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A CLASS OF K-SAMPLE TESTS FOR COMPARING THE 

CUMULATIVE INCIDENCE OF A COMPETING RISK1 


Harvard School of Public Health and Dana-Farber Cancer Institute 

In this paper, for right censored competing risks data, a class of tests 
developed for comparing the cumulative incidence of a particular type of 
failure among different groups. The tests are based on comparing weighted 
averages of the hazards of the subdistribution for the failure type of interest. 
Asymptotic results are derived by expressing the statistics in terms of 
counting processes and using martingale central limit theory. I t  is proposed 
that weight functions very similar to those for the GP tests from ordinary 
survival analysis be used. Simulation results indicate that the asymptotic 
distributions provide adequate approximations in moderate sized samples. 

1. Introduction. Consider the competing risks setting where the data con- 
sist of failure times for different subjects and where failure is categorized into 
several distinct and exclusive types. In this paper a method is given for compar- 
ing over time the probability of failures of a certain type being observed among 
different groups. To be precise, suppose there are K independent groups of 
subjects, and let T,: be the failure time of the i th  subject in group k, i = 

1,. . .,n,, and 8Pk be the type of failure, 8Pk = 1,.. . , J. The pairs (Ti:,8Pk) from 
different subjects in a group are assumed to be independent and identically 
distributed. However, it is not assumed that the underlying processes leading to 
failures of different types are acting independently for a given subject. Rather, 
only quantities which can be identified from the observed data, regardless of 
whether or not the risks are independent, will be used. Thus quantities have a 
"crude" rather than a "net" interpretation, see Tsiatis (1975). 

Denote the subdistribution function for failures of type j in group k by 

F,,(t) = P(T;  I t ,  6,0, = j ) .  

This will be called the cumulative incidence function for failures of type j here 
[Kalbfleisch and Prentice (1980), pages 168-169, use this term]. The main subject 
of this paper is to develop tests for the hypothesis 

where F; is an unspecified subdistribution function and where the failure type 
of special interest is taken to be type 1.To simplify the presentation, the F,,(t) 
are assumed to be continuous with subdensities fjk(t) with respect to Lebesgue 
measure. 
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The motivation for this work came from the setting of clinical trials for the 
evaluation of cancer therapies. Investigators from the Eastern Cooperative 
Oncology Group were considering mounting a trial to investigate whether radio- 
therapy, when added to conventional therapy consisting of surgery and chem- 
otherapy, would prolong the disease-free interval. The investigators wished to 
use data on conventionally treated patients from earlier studies to identify 
subgroups of patients where a benefit from radiotherapy was most likely to be 
observed. Since radiotherapy is only applied locally, the benefit, if any, should be 
most apparent in those subgroups with the largest number of isolated local 
failures. Thus methods for comparing the cumulative incidence of isolated local 
failures from different subgroups were needed. One such comparison is presented 
in Section 5. 

Information on comparisons among treatments of the cumulative incidence of 
different types of failure could also be useful when selecting the appropriate 
treatment for a particular patient. For an adjuvant breast cancer patient there 
are a number of different possible types of treatment failure, including death 
from a toxic reaction to the therapy, an isolated local recurrence (which can 
often be successfully treated using only surgery or radiotherapy), appearance of 
distant metastases, development of a second type of cancer and so on. These 
different types of failure will not be of equal importance to the patient, and their 
likelihood may be different for different therapies. Thus, in addition to compar- 
ing treatments for time to failure, information on comparisons of the cumulative 
incidence of the different types of failure may also be useful. 

