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Goal of lecture

Goal of lecture

Last time:

Gromov compactness: sequences of pseudoholomorphic spheres
of bounden energy have subsequences that converge to “nodal
solutions”.

Crucial feature: Aut(CP1) is a non-compact group (the group
of dimC = 3 of Möbius transformations).
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Goal of lecture

Goal of lecture

Today:

The moduli space of pseudoholomorphic spheres and its
dimension formula (Fredholm index).

Computation of first Chern classes.

Main applications:

“Uniruledness” of (CPn, J) for any tame J.
Restriction of the topology of “symplectic fillings” of the round
contact sphere (S2n−1, α0) (Gromov [Gro85],
Eliashberg–Floer–McDuff [McD91b]).
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Goal of lecture

Take-home message

There are J0-holomorphic lines CP1 → CPn through every pair of
points, this property remains for all tame J .

Figure: Lines inside CP2.
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Goal of lecture

Plan

1 Goal of lecture

2 Local deformations

3 The first Chern class

4 Classification of fillings of S2n−1

5 References
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Local deformations Fredholm theory

Deformation theory
Gromov’s compactness concerns the global topological structure
of the space of solutions.
The local structure of the space of solutions is controlled by
ellipticity of the operator ∂J .
The operator

∂J : C∞(CP1,X )→ Ω0,1(TX 2n),

u 7→ 1

2
(du + J ◦ du ◦ j),

has an elliptic linearisation (derivative) Du∂J at u is thus
Fredholm when extended to suitable Banach spaces. [Gro85]

Ω0,1(TX ) = Γ((T ∗CP1)0,1 ⊗ u∗TX ): sections of u∗TX -valued
anti-holomorphic one-forms on CP1, i.e. anti-complex bundle maps
TCP1 → u∗TX over CP1.
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Local deformations Fredholm theory

The Fredholm property

The kernel and cokernel of Du∂J are both finite dimensional.

The Fredholm index of Du∂J is indep. of u and J , and is equal to

indexDu∂J = dimR kerDu∂J−dimR cokerDu∂J = n·χ(CP1)+2·cTX1 [u].

(Follows from Riemann–Roch below. Also the Chern class c1 will be
treated below.)

The index is even: the reason is that ker and coker admit
complex structures (obvious in the integrable case).

In favourable cases: choosing J generic makes cokerDu∂Ju = 0
at any solution ∂Ju = 0.

The latter solution space {∂Ju = 0} is then a smooth manifold
of dimension equal to the index.
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Local deformations Fredholm index and Riemann–Roch

The Fredholm index

The Fredholm index of Du∂J is equal to

indexDu∂J = dimR kerDu∂J−dimR cokerDu∂J = n·χ(CP1)+2·cTX1 [u].

The index formula can be derived by using:

Invariance of the index under deformations by compact
operators.

The classical Riemann–Roch formula for a (sum of) line
bundle(s).
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Local deformations Fredholm index and Riemann–Roch

The Fredholm index

The Fredholm index of Du∂J is equal to

indexDu∂J = dimR kerDu∂J−dimR cokerDu∂J = n·χ(CP1)+2·cTX1 [u].

More precisely: After homotopy through complex bundles, we may
assume that

u∗TX ∼= L1 ⊕ . . .⊕ Ln

is a sum of holomorphic line bundles L → CP1.
Below we will see that the first Chern class is undeformed by this
homotopy, and satisfies

cTX1 [u] =
n∑

i=1

cLi1 .

The terms on the right are the “Chern numbers” to be defined below.
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Local deformations Fredholm index and Riemann–Roch

Riemann–Roch

Recall the Riemann–Roch theorem [GH94] for line bundles on a
closed Riemann surface (Σ, j) of genus g ≥ 0 (today g = 0).

L → Σ a line bundle, L∗ → Σ its dual e.g. L ⊗ L∗ → Σ is the
trivial C-bundle Σ× C→ Σ.

Denote by
H0(Σ,L)

the finite dim. C-vector space of holomorphic sections of a line
bundle L → Σ.

Denote by
H1(Σ,L) = H0(Σ,L ⊗ T ∗Σ0,1)

the finite dim. C-vector space of sections of anti-holomorphic
L∗-valued forms that solve the ∂-equation.
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Local deformations Fredholm index and Riemann–Roch

Riemann–Roch
Recall the Riemann–Roch theorem [GH94] for line bundles on a
closed Riemann surface (Σ, j) of genus g ≥ 0 (today g = 0).

