Positive Linear Functionals

Problem 5 in Brezis

Jinyi Wang

Department of Mathematics
Uppsala University

Final Project of Functional Analysis, 2016
Outline

Introduction
 Definitions
 Goal

Proof
 Derive (ii) by (i)
 Derive (i) by (ii) when P is closed and E is complete.

Examples
Outline

Introduction
 Definitions
 Goal

Proof
 Derive (ii) by (i)
 Derive (i) by (ii) when P is closed and E is complete.

Examples
Convex cone

Definition
Let E be an n.v.s. P is a convex cone with vertex at 0 if P is closed under linear combinations with positive coefficients, i.e., $\lambda x + \mu y \in P$, $\forall x, y \in P$, $\forall \lambda, \mu > 0$.

Jinyi Wang
Positive Linear Functionals
Outline

Introduction
 Definitions
 Goal

Proof
 Derive (ii) by (i)
 Derive (i) by (ii) when P is closed and E is complete.

Examples
Let F be an n.v.s. and let P be a convex cone with vertex at 0. Set $F = P - P$, so that F is a linear subspace.
Let F be an n.v.s. and let P be a convex cone with vertex at 0. Set $F = P - P$, so that F is a linear subspace. Consider the following two properties:

(i) Every linear functional f on E such that $f(x) \geq 0 \ \forall x \in P$, is continuous on E.

(ii) F is a closed subspace of finite codimension.

Our goal is to prove:

\Rightarrow (i) \Rightarrow (ii) \Rightarrow (i) when E is a Banach space and P is closed.
Let F be an n.v.s. and let P be a convex cone with vertex at 0. Set $F = P - P$, so that F is a linear subspace. Consider the following two properties:

(i) Every linear functional f on E such that $f(x) \geq 0 \ \forall x \in P$, is continuous on E.

(ii) F is a closed subspace of finite codimension.

Our goal is to prove:

- $(i) \implies (ii)$
- $(ii) \implies (i)$ when E is a Banach space and P is closed.
Outline

Introduction
 Definitions
 Goal

Proof
 Derive (ii) by (i)
 Derive (i) by (ii) when P is closed and E is complete.

Examples
Previous conclusion

Ex. 1.5
Let E be an infinite-dimensional n.v.s. There exists an algebraic basis of E. What’s more, if $\{e_\alpha\}_{\alpha \in \Gamma}$ is a set of linear independent vector in E, we can expand it to a set of algebraic basis of E. [Proved by Zorn’s Lemma.]
And we can always construct a linear functional on E which is not continuous.
Step 1: F is closed.

Through this part we assume (i), i.e., for every linear functional f on E, if f is non-negative on P, then f is continuous on E.

Proof.

We assume, by contradiction, that there exists $\{x_n\} \subset F$, such that $\lim_{n \to \infty} x_n = x_0 \notin F$.

Then construct a functional f on E by following steps:

- For each $w \in E$, take "the component of w in the direction of $x_0" : kx_0$
- Consider the functional on E defined by $f(w) = k$.

\[
\boxed{}
\]
Step 2: Every linear subspace of E of which the intersection with F contains only zero is of finite dimension.

Proof.

We assume, by contradiction, that there exists a linear infinite-dimensional subspace $M \subset E$, such that $M \cap F = \{0\}$. We may take a $M' \subset M$ of countable dimension with basis $\{f_n\}_{n \in \mathbb{N}}$. Then construct a functional ϕ on E by following steps:

- For each w in E, take "the component of w in M'":
 \[\sum_{n \in \Gamma} a_n f_n. \]
- Consider the functional ϕ on E defined by:
 \[\phi(w) = \sum_{n \in \Gamma} n a_n y_n \]
Step 3: The quotient space F/E is of finite dimension.

Proof.
Take a set of basic of E: $\{e_\alpha\}_{\alpha \in \Gamma}$. Then we could take the set of representation element of each of those equivalent class:

$$\{\hat{e}_\alpha\}_{\alpha \in \Gamma} \subset E$$

Let M be the linear subspace spanned by $\{\hat{e}_\alpha\}_{\alpha \in \Gamma} \subset E$. Then M is of finite dimension by previous conclusion. Therefore, F/E is of finite dimension, namely, F is of finite codimension. $$\square$$
Outline

Proof

Derive (ii) by (i)

Derive (i) by (ii) when P is closed and E is complete.
First step: when $P - P = E$

Through this part we assume (ii), i.e., F is a closed subspace of finite codimension. We also assume that E is a Banach space and P is closed.