Let Sk(t)  = P(T,; > t) = 1- C,F,,(t) denote the survivor function for sub- 
jects in group k, and let 

(1.2) Ajk(t) = fjk(t)/Sk(t) 

be the cause specific hazard for failures of type j in group k. Much of the 
previous work on analyzing the effect of factors on competing risks has con- 
centrated on examining their effect on the Ajk, see Prentice, Kalbfleisch, 
Peterson, Flournoy, Farewell and Breslow (1978) and Larson (1984). However, 
the effect of a factor on the cause specific hazard for a particular type of failure 
can be quite different than its effect on the cumulative incidence of that type of 
failure. As an example of this, suppose there are two types of failure, local and 
distant, and suppose all cause specific hazards are constant, with the cause 
specific hazards for both local and distant failure being A,, = 3 in group 1, while 
in group 2, A,, = 2 for local failure and 'A,, = 1 for distant failure. Then the 
cumulative incidence functions for local failure are F,,(t) = (1 - e-6t)/2 in 
group 1 and F,,(t) = 2(1 - e-3t)/3 in group 2, so F,,(t) > F,,(t) for t > (log3)/3 
even though A,, > A,,. Differences in the relationships of cause specific hazards 
and the relationships of cumulative incidences are also seen in the example in 
Section 5. 

As a consequence, the hypothesis of equality of the cumulative incidence 
functions for failures of type 1is not equivalent to the hypothesis of equality of 
the cause specific hazard functions for failures of type 1, except when the 
survival functions Sk are also equal under the null, see (1.2). Although in 
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principle the hypothesis (1.1) could be examined by looking at  how the cause 
specific hazards for all causes of failure vary in the different groups, this would 
often be difficult in practice. The methods given here appear to be the first direct 
way to examine the hypothesis (1.1). 

The form of the proposed test statistics is clearest when only two groups are 
being compared. For this case it is proposed that tests be based on a score of the 
form 

where #lk is an estimate of Flk,see (2.3), and where K(t)  is a suitably chosen 
weight function. Basically, (1.3) compares weighted averages of the "sub-
distribution hazards" flk/(l - Flk). In Section 2 the class of K-sample tests, 
generalizations of (1.3), are developed and asymptotic results stated. In Section 3 
consideration is given to the choice of the weight function K(t), and a family of 
tests is proposed which is very similar to the GP tests given by Harrington and 
Fleming (1982) for ordinary survival analysis. In Section 4 results of a limited 
simulation study are given, which indicate generally good performance of the 
tests. Derivations of the asymptotic results are given in Section 6. The deriva- 
tions are based on a counting process formulation and martingale central limit 
theory. 

2. Development of the K-sample test statistic. In the remainder of the 
paper, it  is assumed that there are only two types of failure (J= 2). This does 
not place any restriction on the generality of the results, since when there are 
more than two types of failure, all types other than the type of interest can be 
combined into one "other" category while comparing the cumulative incidence of 
the type of interest. 

Before proceeding with the development, it will be convenient to introduce 
some additional notation. In general, if F is a subdistribution function, then 
G = 1- F. Define n = n .= Lf=,nk. Throughout a subscript replaced by a " * "  

will denote summation over that subscript. Also define yjk(t) = fjk(t)/Gjk(t) and 
rjk(t) 	= ];~jk(~) 

In general, the data will be right censored. Let Uik be the censoring time for 
the (i, k)th subject, with Uik independent of (T i ,a:,). I t  is assumed that only 
Tik= (Ti: A Uik) and 6, = 6iI(TikI,Uik) are observed, where A denotes 
minimum and I(A) is the indicator function of the set A. 

The development will be based on the theory of counting processes; see Aalen 
(1978b). Define 

nk 

(2.1) q k ( t )  = 
i =  

I(Tik 
1 

t,  6, = j )  

and 

(2.2) 
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Then Ni,(t) is the number of failures of type j by t and Yk(t) is the number of 
subjects still a t  risk just prior to t in group k. An estimate of the cumulative 
incidence function is then given by 

where gk(t  - ) is the left-hand limit of the Kaplan-Meier (1958) estimate gk(t) 
and where, to simplify the notation, gk(t - ) is defined to be 0 when Yk(t) = 0 
and the convention 0/0 = 0 is employed. 