Denote by H0(Σ,L) the finite dim. C-vector space of
holomorphic sections of a line bundle L → Σ.

Denote by
H1(Σ,L) = H0(Σ,L ⊗ T ∗Σ0,1)

the finite dim. C-vector space of sections of anti-holomorphic
L-valued forms that solve the ∂-equation.

Serre duality gives us:

H1(Σ,L)∗ = H0(Σ,L∗ ⊗ T ∗Σ1,0),

where T ∗Σ1,0 is the canonical line-bundle of holomorphic forms.
(Unlike L ⊗ T ∗Σ0,1, L∗ ⊗ T ∗Σ1,0 is a holomorphic bundle!) �
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Local deformations Fredholm index and Riemann–Roch

Riemann–Roch
Recall the Riemann–Roch theorem [GH94] for line bundles on a
closed Riemann surface (Σ, j) of genus g ≥ 0.

Theorem (Riemann–Roch [GH94])

dimR H
0(Σ,L)− dimR(H1(Σ,L)∗) = χ(Σ) + 2cL1 = 2− 2g + 2cL1

Observe that the space

H1(Σ,L)∗ = H0(Σ,L ⊗ T ∗Σ0,1)∗

can be identified with the cokernel of

∂ : Γ(L)→ Ω0,1(L) = Γ(L ⊗ T ∗Σ0,1).

Riemann–Roch thus gives us the index formula!
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The first Chern class Definition

The first Chern class [MS74]
Recall: For any complex vector bundle E → X there is an associated
first Chern class

cE1 ∈ H2(X )

which is determined by the following axioms:
1 For a general complex bundle E → X

cE1 := cdetE
1

where
detE = E ∧ . . . ∧ E︸ ︷︷ ︸

dimC E

→ X

is an associated C-line bundle.
2 For line bundles L1 and L2:

cL1⊗L2
1 = cL1

1 + cL2
1
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The first Chern class Definition

The first Chern class [MS74]
1 For a general complex bundle E → X

cE1 := cdetE
1

where
detE = E ∧C . . . ∧C E︸ ︷︷ ︸

dimC E

is an associated C-line bundle.
2 For line bundles L1 and L2:

cL1⊗CL2
1 = cL1

1 + cL2
1

and thus (since det(E1 ⊕ E2) = det(E1)⊗ det(E2)):

cE1⊕E2
1 = cE1

1 + cE2
1 .
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The first Chern class Definition

The first Chern class [MS74]

3 For an oriented Riemann surface u : Σ→ X , the value

cE1 [u] ∈ Z

is equal to the algebraic number of zeros of a generic section in
the pull-back C-bundle

u∗ detE = det u∗E → Σ.

This is also called the Chern number of u∗ detE → Σ.
Note the dependence on the orientation of Σ as well as the
orientation of the fibres of the C-bundle (which we take to be
the canonical one)! �
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The first Chern class Properties

The first Chern class [MS74]

Relation to Ricci-curvature [GH94]

When E = L is a holomorphic line bundle on a complex manifold X
the first Chern class with C–coefficients lives in H1,1(X ) and can be
represented by the Ricci-curvature form

i

2π
∂∂ log (h‖σ‖2)

where h‖ · ‖2 is the local expression for a Hermitian metric on L and
σ is a local holomorphic section.

Compare with:

ωFS =
i

2
∂∂ log ρ.
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The first Chern class Properties

Properties of c1

Useful consequences of the above:

Adjunction formula: Let N → X be a C-line bundle. It is
immediate that

T TotN|X = TX ⊕N ,

i.e. N is the normal bundle of X inside the total space TotN of
N . In other words,

cT TotN
1 = cTX1 + cN1 ∈ H2(X ) ∼= H2(N )

(using the canonical identification of cohomology groups).
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The first Chern class Properties

Properties of c1

Useful consequences of the above:

Self-intersection: For a line bundle L → X ,

cL1 = P .D.([X ∩ X ′])

where X ′ ⊂ N is a generic smooth perturbation, e.g. a smooth
section (unlike holomorphic sections, there are always plenty of
smooth sections).
The manifold X ∩ X ′ is oriented! �
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The first Chern class Properties

Properties of c1.

