>
</table>
Examples of extreme points

Extreme points of the closed unit ball:

<table>
<thead>
<tr>
<th>Space</th>
<th>Extreme points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ^1</td>
<td>$\pm e_i = (0, \ldots, 0, \pm 1, 0, \ldots)$</td>
</tr>
<tr>
<td>ℓ^p ($1 < p < \infty$)</td>
<td></td>
</tr>
</tbody>
</table>
Examples of extreme points

Extreme points of the closed unit ball:

<table>
<thead>
<tr>
<th>Space</th>
<th>Extreme points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ^1</td>
<td>$\pm e_i = (0, \ldots, 0, \pm 1, 0, \ldots)$</td>
</tr>
<tr>
<td>ℓ^p ($1 < p < \infty$)</td>
<td>Entire unit sphere</td>
</tr>
</tbody>
</table>
Examples of extreme points

Extreme points of the closed unit ball:

<table>
<thead>
<tr>
<th>Space</th>
<th>Extreme points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ^1</td>
<td>$\pm e_i = (0, \ldots, 0, \pm 1, 0, \ldots)$</td>
</tr>
<tr>
<td>ℓ^p ($1 < p < \infty$)</td>
<td>Entire unit sphere</td>
</tr>
<tr>
<td>ℓ^∞</td>
<td></td>
</tr>
</tbody>
</table>
Examples of extreme points

Extreme points of the closed unit ball:

<table>
<thead>
<tr>
<th>Space</th>
<th>Extreme points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ^1</td>
<td>$\pm e_i = (0, \ldots, 0, \pm 1, 0, \ldots)$</td>
</tr>
<tr>
<td>$\ell^p \ (1 < p < \infty)$</td>
<td>Entire unit sphere</td>
</tr>
<tr>
<td>ℓ^∞</td>
<td>$(\pm 1, \pm 1, \ldots)$</td>
</tr>
</tbody>
</table>
Outline

1. An informal example
2. Extreme points
3. The Krein–Milman theorem
4. An application
Statement of Krein–Milman

Theorem (Krein–Milman)

A *compact* convex set $K \subseteq E$ in a normed space coincides with the closed convex hull of its extreme points:

$$K = \overline{\text{conv}}(\text{ext } K)$$
Statement of Krein–Milman

Theorem (Krein–Milman)

A compact convex set $K \subseteq E$ in a normed space coincides with the closed convex hull of its extreme points:

$$K = \overline{\text{conv}}(\text{ext } K)$$

Reminder

$\overline{\text{conv}} A := \overline{\text{conv}} A$

$= \text{the smallest closed and convex set containing } A$.
Preparation for the proof: Extreme sets

Definition
Given a compact convex set $K \subseteq E$ in a normed space, an extreme set is a subset $M \subseteq K$ that is
- non-empty
- closed
- such that any line segment in K whose interior intersects M has endpoints in M:
 $$\exists t \in (0, 1): (1-t)x + ty \in M = \Rightarrow x, y \in M, \forall x, y \in K$$
Preparation for the proof: Extreme sets

Definition

Given a compact convex set $K \subseteq E$ in a normed space, an extreme set is a subset $M \subseteq K$ that is
Definition

Given a compact convex set $K \subseteq E$ in a normed space, an extreme set is a subset $M \subseteq K$ that is

- non-empty
Definition
Given a compact convex set $K \subseteq E$ in a normed space, an extreme set is a subset $M \subseteq K$ that is

- non-empty
- closed
Preparation for the proof: Extreme sets

Definition
Given a compact convex set $K \subseteq E$ in a normed space, an extreme set is a subset $M \subseteq K$ that is

- non-empty
- closed
- such that any line segment in K whose interior intersects M has endpoints in M:

$$\exists t \in (0, 1): (1 - t)x + ty \in M \implies x, y \in M, \quad \forall x, y \in K$$
Lemma

For $A \subseteq K$ an extreme set and $f \in E^*$,

$$B := \{ x \in A : \langle f, x \rangle = \max_{y \in A} \langle f, y \rangle \} = \{ \text{maxima of } f \text{ on } A \}$$

is an extreme subset of K.
Lemma

For $A \subseteq K$ an extreme set and $f \in E^*$,

$$B := \{ x \in A : \langle f, x \rangle = \max_{y \in A} \langle f, y \rangle \}$$

$$= \{ \text{maxima of } f \text{ on } A \}$$
Lemma

For $A \subseteq K$ an extreme set and $f \in E^*$,

$$B := \{ x \in A : \langle f, x \rangle = \max_{y \in A} \langle f, y \rangle \}$$

$$= \{ \text{maxima of } f \text{ on } A \}$$

is an extreme subset of K.
Lemma
For $A \subseteq K$ an extreme set and $f \in E^*$,

$$B := \{ x \in A : \langle f, x \rangle = \max_{y \in A} \langle f, y \rangle \} = \{ \text{maxima of } f \text{ on } A \}$$

is an extreme subset of K.

