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Goal of lecture

Goal of lecture

UPPSALA
UNIVERSITET

Last time:

@ Gromov compactness: sequences of pseudoholomorphic spheres
of bounden energy have subsequences that converge to “nodal
solutions” .

e Crucial feature: Aut(CP?) is a non-compact group (the group
of dim¢ = 3 of Mdbius transformations).
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Goal of lecture

el Goal of lecture

UNIVERSITET

Today:
@ The moduli space of pseudoholomorphic spheres and its
dimension formula (Fredholm index).
@ Computation of first Chern classes.

e Main applications:

o "“Uniruledness” of (CP",J) for any tame J.

o Restriction of the topology of “symplectic fillings” of the round
contact sphere (52771 «g) (Gromov [Gro85],
Eliashberg—Floer-McDuff [McD91b]).
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Goal of lecture

Take-home message

There are Jy-holomorphic lines CP! — CP" through every pair of
points, this property remains for all tame J.

\\\

Figure: Lines inside CP?.
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Goal of lecture

UPPSALA
UNIVERSITET

© Goal of lecture

© Local deformations

© The first Chern class

@ Classification of fillings of 5271

© References
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Local deformations Fredholm theory

Deformation theory

@ Gromov's compactness concerns the global topological structure

of the space of solutions.
@ The local structure of the space of solutions is controlled by

ellipticity of the operator 0.
@ The operator

0y: C®(CP, X) — QY(TX?),
1
U E(du—l—JodUOj),

has an elliptic linearisation (derivative) D,0; at u is thus
Fredholm when extended to suitable Banach spaces. [Gro85]

QOYTX) =T((T*CPY)%! @ u* TX): sections of u* TX-valued
anti-holomorphic one-forms on CP?, i.e. anti-complex bundle maps
TCP* — u*TX over CP.
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Fredholm theory
The Fredholm property

@ The kernel and cokernel of D,d, are both finite dimensional.

The Fredholm index of D,0, is indep. of u and J, and is equal to

index D,0; = dimg ker D,0,—dimg coker D,0; = n-x(CP*)+2-¢/*[u].

(Follows from Riemann—Roch below. Also the Chern class ¢; will be
treated below.)

@ The index is even: the reason is that ker and coker admit
complex structures (obvious in the integrable case).

@ In favourable cases: choosing J generic makes coker D,0 u = 0
at any solution 0 u = 0.

@ The latter solution space {0 ,u = 0} is then a smooth manifold
of dimension equal to the index.
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Fredholm index and Riemann—Roch
The Fredholm index

The Fredholm index of D,0, is equal to

index D,0; = dimg ker D,0 ,—dimg coker D,0,; = n-X(CPl)—I—chTX[u].

The index formula can be derived by using:
@ Invariance of the index under deformations by compact
operators.
@ The classical Riemann—Roch formula for a (sum of) line
bundle(s).
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Fredholm index and Riemann—Roch
The Fredholm index
The Fredholm index of D,0, is equal to

index D,0,; = dimg ker D,0,—dimg coker D,0; = n-x(CP)+2-¢/*[u].

More precisely: After homotopy through complex bundles, we may
assume that
u*TXgﬁl@EBE,,

is a sum of holomorphic line bundles £ — CP*.
Below we will see that the first Chern class is undeformed by this
homotopy, and satisfies

n
o/ X [u] = Z 1)
i=1

The terms on the right are the “Chern numbers” to be defined below.
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Local deformations Fredholm index and Riemann—Roch

Riemann—Roch

Recall the Riemann—Roch theorem [GH94] for line bundles on a
closed Riemann surface (X, /) of genus g > 0 (today g = 0).

@ L — Y aline bundle, £ — ¥ its dual e.g. L® L* — ¥ is the
trivial C-bundle ¥ x C — X.

@ Denote by
H(Z, L)
the finite dim. C-vector space of holomorphic sections of a line
bundle £ — ¥.
@ Denote by

HY(X, L) = HY(Z, L ® T

the finite dim. C-vector space of sections of anti-holomorphic
L*-valued forms that solve the J-equation.
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Local deformations Fredholm index and Riemann—Roch

Riemann—Roch

Recall the Riemann—Roch theorem [GH94] for line bundles on a
closed Riemann surface (¥, /) of genus g > 0 (today g = 0).

@ Denote by H(Z, L) the finite dim. C-vector space of
holomorphic sections of a line bundle £ — %.

@ Denote by
HYZ, L) = H(Z, L @ T*X%Y)
the finite dim. C-vector space of sections of anti-holomorphic
L-valued forms that solve the 0-equation.