Useful consequences of the above:

Formulation in terms of “divisors”: When L → X is a
holomorphic line bundle on a complex manifold X that admits a
meromorphic section σ then we have

cE1 = P .D.([σ]0 − [σ]∞)

where [σ]0 ⊂ H2n−2(X ) and [σ]∞ ∈ H2n−2(X ) are the cycles
induced by the zeroes and poles of σ (holomorphic subvarieties)
counted with multiplicities.
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The first Chern class Computations

Computation of c1 for CPn

Fix the following notation:

L ∈ H2(CPn) is the class of a linear embedding CP1 ⊂ CPn

H ∈ H2n−2(CPn) is the class a linear embedding CPn−1 ⊂ CPn,
e.g. the hyperplane CPn−1

∞ ⊂ CPn at infinity.

We use T ∈ H2(CPn) to denote T = P .D.(H)
i.e. T (L) = L • H = 1.

Recall that:

H2(CPn) = Z · L, H2(CPn) = Z · T , and H2n−2(CPn) = Z · H .

cTCP1

1 = 2T ∈ H2(CP1). (Since CP1 ∼= S2 and χ(S2) = 2.)
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The first Chern class Computations

Computation of c1 for CP1

Figure: A vector field in TCP1 = TS2 with two elliptic points, each
making a contributing of +1 to the intersection with the zero-section.
This shows that cTCP1

1 [CP1] = χ(S2) = 2
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The first Chern class Computations

Computation of c1 for CPn

The general case follows from the adjunction formula:

Recall that
CPn \ {0} = O(1)→ CPn−1

∞

and any linear hyperplane H ⊂ CPn disjoint from
0 ∈ Cn = CPn \ CPn−1

∞ is a holomorphic section

σ : CPn−1
∞ → O(1).

with [σ]∞ = 0 and [σ0] = [CPn−2] ∈ H2(n−1)−2(CPn−1).

We thus get c
O(1)
1 = P .D.[CPn−2] = T .

Adjunction formula: cTCPn

1 = T + cTCPn−1
∞

1 .

By induction (cTCP1

1 = 2T ) we get

cTCPn

1 = (n + 1)T ∈ H2(CPn)
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The first Chern class Computations

O(1): A neighbourhood of CPn−1
∞ .

CPn−1
∞

H

0

Figure: The dual of the tautological bundle O(1) with total space
Tot(O(1)) = CPn \ {0}, the zero section is the hyperplane CPn−1

∞ at
infinity, and a hyperplane H which is disjoint from the origin is a
holomorphic section. This section vanishes at the intersection H ∩ CPn−1

∞
which is a hyperplane inside CPn−1

∞ shown as a red dot.
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The first Chern class Computations

Computation of c1 for O(k).

We have seen that for the line bundle O(1)→ CPn we have

c
O(1)
1 = T ∈ H2(CPn)

From the fact that O(0) = C× CPn is the trivial line bundle,

and hence c
O(0)
1 = 0, and

O(k1)⊗O(k2) = O(k1 + k2), ki ∈ Z,

we thus get

c
O(k)
1 = kT ∈ H2(CPn).
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The first Chern class Computations

Computation of c1 for O(−1)
In the case of the blowup

O(−1) = Bl0 Cn+1 → CPn

we thus get that

c
O(−1)
1 = −T ∈ H2(CPn)

Alternatively: find a meromorphic section σ : CPn → O(−1)
with a simple pole along CPn−1

∞ . (Linear hyperplanes in

Bl0 Cn+1 \ CPn = Cn+1 \ {0}

disjoint from the blow-up locus).
Writing E for the zero-section of O(−1) we compute the
algebraic intersection number

E • E = c
O(−1)
1 = −T (L) = −1

in the case of Bl0 C2 → CP1.
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The first Chern class Computations

O(−1): The tautological line bundle.

CPn−1
∞

H

E

Figure: The tautological bundle O(−1) with total space
Tot(O(−1)) = Bl0 Cn, the zero section is the exceptional divisor
E = CPn−1, and a hyperplane H which is disjoint from the origin is a
meromorphic section. This section has a pole along a hyperplane in the
exceptional divisor shown as a red dot.
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Classification of fillings of S2n−1

Today’s Application:

Classification of fillings of the
standard contact spheres

&
Uniruledness
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Classification of fillings of S2n−1

Standard contact sphere
Recall:

We have seen two Kähler potentials on Cn with the standard
integrable almost complex structure J0:

ρ(z) = log (1 + ‖z‖2) and ρ0(z) = ‖z‖2.

where ‖ · ‖ is the Euclidean norm.

They give rise to the Kähler forms

ωFS = −dd c ρ

4
and ω0 = −dd c ρ0

4

equipped with natural primitives −d c ρ
4

and −d c ρ0

4
.