The thought is to prove:

(a) There exists a constant $C > 0$ such that every $x \in E$ has a decomposition $x = z - y$ with $y, z \in P$, $\|y\| \leq C\|x\|$ and $\|z\| \leq C\|x\|$.

(b) Argue by contradiction.
Step 1: (a)

Claim that there exists a constant $C > 0$ such that every $x \in E$ has a decomposition $x = z - y$ with $y, z \in P$, $\|y\| \leq C\|x\|$ and $\|z\| \leq C\|x\|$.

Consider the set:

$$K = \{ x = y - z \text{ with } y, z \in P, \|y\| \leq C\|x\| \text{ and } \|z\| \leq C\|x\| \}$$

Then it is suffice to prove that there exists a constant c such that $B(0, c) \subset K$.

1. Find a c and $y_0 \in E$ such that $B(y_0, 4c) \subset \bar{K}$.
2. Show that $B(0, 2c) \subset \bar{K}$.
3. Show that $B(0, c) \subset K$.
Step 1: (b)

Consider a sequence \((x_n)\) in \(E\) such that \(\|x_n\| \leq \frac{1}{2^n}\) and \(f(x_n) \geq 1\). Then we have:

\[
x_n = y_n - z_n, \quad \|y_n\| \leq C \|x_n\| \quad \text{and} \quad \|z_n\| \leq C \|x_n\|.
\]

Set \(u_n = \sum_{i=1}^{n} y_i\) and \(u = \sum_{i=1}^{\infty} y_i\).
Therefore,

\[
P \ni u - u_n = \sum_{i=n+1}^{\infty} y_i \implies f(u) \geq f(u_n), \quad \forall \, n \in \mathbb{N}
\]

\[
1 \leq f(x_n) \leq f(y_n) \implies f(u_n) \geq n, \quad \forall \, n \in \mathbb{N}.
\]

Hence we arrive at a contradiction.
Step 2: general case

By example 2 in Section 2.4, F admits a complement M of finite dimension.
Then we have:

- f is continuous on F. (Apply the previous conclusion to F)
- f is continuous on M. (M is a finite-dimensional linear subspace)
- For each x in E, consider its decomposition.
Examples

Check whether (i) or (ii) holds in the following examples.

(a) \(E = C([0, 1]) \) with its usual norm and
 \[P = \{ u \in E; u(t) \geq 0, \forall t \in [0, 1] \} , \]

(b) \(E = C([0, 1]) \) with its usual norm and
 \[P = \{ u \in E; u(t) \geq 0, \forall t \in [0, 1] \text{ and } u(0) = u(1) = 0 \} , \]

(c) \(E = \{ u \in C([0, 1]); u(0) = u(1) = 0 \} \) with its usual norm and
 \[P = \{ u \in E; u(t) \geq 0, \forall t \in [0, 1] \} , \]

(d) \(E = C([0, 1]) \) with the norm: \(\| f \| = \int_0^1 |f(t)| dt, \forall f \in E \)
 \[P = \{ u \in E; u(t) \geq 0, \forall t \in [0, 1] \} . \]
Examples

Check whether (i) or (ii) holds in the following examples.

(a) \(E = C([0, 1]) \) with its usual norm and
\[P = \{ u \in E; u(t) \geq 0, \forall t \in [0, 1] \}, \]

(b) \(E = C([0, 1]) \) with its usual norm and
\[P = \{ u \in E; u(t) \geq 0, \forall t \in [0, 1] \text{ and } u(0) = u(1) = 0 \}, \]

(c) \(E = \{ u \in C([0, 1]); u(0) = u(1) = 0 \} \) with its usual norm and
\[P = \{ u \in E; u(t) \geq 0, \forall t \in [0, 1] \}, \]

(d) \(E = C([0, 1]) \) with the norm:
\[\| f \| = \int_0^1 |f(t)| dt, \forall f \in E \]
\[P = \{ u \in E; u(t) \geq 0, \forall t \in [0, 1] \}. \]

(d) shows that we can not derive (i) by (ii) when \(E \) is not complete.