@ Serre duality gives us:
HY(Z,£)* = H(L, £* ® T*L0),

where T*¥10 is the canonical line-bundle of holomorphic forms.
(Unlike £ @ T*¥%, £* @ T*X10 is a holomorphic bundle!)
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Local deformations Fredholm index and Riemann—Roch

Riemann—Roch
Recall the Riemann—Roch theorem [GH94] for line bundles on a
closed Riemann surface (¥, /) of genus g > 0.

Theorem (Riemann—Roch [GH94|)

dimg H°(X, £) — dimg(HY(X, £)*) = x(X) + 2¢f = 2 — 2g + 2¢f

@ Observe that the space
HY(Z, L)' = H'(Z, L ® T XY
can be identified with the cokernel of
0:T(L) = QONL) =T(L e TXoh).

@ Riemann—Roch thus gives us the index formula!
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The first Chern class [MS74]

Recall: For any complex vector bundle E — X there is an associated
first Chern class

cf € H*(X)
which is determined by the following axioms:

© For a general complex bundle E — X

E . _detE
Cl D Cl

where
detE=EAN.. NE—= X
——
dim(cE
is an associated C-line bundle.
@ For line bundles £1 and L5:

L1®Ly _ L1 Lo
(o =¢ +qg
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The first Chern class Definition

The first Chern class [MS74]

© For a general complex bundle E — X

E . _detE
Cl Dl Cl

where
detE:EAc...AcE
dim¢ E
is an associated C-line bundle.
@ For line bundles £; and L5:

Li®@cLly _ Ly Lo
G =¢q tq

and thus (since det(E; @ E;) = det(£1) @ det(E)):

Ei®E, _ B E>
fon =¢ +c.
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The first Chern class [MS74]

© For an oriented Riemann surface u: ¥ — X, the value
cflu]l €Z

is equal to the algebraic number of zeros of a generic section in
the pull-back C-bundle

u'detE =detu'E — X

This is also called the Chern number of u*det E — .
Note the dependence on the orientation of ¥ as well as the
orientation of the fibres of the C-bundle (which we take to be

the canonical one)! @
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The first Chern class [MS74]

Relation to Ricci-curvature [GH94]

When E = L is a holomorphic line bundle on a complex manifold X
the first Chern class with C—coefficients lives in H!(X) and can be
represented by the Ricci-curvature form

s :
=09 1og (h]o|?)

where h|| - ||? is the local expression for a Hermitian metric on £ and
o is a local holomorphic section.

Compare with:

WFs = éf)g log p.
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The first Chern class Properties

Properties of ¢

Useful consequences of the above:

o Adjunction formula: Let A/ — X be a C-line bundle. It is
immediate that

TTotN|x = TX N,

i.e. N is the normal bundle of X inside the total space Tot N of
N . In other words,

of N = X+ &V e H3(X) = H*(N)

(using the canonical identification of cohomology groups).
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The first Chern class Properties

Properties of ¢

Useful consequences of the above:
o Self-intersection: For a line bundle £ — X,

¢t =P.D.([XNXT)

where X’ C N is a generic smooth perturbation, e.g. a smooth
section (unlike holomorphic sections, there are always plenty of
smooth sections).

The manifold X N X’ is oriented! @
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The first Chern class Properties

Properties of ¢.

Useful consequences of the above:

e Formulation in terms of “divisors”: When £ — X is a
holomorphic line bundle on a complex manifold X that admits a
meromorphic section o then we have

cf = P.D.([c]o — [0]x)

where [o0]o C Hap—2(X) and [0]a € Han—2(X) are the cycles
induced by the zeroes and poles of o (holomorphic subvarieties)
counted with multiplicities.
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Computation of ¢; for CP"

Fix the following notation:
o L € Hy(CP") is the class of a linear embedding CP* C CP"
@ H € H,, »(CP") is the class a linear embedding CP"~! c CP",
e.g. the hyperplane CP™"! C CP" at infinity.
@ We use T € H*>(CP") to denote T = P.D.(H)
ie. T(L)=LeH=1.
Recall that:
@ Hy(CP")=7Z-L, H¥(CP")=Z-T, and H,, »(CP") =Z- H.
o ¢/CP" = 2T € HX(CPY). (Since CP' =2 §? and y(S?) = 2.)
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Computation of ¢; for CP!