Both are compatible with J0, but correspond to different Kähler
metrics (Fubini–Study and flat metric).
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Classification of fillings of S2n−1

Standard contact sphere
Recall:

There is a symplectomorphism(
Cn, ωFS = d

(
−d c ρ

4

)) ∼=−→
(
B2n, ω0 = d

(
−d c ρ0

4

))
which preserves the primitives and which maps

S2n−1
r ⊂ Cn to S2n−1

r√
1+r2

⊂ B2n.

The Liouville vector field ζ defined by ιζω = λ, where λ is the
choice of primitive one-form, are outwards pointing and thus
give rise to a contact form(

S2n−1, α0 := −d c ρ0

4

∣∣∣
TS2n−1

)
on the sphere. This is the “round” contact form:
α0 = 1

2

∑
i(xidyi − yidxi).
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Classification of fillings of S2n−1

Symplectic fillings

Definition

An odd-dimensional manifold (Y 2n−1, α) equipped with α ∈ Ω1(Y ) is
a contact manifold with contact form α if (Y × Rt , d(etα)) is a
symplectic manifold (the Liouville vector induced by etα is given by
ζ = ∂t).

Definition

Let (X , ω) be a symplectic manifold with boundary together with a
choice of primitive λ ∈ Ω1(X ) (i.e. dλ = ω) defined near ∂X , whose
corresponding Liouville v.f. ζ ∈ Γ(TX ) points outwards along ∂X .
Then (∂X , λ|T∂X ) is a contact manifold and we call (X , ω) a
(strong) symplectic filling of (∂X , λ|T∂X ).
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Classification of fillings of S2n−1

Symplectic fillings

Example

The closed 2n-disc (D2n, ω0) is thus a symplectic filling of the
standard round contact sphere (S2n−1, α0), with primitive

−d c ρ0

4
=

1

2

n∑
i=1

(xidyi − yidxi)

and Liouville vector field

ζ0 =
1

2

n∑
i=1

(xi∂xi + yi∂yi ).
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Classification of fillings of S2n−1

Symplectic fillings
The question that we want to study is:

Question

What are the possible symplectic fillings (X , ω) of (S2n−1, α0), n > 1,
up to symplectomorphism? Simplifying assumption:

∫
α
ω = 0 on

each α ∈ H2(X ).

Remark

By the additional assumption there are no Gromov-limits which
contains a “bubble” contained inside X .

In dimension dimX = 4 i.e. n = 2 the answer is: the standard
ball. [Gro85]

In addition, for n = 2, one can drop the assumption and thus
gets the ball blown up in a number of points.
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Classification of fillings of S2n−1

Symplectic fillings

The question that we want to study is:

Question

What are the possible symplectic fillings (X , ω) of (S2n−1, α0), n > 1,
up to symplectomorphism? Simplifying assumption:

∫
α
ω = 0 on

each α ∈ H2(X ).

Theorem (Eliashberg–Floer–McDuff [McD91b])

Under the above stronger assumptions (X , ω) is diffeomorphic D2n.

We will proceed to sketch some important steps of this proof.
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Classification of fillings of S2n−1 The moduli space

The moduli space of spheres

Using the Liouville flow, one finds a neighbourhood of
S2n−1 = ∂X ⊂ (X 2n, ω) which is symplectomorphic to a
neighbourhood of S2n−1 = ∂D2n ⊂ (D2n, ω0).

Since
(CPn \ CPn−1

∞ , ωFS) ∼= (D2n \ S2n−1, ω0)

we can remove the boundary X \ ∂X and add a divisor CPn−1
∞ .

This produces a closed symplectic manifold

X := (X \ ∂X ) ∪ CPn−1
∞

equipped with the symplectic form ω.

Mayer–Vietoris gives

H2(X ) = H2(X )⊕ H2(CPn−1
∞ ) = H2(X )⊕ L · Z

(Two manifolds glued along a S2n−1, n ≥ 2)
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Classification of fillings of S2n−1 The moduli space

The moduli space of spheres

Crucial properties:

Any η ∈ H2(X ) decomposes as η = α + kL, where α ∈ H2(X )
and k ∈ Z. The simplifying assumption implies∫

α+kL

ω = π · k .

cTX
1 (L) = cTCPn

1 (L) = (n + 1), since L can be represented by a
line in a neighbourhood where X coincides with a
neighbourhood of CPn−1

∞ ⊂ CPn.