Proposition
Every extreme set $A \subseteq K$ contains an extreme point of K.
Preparation for the proof: Extreme sets

Lemma
For $A \subseteq K$ an extreme set and $f \in E^*$,

\[B := \{ x \in A : \langle f, x \rangle = \max_{y \in A} \langle f, y \rangle \} \]

\[= \{ \text{maxima of } f \text{ on } A \} \]

is an extreme subset of K.

Proposition
Every extreme set $A \subseteq K$ contains an extreme point of K.

Proof.
Use Zorn’s lemma and the above lemma (details omitted).
Theorem (Krein–Milman)

A compact convex set $K \subseteq E$ in a normed space coincides with the closed convex hull of its extreme points:

$$K = \overline{\text{conv}(\text{ext } K)}$$
Proof of Krein–Milman

For \(\text{conv}(\text{ext } K) \subseteq K \),
Proof of Krein–Milman

For $\text{conv}(\text{ext } K) \subseteq K$,

K compact, convex, and $K \supseteq \text{ext } K$
Proof of Krein–Milman

For \(\text{conv}(\text{ext } K) \subseteq K \),

\(K \) compact, convex, and \(K \supseteq \text{ext } K \)

\(\implies K \) closed, convex, and \(K \supseteq \text{ext } K \)
Proof of Krein–Milman

For $\overline{\text{conv}}(\text{ext } K) \subseteq K$,

\[K \text{ compact, convex, and } K \supseteq \text{ext } K \]
\[\implies K \text{ closed, convex, and } K \supseteq \text{ext } K \]
\[\implies \overline{\text{conv}}(\text{ext } K) \subseteq K \]
Proof of Krein–Milman

For $K \subseteq \text{conv}(\text{ext } K)$,
Proof of Krein–Milman

For $K \subseteq \overline{\text{conv}(\text{ext } K)}$,

$$K = \emptyset \implies K \subseteq \overline{\text{conv}(\text{ext } K)}$$
Proof of Krein–Milman

For $K \subseteq \overline{\text{conv}}(\text{ext } K)$,

$$K = \emptyset \implies K \subseteq \overline{\text{conv}}(\text{ext } K)$$

Otherwise, argue by contradiction:

$$\exists x \in K \setminus \overline{\text{conv}}(\text{ext } K) \iff \exists f \in E^\star: f(\overline{\text{conv}}(\text{ext } K)) < f(x) \ (\text{Hahn–Banach}) \Rightarrow \exists f \in E^\star: f(\text{ext } K) < f(x) \Rightarrow \exists B \subseteq K \text{ extreme set without extreme points (Lemma)} \Rightarrow \text{Contradiction! (Proposition)}$$

Hence, $K \subseteq \overline{\text{conv}}(\text{ext } K)$.
Proof of Krein–Milman

For $K \subseteq \overline{\text{conv}(\text{ext } K)}$,

$$K = \emptyset \implies K \subseteq \overline{\text{conv}(\text{ext } K)}$$

Otherwise, argue by contradiction:

$$\exists x \in K \setminus \overline{\text{conv}(\text{ext } K)}$$
Proof of Krein–Milman

For $K \subseteq \overline{\text{conv}(\text{ext } K)}$,

$$K = \emptyset \implies K \subseteq \overline{\text{conv}(\text{ext } K)}$$

Otherwise, argue by contradiction:

$$\exists x \in K \setminus \overline{\text{conv}(\text{ext } K)}$$

$$\implies \exists f \in E^*: f(\overline{\text{conv}(\text{ext } K)}) < f(x) \quad \text{(Hahn–Banach)}$$
Proof of Krein–Milman

For \(K \subseteq \overline{\text{conv}}(\text{ext } K) \),
\[
K = \emptyset \implies K \subseteq \overline{\text{conv}}(\text{ext } K)
\]

Otherwise, argue by contradiction:
\[
\exists x \in K \setminus \overline{\text{conv}}(\text{ext } K)
\implies \exists f \in E^*: f(\overline{\text{conv}}(\text{ext } K)) < f(x) \quad \text{(Hahn–Banach)}
\implies \exists f \in E^*: f(\text{ext } K) < f(x)
\]

Hence,
\[
K \subseteq \overline{\text{conv}}(\text{ext } K)
\]
Proof of Krein–Milman