Aalen (1978a) has given strong consistency and weak convergence results for 
(2.3). Although Aalen assumes independent risks, Tsiatis (1975) has shown that 
for dependent risks there is always a hypothetical setting with independent risks 
which gives the same distribution for the observed data; also see the beginning of 
Section 6. These results for (2.3) are also an immediate consequence of the more 
general results of Aalen and Johansen (1978); see also Mode (1976), Fleming 
(1978a, b) and Gill (1980b). Johansen (1978) showed that the estimators studied 
by Aalen and Johansen, and thus (2.3) as well, were nonparametric maximum 
likelihood estimates. 

To motivate the form of the test statistic, define (improper) random variables 
by 

Then Flk(t) = P(XikI t)  and ylk(t) is the hazard function for Xi,. Thus the 
statistic (1.3) compares the hazard functions of the Xik. The K-sample statistic 
will be defined by assigning a score to each group which compares this hazard for 
each group to a combined estimate of this hazard under the null. 

The null subdistribution FP cannot be estimated by computing (2.3) from the 
combined data set, since the null hypothesis does not require that either the Sk 
or the A,, be equal for different k. Defining 

R k ( t )  = I ( rk  2 t)yk(t)Glk(t -) /gk(t  - )  
gives 

1 ' 
dNlk(u), f o r t  < r k ,  

where the last equality follows from (2.3). The quantities rk are fixed times 
satisfying conditions given in the statement of Theorem 1. In the convergence 
arguments i t  will be convenient to have defined Rk(t)= 0 for t > rk. The 
expression for flksuggests taking 

as an estimator for I?;, the null value of I?,,. This estimator is consistent under 
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the null, which can be seen by noting that 

and recalling that the $,, all consistently estimate FP under the null. K-sample 
tests thus can be based on scores of the form 

where again the K k ( t )are suitably chosen weight functions. 
Further motivation for the estimator (2.5) comes from noting R,( t ) /n ,  

estimates P ( X ,  A Uik2 t ) , so R,(t) estimates the expected number of Xi, still 
a t  risk a t  time t in group k when they are censored by the U,,. Then R.( t )  
denotes this same quantity in the pooled sample, so dN,.(t)/R.(t) is essentially 
of the form number of events a t  t divided by the number a t  risk at  t .  

In practice the weight functions K,(t) in (2.6) will generally be of the form 
L( t)R,( t ) ,  for some function L( t ) .  With this definition for K,, and setting K( t )  
in (1.3) equal to L(t)R,( t )R,( t ) / [R,( t )+ R,(t)] , it  is easily verified that (2.6) 
has the desirable property of reducing to (1.3) when only two groups are being 
compared. 

The asymptotic distribution of the z,  will be given under a sequence of local 
alternatives where the subdistributions I$ are all absolutely continuous with 
respect to Lebesgue measure, and have densities satisfying 

uniformly in t ,  and 

uniformly in t ,  where the flkr(t) are bounded functions. Note that fl,, is 
identically 0. 

THEOREM1. Assume 0 < a, = lim n,/,n for each k .  Let I-,,k = 1,.. . , K ,  
be fixed times satisfying njl(rk) > 0,where n : ( t )  = akP(Tik2 t )  under the null 
hypothesis. Let K,(t) be predictable processes on [O,T,] such that 

uniformly in probability, where each K i  is bounded on [O,T,]. Let Z = 

(z,,  . . . , 2,)'. Then under a sequence of local alternatives satisfying (2.7) and 
(2.81, 

n-'/2Z zDN k ( p ,Z), 
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where -+, denotes convergence in distribution, and where the components of p 
are 

and the components of Z are 

and 

h,(t) = I ( t  I 7,)rI,O(t)/S,O(t). 

The proof of this theorem is outlined in Section 6. A consistent estimate 
of (2.10) under the null can be obtained by estimating hr(t) with fir(t) = 

nPII ( tI r,)~,(t)/$(t - ), F2 with (2.3), S:(t) with @(t - ), K; with nPIKk 
and FP(t) with 

When the functions Kk(t) are of the form L(t)Rk(t), then Czk= 0, so only 
K - 1 of the scores are linearly independent. An appropriate K-sample test 
statistic can then be formed by using a quadratic form consisting of K - 1 
components of Z and the inverse of their estimated variance-covariance matrix, 
which asymptotically will have a chi-square distribution with K - 1degrees of 
freedom under the null hypothesis. A stratified version of the test can also be 
given by computing contributions to the zk and the 8ik! within each stratum, 
adding the contributions over strata and proceeding as before. 