For a tame almost complex structure J on (X , ω) which
coincides with J0 near CPn−1

∞ ⊂ X there exists plenty of
J-holomorphic spheres in class L: e.g. take lines in CPn−1

∞ ⊂ X .
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Classification of fillings of S2n−1 The moduli space

The moduli space of spheres
We define the moduli space of J-holomorphic spheres in class L by

MJ(L) =

= {u : (CP1, j)→ (X , J); ∂Ju = 0, [u] = L ∈ H2(X )}/Aut(CP1).

For generic J equal to J0 near CPn−1
∞ the moduli space MJ(L)

is a smooth manifold of dimension

index u − dimR Aut(CP1) =

= nχ(S2) + 2cTX1 [u]− 2(3− 3g)

= (n − 3)χ(S2) + 2cTX1 [u] = 2(n − 3) + 2(n + 1) = 4n − 4

�Here Aut(CP1) acts without fixed points! (Otherwise: MJ(L)

would be an orbifold); the reason is that minimal area

pseudoholomorphic curves cannot be branched covers.
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Classification of fillings of S2n−1 The moduli space

Transversality

�
In order to make cokerDu∂ = 0 hold for all J-holomorphic spheres
(this is necessary to conclude that MJ(L) is transversely cut out, and
hence a smooth manifold), the almost complex structure J must be
chosen generically.

In this case all J-holomorphic sphere of minimal energy are
necessarily simply covered by a topological argument.

Transversality can then be achieved by perturbing J within the
class of tame almost complex structures.

We will postpone the details of this crucial point to a later lecture.
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Classification of fillings of S2n−1 The moduli space

Gromov’s Compactness Theorem

Theorem (Gromov [Gro85])

Assume that 0 < E (ui) ≤ C is uniformly bounded. After passing to a
subsequence, we may assume that there exists either:

1 A sequence φi ∈ Aut(CP1) of reparametrisations that makes
‖d(ui ◦ φi)‖ uniformly bounded, and the subsequence {ui ◦ φi} is
C∞-convergent to a J-holomorphic sphere u∞.

2 A stable nodal pseudoholomorphic sphere u∞ with at least two
non-constant components, and reparametrisations φi , such that:

(φi )
∗j is a sequence of complex structures on CP1 which

C∞loc -converges to the complex structure j∞ on the nodal sphere;
ui ◦ φi converges uniformly to u∞ and C∞loc -converges on
CP1 \ Γ to u∞.
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Classification of fillings of S2n−1 The moduli space

Stable nodal sphere (a priori limit)

E ≥ π

E = 0

E ≥ π E ≥ π

Figure: A stable nodal sphere. Since the energies sum to
∫
L ωFS = π,

which is the minimal positive energy of any class in H2(X ), there must be
precisely one non-constant component in any limit of a sequence of
solutions ui ∈MJ(L).
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Classification of fillings of S2n−1 The moduli space

The moduli space of spheres
We define the moduli space of J-holomorphic spheres in class
L ∈ H2(X ) to be

MJ(L) = {u : (CP1, j)→ (X , J); [u] = L ∈ H2(X )}/Aut(CP1).

Hence MJ(L) is a smooth manifold of dimension

dimRMJ(L) = 4n − 4.

MJ(L) is compact by Gromov compactness. (There exists no
possible stable nodal sphere limits by minimality of energy.)
There exists a (possibly nontrivial!) CP1-bundle
M̃J(L)→MJ(L) whose fibre is the domain that parametrises
u ∈MJ(L), and

dimR M̃J(L) = dimRMJ(L)+dimR CP1 = (4n−4)+2 = 4n−2,
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Classification of fillings of S2n−1 The moduli space

The moduli space of spheres
We have a smooth and compact moduli space

CP1 → M̃J(L)→MJ(L)

of dimR M̃J(L) = 4n − 2. There is a smooth evaluation map

ev : M̃J(L)→ X

which at p ∈ CP1 in the fibre over u ∈M takes the value u(p) ∈ X .
ev−1(pt) for a generic pt ∈ X is a submanifold
MJ(L; pt) ⊂ M̃J(L) of dimension

dimRMJ(L; pt) = 4n − 2− dimR X = 2n − 2.