Figure: A vector field in TCP! = TS? with two elliptic points, each
making a contributing of 41 to the intersection with the zero-section.
This shows that clT(CP1 [CPY] = x(S5?) =2
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Computation of ¢; for CP"

The general case follows from the adjunction formula:
@ Recall that
CP™\ {0} = O(1) — CPZ

and any linear hyperplane H C CP" disjoint from
0 € C"=CP"\ CP” ! is a holomorphic section

o: CPT1 — O(1).

with [0]o = 0 and [oo] = [CP"?] € H2 (n-1)—2(CP").
o We thus get c1 = P. D [(CP” 2] =

n—1
e Adjunction formula: ¢/ = T + CTCP :

By induction (/P = 2T) we get

TCP" 2 n
¢ =(n+1)T € H(CP")
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O(1): A neighbourhood of CP™ 1.

AN

Figure: The dual of the tautological bundle O(1) with total space
Tot(O(1)) = CP™\ {0}, the zero section is the hyperplane CP™ 1 at
infinity, and a hyperplane H which is disjoint from the origin is a
holomorphic section. This section vanishes at the intersection H N CP2 1
which is a hyperplane inside CP"! shown as a red dot.
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Computation of ¢ for O(k).

@ We have seen that for the line bundle O(1) — CP" we have

oW =T e H¥(CP") ]

@ From the fact that O(0) = C x CP" is the trivial line bundle,
0(0) _
and hence ¢,/ =0, and

O(k) ® O(ks) = O(ky + ko), ki € Z,

we thus get

¢ = kT € HA(CP"). J
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Computation of ¢ for O(—1)

In the case of the blowup
O(-1) =Bl,C™ — CP"
we thus get that
o UV = _T e Hy(CP)
@ Alternatively: find a meromorphic section o: CP" — O(—1)
with a simple pole along CP™~1. (Linear hyperplanes in
Blp C"**\ CP" = C""*\ {0}

disjoint from the blow-up locus).
e Writing E for the zero-section of O(—1) we compute the
algebraic intersection number

EeE=c’CY=_T()=-1

H 2 1
in the case of Bl C* — CP-.
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The first Chern class Computations

O(—1): The tautological line bundle.

H
Cprt

Figure: The tautological bundle O(—1) with total space

Tot(O(—1)) = Blp C", the zero section is the exceptional divisor

E = CP" 1, and a hyperplane H which is disjoint from the origin is a
meromorphic section. This section has a pole along a hyperplane in the
exceptional divisor shown as a red dot.
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Classification of fillings of 5271

Today's Application:

Classification of fillings of the
standard contact spheres

&

Uniruledness
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Classification of fillings of 5271

Standard contact sphere

Recall:

@ We have seen two Kahler potentials on C” with the standard
integrable almost complex structure Jp:

p(z) = log (1+z||*) and po(2) = 1z]*.
where || - || is the Euclidean norm.
@ They give rise to the Kahler forms

wrs = —ddcg and wg = —ddf%

equipped with natural primitives —d°%2 and —d°2.

@ Both are compatible with Jy, but correspond to different Kahler
metrics (Fubini—Study and flat metric).
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Classification of fillings of 5271

Standard contact sphere

Recall:
@ There is a symplectomorphism

(e f)) = (= ()

which preserves the primitives and which maps

Sl cC"to St ¢ B

V1+r2
@ The Liouville vector field ¢ defined by (cw = X, where X is the

choice of primitive one-form, are outwards pointing and thus
give rise to a contact form

(52"_1,a0 S >

4 | rg2n-1
on the sphere. This is the “round” contact form:
ap = 2 3 (xidy; — yidx;).
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Symplectic fillings

Definition

An odd-dimensional manifold (Y2""1 ) equipped with o € Q'(Y) is
a contact manifold with contact form « if (Y x R;, d(e')) is a
symplectic manifold (the Liouville vector induced by efa is given by

¢ = ).

Definition

Let (X,w) be a symplectic manifold with boundary together with a
choice of primitive A € Q(X) (i.e. d\ = w) defined near 9X, whose
corresponding Liouville v.f. ¢ € ['(TX) points outwards along 0.X.
Then (0X, Al1ax) is a contact manifold and we call (X,w) a
(strong) symplectic filling of (0X, A|rox).
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Symplectic fillings

Example

The closed 2n-disc (D?",wyp) is thus a symplectic filling of the
standard round contact sphere (52771, ag), with primitive

P _INS
d°7 =5 D (xidy; — yidx)

i=1
and Liouville vector field

1 n
G = 5 Z(Xiax,- + yi0y,).

i=1
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Symplectic fillings

The question that we want to study is:

Question

What are the possible symplectic fillings (X, w) of (52" ag), n > 1,
up to symplectomorphism? Simplifying assumption: faw =0on
each o € Hy(X).