As a further extension, note that if the risks are assumed to be independent, 
then the test can easily be modified to test equality of the partial transition 
probabilities in the multiple decrement model studied by Aalen (1978a). Essen- 
tially the only change is to treat transitions to states not in the partial chain as 
censored failure times. 

In the absence of censoring, the entire development is much simpler, as 
discussed a t  the end of Section 6. In particular, n;(t) = aksi( t ) ,  and (3.7) 
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becomes 

DL,= [.;ll(k = kt) - 11]"'"'K,~(t)Kj,(t) [G;(t)] ' d ~ ~ ( t ) .  
0 

3. A specific class of tests. In this section the choice of the weight function 
in the scores (2.6) is considered. The discussion will be limited to the two-sample 
problem. The test then is based on the single score z,, and only weight functions 
of the form L(t)R,(t) will be considered, where L(t)  is a predictable process 
converging uniformly in probability to a bounded function LO(t). From Theorem 
1, the asymptotic efficacy of the test against a sequence of local alternatives 
satisfying (2.7) and (2.8) is 

where a h  is given by (2.10), with KP(t) = LO(t)Gy(t)hl(t) and where r = 7, A 72. 

In general, it  does not appear possible to solve for the function Lo which 
maximizes (3.1) for a particular alternative. Exceptions to this are when there is 
no censoring or when there is no competing cause of failure. In these cases the 
formula simplifies and standard arguments, see Gill (1980a), especially his Lemma 
5.2.1, and Schoenfeld (1981), can be applied to show (3.1) is maximized by 
Lo = P12/YP. 

For general use, one attractive possibility is to take 

(3.2) L ( t )  = [&,O(t)lP, 
where 1- G"; is defined by (2.11). Then taking p large will give more weight to 
early differences and taking p negative will give more weight to later differences. 
Note that since (3.2) is a function only of G"?, the resulting test will still be 
invariant to monotone transformations of the data. I t  is shown in Section 6 that 
the weight function resulting from (3.2) meets the conditions of Theorem 1. 

Further motivation for (3.2) comes from considering the family of alternatives 

where the null is 8 = 0. For a sequence ,of local alternatives from this family 
P12/yP = [GyIP, SO with either no censoring or no competing cause of failure the 
test using (3.2) is optimal for the alternative (3.3). Harrington and Fleming 
(1982) showed this for ordinary survival data, and in fact the test using (3.2) is 
asymptotically equivalent to their GP test when there is no competing cause of 
failure. 

To give a clearer interpretation of the alternative (3.3), note that under this 
alternative 
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TABLE1 
Empirical sizes of a nominal 5% level test 

Censoring 
distribution 

2 
test statistic 

p = l  p = O  p 1 

3 
test statistic 

p = l  p = O  p -1 

5 
test statistic 

p = l  p = O  p =  -1 

for all t .  Thus taking p = 1,0, -1specifies that the odds ratio, the hazard ratio 
yl(t; B1)/yl(t; 8,) and the cumulative risk ratio F(t; 8,)/F(t; dl), respectively, are 
constant over time. 

4. Simulation results. In the simulations the weight functions (3.2), with 
p = -1,0,1, were used, and all data was used in calculating the statistics. In all 
cases the number of subjects per group was n, = 50, and there were two types of 
failure. The first set of simulations, given in Table 1, examined the size of the 
tests. The number of groups used was K = 2, 3 and 5. The probability of each 
type of failure was 1/2, with the conditional failure distributions unit exponen- 
tial. The censoring distributions used were no censoring and uniform (0, C) 
censoring with C = 3.9207 (25% censored) and C = 1.59362 (50% censored). 

