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Goal of lecture

el Goal of lecture

UNIVERSITET

Today:
@ “Uniruledness” of (CP",wes, J) for any tame J.

e Positivity of intersection.
e Cobordisms of moduli spaces.

@ Continuation of proof: Restriction of the topology of
“symplectic fillings” of the round contact sphere (52", ay)
(Gromov [Gro85], Eliashberg—Floer—-McDuff [McD91b]).

@ Definition of Lagrangian submanifolds.
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Goal of lecture

Take-home message

There are Jy-holomorphic lines CP! — CP" through every pair of
points, this property remains for all tame J.

\\\

Figure: Lines inside CP?.
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Goal of lecture

UPPSALA
UNIVERSITET

© Goal of lecture
© Uniruledness
© Classification of fillings

@ Lagrangian submanifolds

© References
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Uniruledness

Uniruledness

We show that CP" is uniruled for any tame almost complex structure
J € J¥me(CP",wes). First we need to recall the definitions from last

time. Let L € Hy(CP"):

My(L) =
= {u: (CPY,j) = (CP", J);0,u =0, [u] = L}/Aut(CP?).

which is a smooth manifold of dim 2n+2(n+ 1) — 6 = 4n — 4; and
CPY — M (L) — My(L)
the associated CP*-bundle with evaluation map
ev: My(L) — CP".
We also need the 2n-dim. moduli space M (L; pt) with fibration:
CP* — My(L;pt) — My(L;pt) = ev}(pt).
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Uniruledness

Uniruledness
By uniruledness we mean that:

Theorem (Gromov [Gro85])

The evaluation map y
M,(L; pt) - CP"

is of degree one for any generic

J E jtame(CPn’wFs)

and arbitrary pt € CP".

The proof relies on:
@ The property is true for Jy = J. We know all solutions in the
linear case (uses positivity of intersection).
@ A cobordism argument for the moduli space.
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Uniruledness for J = J;

For the standard integrable complex structure J = Jy on CP"
something even stronger is true:

Proposition

There exists a unique holomorphic curve of degree one

(i.e. homologous to L € Hy(CP™) =7 - L) that passes through two
given points P, # P, € CP", up to reparametrisation. This is the
complex line

CP' — CP",
[X1 ZXQ] — X1 'P1+X2' P2.

v

The proof relies heavily on positivity of intersection between complex
curves (dime = 1) and complex hypersurfaces (dimg = n — 1).
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Uniruledness

Positivity of intersection

Proposition (Positivity of intersection, Bézout)
Consider a connected holomorphic curve u: ¥ — X and a
holomorphic hypersurface D C X, i.e. dim¢ = dim¢ X — 1, such that
u is not contained inside D. Then:
@ u and D intersect in a discrete subset;
@ each geometric intersection point gives a positive contribution to
the algebraic intersection number [u] @ [D] > 0, and

e if an intersection point moreover is not a transverse intersection
(e.g. a tangency or an intersection of D and a singular point of
u), then that geometric point contributes at least +2.

Sketch of proof.
Non-contant holomorphic maps have a positive local degree. m
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Uniruledness for J = J;

Proposition

There exists a unique holomorphic curve of degree one

(i.e. homologous to L € Hy(CP") = Z - L) that passes through two
given points Py # P, € CP", up to reparametrisation. This is the
complex line

CP' — CP",
[X]_ ZX2] — X1 - P1—|—X2 : P2.

Proof.

If a curve u: (¥,j) — (CP", J) in class [u] = L is not of the above
form, then we can find a linear hyperplane CP"~! C CP" which is
tangent to the curve at some point, but which does not contain it.

v
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Uniruledness for standard Jj.

Proposition

There exists a unique holomorphic curve of degree one

(i.e. homologous to L € Hy(CP") = Z - L) that passes through two
given points Py # P, € CP", up to reparametrisation. This is the
complex line

CP' — CP",
[X]_ ZX2] — X1 - P1—|—X2 : P2.

Proof.

Positivity of intersection of the curve and the hyperplane implies that
H e [u] > 2 (each geometric intersection contributes positively, and a
tangency contributes at least +2). This contradicts He L = 1. O]

v
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Uniruledness

Uniruledness

By uniruledness we mean that:

Theorem (Gromov [Gro85])

The evaluation map 3
M,(L; pt) = CP"

is of degree one for any generic

J € JP(CP", wrs)

@ We have now established the property for Jy = J.

@ Now we outline the cobordism argument.
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Cobordisms of moduli spaces
In general, any k-parameter family
3o 1K= TRm(X,w)
of almost complex structures with
Js = J(s), sl

gives rise to a moduli space M — I* where the fibres over s € /¥ is
the moduli space M, of Js-holomorphic curves in X

Gromov compactness holds in the setting when u; is a sequence of
Ji-holomorphic curves where J; are tame almost complex structures
on (X,w) which C*-converge to some tame J, as i — oc.
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Uniruledness

Cobordisms of moduli spaces

Gromov compactness with parameter.