Remark

@ By the additional assumption there are no Gromov-limits which
contains a “bubble” contained inside X.

@ In dimension dim X = 4 i.e. n = 2 the answer is: the standard
ball. [Gro85]

@ In addition, for n = 2, one can drop the assumption and thus
gets the ball blown up in a number of points.
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Symplectic fillings

The question that we want to study is:

Question

What are the possible symplectic fillings (X, w) of (5" ag), n > 1,
up to symplectomorphism? Simplifying assumption: faw =0on
each o € Hy(X).

Theorem (Eliashberg—Floer-McDuff [McD91b])

Under the above stronger assumptions (X, w) is diffeomorphic D?".

v

We will proceed to sketch some important steps of this proof.
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Classification of fillings of gHi=1 The moduli space

The moduli space of spheres

@ Using the Liouville flow, one finds a neighbourhood of
§2r=1 = 9X C (X?",w) which is symplectomorphic to a
neighbourhood of $2"~1 = 9D?" C (D", wy).
@ Since
(CP"\ CPL, wrs) 2 (D" $°L, )
we can remove the boundary X \ X and add a divisor CP2 L.
@ This produces a closed symplectic manifold

X = (X\oXx)ucpr!
equipped with the symplectic form @.
e Mayer—Vietoris gives
Ho(X) = Ha(X) @ Hy(CPT Y = Ho(X) D L - Z
(Two manifolds glued along a $2"~!, n > 2)
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Classification of fillings of gHi=1 The moduli space

The moduli space of spheres

Crucial properties:

@ Any n € Hy(X) decomposes as 7 = « + kL, where a € Hy(X)
and k € Z. The simplifying assumption implies

/ w=nm-k.
a+kL

o ¢/X(L) = ¢/P"(L) = (n+ 1), since L can be represented by a
line in a neighbourhood where X coincides with a
neighbourhood of CP™ C CP".

@ For a tame almost complex structure J on (X, w) which
coincides with Jy near CP"* C X there exists plenty of
J-holomorphic spheres in class L: e.g. take lines in CP™! C X.
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Classification of fillings of gHi=1 The moduli space

The moduli space of spheres

We define the moduli space of J-holomorphic spheres in class L by

My(L) =
= {u: (CPY,j) = (X,));05u=0,[u] = L € Hy(X)}/Aut(CP).

@ For generic J equal to Jy near CP7* the moduli space M (L)
is @ smooth manifold of dimension

index u — dimg Aut(CP*') =
= nx(5%) +2¢/"[u] — 2(3 - 3g)
= (n=3)x(S%) +2¢/*[u] =2(n—3)+2(n+1)=4n—4
° Here Aut(CP?) acts without fixed points! (Otherwise: M (L)

uld be an orbifold); the reason is that minimal area
pseudoholomorphic curves cannot be branched covers.
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Classification of fillings of gHi=1 The moduli space

Transversality

%erer to make coker D,0 = 0 hold for all J-holomorphic spheres
(this is necessary to conclude that M (L) is transversely cut out, and
hence a smooth manifold), the almost complex structure J must be
chosen generically.
@ In this case all J-holomorphic sphere of minimal energy are
necessarily simply covered by a topological argument.
@ Transversality can then be achieved by perturbing J within the
class of tame almost complex structures.

We will postpone the details of this crucial point to a later lecture. )
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Classification of fillings of gHi=1 The moduli space

Gromov's Compactness Theorem

Theorem (Gromov [Gro85])

Assume that 0 < E(u;) < C is uniformly bounded. After passing to a
subsequence, we may assume that there exists either:

@ A sequence ¢; € Aut(CP') of reparametrisations that makes
||d(uj o ;)| uniformly bounded, and the subsequence {u; o ¢;} is
C*°-convergent to a J-holomorphic sphere u..

© A stable nodal pseudoholomorphic sphere u., with at least two
non-constant components, and reparametrisations ¢;, such that:

o (¢;)*j is a sequence of complex structures on CP' which
C -converges to the complex structure j», on the nodal sphere;

loc™
e ujo ¢; converges uniformly to us, and C°-converges on

loc
CPI\T to .
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Stable nodal sphere (a priori limit)

Figure: A stable nodal sphere. Since the energies sum to fL WFg = T,
which is the minimal positive energy of any class in Hy(X), there must be
precisely one non-constant component in any limit of a sequence of

solutions u; € M (L).
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Classification of fillings of gHi=1 The moduli space

The moduli space of spheres

We define the moduli space of J-holomorphic spheres in class

L € Hy(X) to be
My(L) = {u: (CPY,j) = (X,J); [u] = L € Hy(X)}/Aut(CP?).