The second set of simulations, given in Table 2, compares the power of the 
tests using the three different values of p. In all cases the subdistribution for 
failures of type 1in group 1was G:(t) = 0.5(1 - e P t ) ,with the subdistribution 
for failures of type 1in group 2 given by (3.3), with (p, 8) = (- l,1.5), (0,2), (1,3). 
The values of 8 were chosen so that 75% of the failures in group 2 would be type 
1 in the absence of censoring. The censoring distributions used here were 
identical to those used in the first set of simulations, and the conditional 
distributions of failures of type 2 were again taken to be unit exponential in each 
group. 

TABLE2 
Empirical powers 

Alternative 

( ~ 9 0 )u (-191.5) ( ~ 9 0 )= (092) ( ~ 9 0 )= (193) 

Censoring test statistic test statistic test statistic 

distribution p = l  p = O  p -1 p = l  p = O  p =  -1 p = l  p = O  p =  -1 
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In each case 1000 simulated samples were generated, and the percent of 
samples where the test exceeded the upper 5% critical value of the appropriate 
chi-square distribution was calculated for each test. Thus binomial standard 
errors can be used for the entries in Tables 1and 2, although it should be noted 
that in each case the three tests are computed from the same samples. Uniform 
random numbers were generated using IMSL routine GGUBFS, and then trans- 
formed using the inverse cumulative distribution functions. 

The simulations with K = 2 were repeated with a log-logistic distribution for 
the conditional distribution of the failures of type 2 in group 1,to investigate the 
effect of having different failure distributions in the two groups for the compet- 
ing cause. The results were very similar to the results in Tables 1and 2 and are 
omitted. 

The empirical sizes in Table 1appear adequate, with only one of the entries 
more than 2 standard errors from the nominal size of 5%. For the powers in 
Table 2, two features stand out. One is that the test with p = m had the best 
power for the alternative with p = m in all cases. The second is that the 
differences in power are quite small. Although differences for ordinary survival 
data are not much larger, see Latta (1981), this does suggest that in applications 
where &:(T) is fairly large, as in the example in the following section, one may 
need to consider values of p more extreme than f1to seriously alter where the 
power of the test is focused. 

5. Example. The data are taken from two adjuvant breast cancer trials 
conducted by the Eastern Cooperative Oncology Group. Here the effect of 
number of positive nodes, a major prognostic factor in breast cancer, is ex- 
amined. As discussed in the Introduction, the goal is to identify patients who are 
a t  higher risk of developing isolated local recurrences, with distant recurrences 
being the competing type of failure. Table 3 gives the number of patients and the 
percents with isolated local and distant recurrences by number of positive nodes. 
Patients with both local and distant involvement a t  recurrence are included in 
the distant category. To get an idea of the amount of follow-up a t  the time of 
this analysis, there were 430 patients a t  risk at  3 years of follow-up, 138 at  risk a t  
5 years and the maximum follow-up was 7 years. 

TABLE3 
Summary of breast cancer data 

Number of positive nodes 

1-3 4-7 > 7 Total 

Number of patients 388 223 163 774 
Percent with isolated 

local recurrence 11.3 17.9 19.6 15.0 
Percent with distant 

recurrence 24.0 30.5 52.8 31.9 
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FIG.1. Cumulative incidence of local failure by number ofpositive nodes. 

Figure 1 gives the cumulative incidence of isolated local failure by nodal 
status. P-values using the test with weight function (3.2) with p = 0 are 0.02 for 
the overall three-way comparison, 0.02 for the pairwise comparisons of the 1-3 
node positive group to either the 4-7 group or the > 7 group and 0.89 for the 
pairwise comparison of 4-7 to > 7. Thus patients with 4 or more nodes positive 
appear to be more likely to have isolated local recurrences. 

. . . . . . . . . .  
 4-7 NODES POS 

YEARS 

FIG.  2 .  Cause specific hazard for local failure by number of positive nodes. 
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. . . . . . . . . .  
 4-7 NODES POS 

YEARS 

FIG.3. Cause specific hazard for distant failure by number of positive nodes. 