For $K \subseteq \text{conv}(\text{ext } K)$,

$$K = \emptyset \implies K \subseteq \text{conv}(\text{ext } K)$$

Otherwise, argue by contradiction:

$$\exists x \in K \setminus \text{conv}(\text{ext } K)$$

$$\implies \exists f \in E^* : f(\text{conv}(\text{ext } K)) < f(x) \quad \text{(Hahn–Banach)}$$

$$\implies \exists f \in E^* : f(\text{ext } K) < f(x)$$

$$\implies \exists B \subseteq K \text{ extreme set without extreme points} \quad \text{(Lemma)}$$
Proof of Krein–Milman

For $K \subseteq \overline{\text{conv}(\text{ext } K)}$,

$$K = \emptyset \implies K \subseteq \overline{\text{conv}(\text{ext } K)}$$

Otherwise, argue by contradiction:

$$\exists x \in K \setminus \overline{\text{conv}(\text{ext } K)}$$

$$\implies \exists f \in E^*: f(\overline{\text{conv}(\text{ext } K)}) < f(x)$$ \hspace{1cm} \text{(Hahn–Banach)}

$$\implies \exists f \in E^*: f(\text{ext } K) < f(x)$$

$$\implies \exists B \subseteq K \text{ extreme set without extreme points}$$ \hspace{1cm} \text{(Lemma)}

$$\implies \text{Contradiction!}$$ \hspace{1cm} \text{(Proposition)}
Proof of Krein–Milman

For $K \subseteq \overline{\text{conv}(\text{ext } K)}$,

$$K = \emptyset \implies K \subseteq \overline{\text{conv}(\text{ext } K)}$$

Otherwise, argue by contradiction:

\[\exists x \in K \setminus \overline{\text{conv}(\text{ext } K)}\]

\[\implies \exists f \in E^*: f(\overline{\text{conv}(\text{ext } K)}) < f(x)\] \hspace{1cm} \text{(Hahn–Banach)}

\[\implies \exists f \in E^*: f(\text{ext } K) < f(x)\]

\[\implies \exists B \subseteq K \text{ extreme set without extreme points} \] \hspace{1cm} \text{(Lemma)}

\[\implies \text{Contradiction!} \] \hspace{1cm} \text{(Proposition)}

Hence, $K \subseteq \overline{\text{conv}(\text{ext } K)}$ \hfill \square
Outline

1. An informal example
2. Extreme points
3. The Krein–Milman theorem
4. An application
Not dual spaces

Example:

\[c_0 \subseteq \ell_\infty \text{ and } L_1(\mathbb{R}) \text{ are not dual spaces.} \]

Proposition

The closed unit ball \(B_E^\star \) has an extreme point.

Proof.

\(B_E^\star \) is weakly \(\star \) compact (Banach–Alaoglu–Bourbaki) \(\Rightarrow \)

\(B_E^\star = \text{conv}(\text{ext } B_E^\star) \) (generalized Krein–Milman) \(\Rightarrow \)

\(B_E^\star \) has an extreme point.
Not dual spaces

Example

\[c_0 \subseteq \ell^\infty \text{ and } L^1(\mathbb{R}) \text{ are not dual spaces.} \]
Not dual spaces

Example
$c_0 \subseteq \ell^\infty$ and $L^1(\mathbb{R})$ are not dual spaces.

Proposition
The closed unit ball B_{E^*} has an extreme point.
Not dual spaces

Example
$c_0 \subseteq \ell^\infty$ and $L^1(\mathbb{R})$ are not dual spaces.

Proposition
The closed unit ball B_{E^*} has an extreme point.

Proof.
Not dual spaces

Example
$c_0 \subseteq \ell^\infty$ and $L^1(\mathbb{R})$ are not dual spaces.

Proposition
The closed unit ball B_{E^*} has an extreme point.

Proof.
B_{E^*} is weakly* compact (Banach–Alaoglu–Bourgaki)
Not dual spaces

Example
$c_0 \subseteq \ell^{\infty}$ and $L^1(\mathbb{R})$ are not dual spaces.

Proposition
The closed unit ball B_{E^} has an extreme point.*

Proof.
B_{E^*} is weakly* compact \hspace{1cm} \text{(Banach–Alaoglu–Bourbaki)}

$\implies B_{E^*} = \overline{\text{conv}}(\text{ext } B_{E^*})$ \hspace{1cm} \text{(generalized Krein–Milman)}

\square
Not dual spaces

Example
$c_0 \subseteq \ell^\infty$ and $L^1(\mathbb{R})$ are not dual spaces.

Proposition

The closed unit ball B_{E^} has an extreme point.*

Proof.

B_{E^*} is weakly* compact \hspace{1cm} \text{(Banach–Alaoglu–Bourbaki)}

$\implies B_{E^*} = \overline{\text{conv}}(\text{ext } B_{E^*}) \hspace{1cm} \text{(generalized Krein–Milman)}$

$\implies B_{E^*}$ has an extreme point \qed