Pull back the CP1-bundle to yield a bundle

CP1 → M̃J(L; pt)→MJ(L; pt),

dimR M̃J(L; pt) = dimRMJ(L; pt) + dimRCP1 = 2n
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Classification of fillings of S2n−1 The moduli space

Some useuful general nonsense

The evaluation map ev : M̃J → X can be constructed out of general
principles:
Write

G = Aut(CP1)

C = {u : (CP1, j)→ (X , J); [u] = L ∈ H2(X )},
M = C/G =MJ ,

And thus G → C → M is a G -principal bundle. (G acts on points in
C from the right by reparametrisation.)
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Classification of fillings of S2n−1 The moduli space

Some useuful general nonsense

Since G = Aut(CP1) acts naturally on CP1 from the left�by

φ · pt = φ−1(pt), pt ∈ CP1,

we can thus form the induced CP1-bundle

M̃J = C ×G CP1 = (C × CP1)/G → M .

The right hand side is the quotient by the diagonal action
g · (u, pt) = (u · g , g · pt).
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Classification of fillings of S2n−1 The moduli space

Some useuful general nonsense

There is also an evaluation map

EV : C × CP1 → X ,

(u, pt) 7→ u(pt),

which is invariant under the above diagonal G -action.
The evaluation map can then be given as the induced map

ev = [EV] : (C × CP1)/G → M

on the quotient.
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Classification of fillings of S2n−1 The moduli space

The moduli space of spheres
In the case X = CPn and J = J0 we get:

MJ0(L) ∼= Gr2(Cn+1)

i.e. the space of complex-linear 2-planes (of
dimC = ((n + 1)− 2)(2)).

M̃J0(L)

is the “tautological CP1-bundle” over Gr2(Cn+1).

MJ0(L; pt) ∼= CPn−1 = Gr1(Cn)

i.e. the spaces of lines through some fixed point in CPn.

M̃J0(L; pt) ∼= Bl0(Cn)

i.e. the tautological CP1-bundle over CPn−1.
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Classification of fillings of S2n−1 The proof

The proof

Theorem (Eliashberg–Floer–McDuff [McD91b])

Under the above assumptions (X , ω) is diffeomorphic D2n.

Crucial steps in the proof.

The properties of the smooth map

ev : M̃J(L; pt)→ X

between equidimensional manifolds will be analysed.
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Classification of fillings of S2n−1 The proof

The proof

Theorem (Eliashberg–Floer–McDuff [McD91b])

Under the above assumptions (X , ω) is diffeomorphic D2n.

Proof (1/2) that ev. map is of degree one.

Take J = J0 near CPn−1
∞ ⊂ X .

Take pt ∈ CPn−1
∞ and consider M̃J(L; pt) which is a closed

manifold of dimension 2n = dimR X .

Since [u] • [CPn−1
∞ ] = 1 holds when [u] = L, and since each

intersection of a J-holomorphic curve with a J-holomorphic
divisor contributes positively, if u ∈MJ(L; pt) passes through a
second point pt′ ∈ CPn−1

∞ , then u is contained entirely in the
divisor. (And is thus a classical linear embedding inside CPn−1

∞ .)
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Classification of fillings of S2n−1 The proof

The proof

Theorem (Eliashberg–Floer–McDuff [McD91b])

Under the above assumptions (X , ω) is diffeomorphic D2n.

Proof (2/2) that ev. map is of degree one.

If we compute the degree of

ev : M̃J(L; pt)→ X

by taking the second point pt′ ∈ CPn−1
∞ as well, then by then the

same computation as in the classical case (CPn, J0) gives that ev is
of degree one.

Since there exists a pseudoholomoprhic line through any two points in
X we call it uniruled.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 48 / 49



References

References
P. Griffiths and J. Harris.
Principles of algebraic geometry.
Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994.
Reprint of the 1978 original.

M. Gromov.
Pseudoholomorphic curves in symplectic manifolds.
Invent. Math., 82(2):307–347, 1985.

D. McDuff.
The local behaviour of holomorphic curves in almost complex
4-manifolds.
J. Differential Geom., 34(1):143–164, 1991.

D. McDuff.
Symplectic manifolds with contact type boundaries.
Invent. Math., 103(3):651–671, 1991.

J. W. Milnor and J. D. Stasheff.
Characteristic classes.
Princeton University Press, Princeton, N. J.; University of Tokyo
Press, Tokyo, 1974.
Annals of Mathematics Studies, No. 76.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 49 / 49


	Goal of lecture
	Local deformations
	Fredholm theory
	Fredholm index and Riemann–Roch

	The first Chern class
	Definition
	Properties
	Computations

	Classification of fillings of S2n-1
	The moduli space
	The proof

	References