Estimated cause specific hazards for local and distant failures are given in 
Figures 2 and 3. The cumulative hazard estimators studied by Aalen (1976, 
197813) were used, and the smoothed hazard estimate calculated using an ap- 
proach similar to that given by Ramlau-Hansen (1983), with a bi-weight kernel 
and a window radius of 1.5 years. As discussed in the Introduction, relationships 
between cause specific hazards and cumulative incidence functions can be very 
different. Here the hazard for local failure in Figure 2 is larger in the > 7 group 
than in the 4-7 group, while the cumulative incidences for the two groups are 
nearly equal. This is due to the large difference in distant hazards in Figure 3. 
However, given the complexity of the relationships between the cause specific 
hazards, it hardly seems possible to infer the equality of the cumulative inci- 
dence functions for these two groups directly from the hazards. 

6. Derivation of the asymptotic results. Let Njkand Ykbe as defined by 
(2.1) and (2.2), and set 

Then M$ are orthogonal square integrable martingales with predictable vari- 
ance processes 

The filtration assumed here is the one generated by the processes Njkand Yk. 
This result will follow from Theorem 3.1.1 of Gill (1980). To put the current 
problem into Gill's setting, we can think of the failure times as being the 
minimum of latent failure times for each cause. Although the risks are not 
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assumed to be independent here, Tsiatis (1975) has shown that regardless of the 
distribution of the observed data, there are hypothetical independent latent 
failure times which give the same distribution for the observed data. The set of 
hypothetical latent failure times for a given subject, each censored by the other 
hypothetical latent failure times and by the Uik, then meet the conditions of 
Gill's theorem. 

The first result given here is that the estimator Pf defined by (2.11) converges 
uniformly in probability to Ff on [O, rm],where rm= max{rk). This will estab- 
lish that- the weighting functions proposed at  (3.2) meet the conditions of 
Theorem 1. Now 

The second integral converges uniformly to 0 in probability on [O, r,] because 
the integrand does, since each component function on the left converges uni- 
formly to the corresponding function on the right, which in each case is bounded, 
and because rm< co.Convergence of the first integral can be established using 
Lenglart's (1977) inequality [see Gill (1980a), page 181. 

Consistency of the variance estimate proposed in Section 2 can be established 
using very similar methods and will not be given. Next the proof of Theorem 1is 
outlined. Further details are given in a technical report available from the 
author. 

PROOFOF THEOREM1. Setting 

it is easily verified that 9; converges in probability to pk, so it remains to show 
that the vector W, whose components are 

converges in distribution to a NK(O,Z) distribution. 
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Using algebraic manipulations, integration by parts, (2.3) and formula 3.2.12 
of Gill (1980a), it can be verified that (6.1) can be expressed as 

where 

The joint asymptotic normality of the Ajkr(7k) and Bjr(rk) follows from Theo-
rem 2.1 of Andersen, Borgan, Gill and Keiding (1982). The conditions in Theorem 
1 have been given so that the conditions of the theorem of Andersen, Borgan, 
Gill and Keiding can easily be verified, by showing that the integrands converge 
uniformly in probability. The covariance calculations are also straightforward. 
The result then follows from the continuous mapping theorem [see, e.g., 
Billingsley (1968), page 341. 

In the absence of censoring, the X, defined by (2.4) are observed, and the 
tests introduced here reduce to standard survival analysis tests for comparing 
the hazards of the Xi,. A much simpler development can then be given, using 
counting processes defined from the Xi, and many of the results of Aalen 
(1978b), Gill (1980a) and Andersen, Borgan, Gill and Keiding (1982) can be 
applied directly. Note that even though the Xik are improper random variables, 
this creates no problems for the countiqg process formulation, and Gill specifi-
cally allows improper random variables. The reason the results are more com-
plicated with censoring is that when a subject fails from a competing cause, so 
that Xik = m,  the censoring time Uik is not observed, so that appropriate risk 
sets cannot be defined. 

Acknowledgments. The author wishes to thank David Harrington for 
helpful discussions during the preparation of this manuscript, the referees and 
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