@ Hence M (L) is a smooth manifold of dimension
dimg M (L) = 4n — 4.

e M,(L) is compact by Gromov compactness. (There exists no
possible stable nodal sphere limits by minimality of energy.)

@ There exists a (possibly nontrivial!) CP!-bundle
M(L) — M (L) whose fibre is the domain that parametrises
ue My(L), and

dimg M (L) = dimg M(L)+dimg CP* = (4n—4)+2 = 4n—2,
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Classification of fillings of gHi=1 The moduli space

The moduli space of spheres
We have a smooth and compact moduli space
CP' — My(L) — My(L)
of dimg M (L) = 4n — 2. There is a smooth evaluation map
ev: My(L) = X
which at p € CP?! in the fibre over u € M takes the value u(p) € X.

o ev !(pt) for a generic pt € X is a submanifold
M,(L; pt) € My(L) of dimension

dimg M(L; pt) = 4n — 2 — dimg X = 2n — 2.
@ Pull back the CP*-bundle to yield a bundle
CP' — M,(L; pt) — M,(L; pt),
dimg M (L; pt) = dimg M_(L; pt) + dimg CP* = 2n
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Classification of fillings of gHi=1 The moduli space

Some useuful general nonsense

The evaluation map ev: M, — X can be constructed out of general

principles:

Write
G = Aut(CPY)
C ={u: (CPj) = (X,J); [u] =L € Hy(X)},
M=C/G =M,

And thus G — C — M is a G-principal bundle. (G acts on points in
C from the right by reparametrisation.)
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Classification of fillings of gHi=1 The moduli space

Some useuful general nonsense

Since G = Aut(CP?) acts naturally on CP! from the left @by
¢-pt=¢ " (pt), pt € CP,
we can thus form the induced CP!-bundle
My =CxcCP*=(CxCP)/G— M.

The right hand side is the quotient by the diagonal action
g (u,pt)=(u-g g pt)
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Classification of fillings of gHi=1 The moduli space

Some useuful general nonsense

There is also an evaluation map

EV:C x CP' = X,
(u,pt) = u(pt),

which is invariant under the above diagonal G-action.
The evaluation map can then be given as the induced map

ev = [EV]: (C x CPY)/G = M

on the quotient.
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Classification of fillings of gHi=1 The moduli space

The moduli space of spheres

In the case X = CP" and J = Jy we get:
°
M (L) = Gry(C™Y)
i.e. the space of complex-linear 2-planes (of
dimc = ((n+ 1) — 2)(2)).

°
MJO(L)
is the “tautological CP-bundle” over Gry(C"*1).
°
My, (L;pt) = CP™ ! = Gr(C")
i.e. the spaces of lines through some fixed point in CP".
°

M ,(L; pt) = Blo(C")

i.e. the tautological CP'-bundle over CP" 1.
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The proof

Theorem (Eliashberg—Floer—-McDuff [McD91b])

Under the above assumptions (X,w) is diffeomorphic D?".

Crucial steps in the proof.
The properties of the smooth map

ev: My(L;pt) = X

between equidimensional manifolds will be analysed. O

SN DT g Ty TN NP2 QUL BV VS Holomorphic Curve Theories in Symplectic Ge 46 /49



The proof

Theorem (Eliashberg—Floer—-McDuff [McD91b])

Under the above assumptions (X, w) is diffeomorphic D?".

Proof (1/2) that ev. map is of degree one.
o Take J = Jy near CP™1 C X.
o Take pt € CP"! and consider M_(L; pt) which is a closed
manifold of dimension 2n = dimg X.
e Since [u] ® [CP2] = 1 holds when [u] = L, and since each
intersection of a J-holomorphic curve with a J-holomorphic
divisor contributes positively, if u € M (L; pt) passes through a

second point pt’ € CP™"1, then u is contained entirely in the
divisor. (And is thus a classical linear embedding inside CP™ 1))

vV
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The proof

Theorem (Eliashberg—Floer-McDuff [McD91b])

Under the above assumptions (X,w) is diffeomorphic D?".

Proof (2/2) that ev. map is of degree one.

If we compute the degree of
ev: My(L;pt) = X

by taking the second point pt’ € CP” ! as well, then by then the
same computation as in the classical case (CP", Jy) gives that ev is
of degree one. ]

v

Since there exists a pseudoholomoprhic line through any two points in
X we call it uniruled.
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