We can construct a tame almost complex structure of the form
J@® Jy on (X X Y, wx @ wy) for a suitable symplectic manifold
(Y,wy, Jy) equipped with a tame almost complex structure, which
contains a smooth embedding /¥ < Y. le.

e JDJy = S ® Jy over
Xx{s)cXxl"—XxY

which is both a symplectic and an almost complex submanifold.

@ M, consists of those curves contained entirely inside

Xx{s}CcXxI¥=XxY,
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Uniruledness

Cobordisms of moduli spaces

Remark
The choice of Y here is irrelevant, we can take e.g.

(Y>W7JY) = (CPNawF57 JO)
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Uniruledness

Cobordisms of moduli spaces

My, My,

U

: i =

Figure: A cobordism W = M of moduli spaces from X_ = M to
X+ = MJI.
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Uniruledness

Cobordisms of moduli spaces

Recall the following basic fact in differential topology about degrees
and cobordisms:

Lemma

Let F: W™ — M" be a smooth map between compact oriented
manifolds, where O9M = (). Choose a decomposition of OW into
compact manifolds X, i.e. OW"™t = X, LU X_. If we orient X, (resp.
X_) along (resp. against) the boundary orientation, then we have

deg(F|x,) = deg(F|x_).

@ In the above case we call W™ a smooth compact cobordism
from X_ to X,.
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Uniruledness

Cobordisms of moduli spaces

Recall the following basic fact in differential topology about degrees
and cobordisms:
Lemma

Let F: W™ — M" be a smooth map between compact oriented
manifolds, where OM = (). Choose a decomposition of OW into
manifolds Xy, i.e. OW™! = X, U X_. If we orient X, (resp. X_)
along (resp. against) the boundary orientation, then we have

deg(F|x,) = deg(F|x_).

@ The pieces X, of the boundary of W"™! may themselves be
disconnected manifolds. In this case, deg(F|x,) = 1 does not
imply that that there exists a single component for which the

degree is one.
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Uniruledness

Uniruledness for arbitrary tame J

Theorem (Gromov [Gro85])

The evaluation map MJ(L; pt) — CP" is of degree one for any
generic tame J.

Proof.
@ Recall Gromov's lemma that J**™¢(CP", ws) is contractible. In
particular we can find a one-parameter family J which connects
the standard Jy to J; = J.
o Consider the moduli space M;(L; pt), which is a cobordism
from M, (L; pt) to My, (L; pt). It admits a compactification by
Gromov's compactness thm. (cobordism version).
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Uniruledness

Uniruledness for arbitrary tame J

Theorem (Gromov [Gro85])

The evaluation map M (L; pt) — CP" is of degree one for any
generic tame J.

Proof.

@ Since L is the class of smallest positive symplectic area in
(CP", wes), fL wrs = m, Gromov's compactness theorem implies
the above moduli space already is compact.

o A transversality argument shows that M,(L) is a compact
manifold of dimension 2n 4 1 with smooth boundary when the
path J is generic. (We gloss over this point.)
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Uniruledness

Uniruledness for arbitrary tame J

Theorem (Gromov [Gro85])

The evaluation map M (L; pt) — CP" is of degree one for any
generic tame J.

Proof.

® The moduli space My(L; pt) is a cobordism from M, (L; pt) to
M (L; pt), and the evaluation map extends to the entire
cobordism: there is a fibration

CP! — MJ(L; pt) — My(L; pt).
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Uniruledness

Uniruledness for arbitrary tame J

Theorem (Gromov [Gro85])

The evaluation map M (L; pt) — CP" is of degree one for any
generic tame J.

Proof.
@ Since the evaluation map

/\;lJ(L;pt) — CP"
restricts to the evaluation map

/\;lJO(L;pt) — CP",

which is of degree one (the classical holomorphic case), the

differential topological lemma shows the claim.
Holomorphic Curve Theories in Symplectic Ge 21/55




Classification of fillings

Classification of fillings
The question that we want to study is:

Question

What are the possible symplectic fillings (X, w) of (5" ag), n > 1,
up to symplectomorphism? Simplifying assumption: faw =0on
each o € Hy(X).

Theorem (Eliashberg—Floer-McDuff [McD91b])

Under the above assumptions (X,w) is diffeomorphic D?".

For the proof, the properties of the smooth map
ev: My(L;pt) = X

between equidimensional manifolds will be analysed.
Holomorphic Curve Theories in Symplectic Ge 22 /55



The proof

Recall that B
X =(X\ox)ucprt
with the induced symplectic form .
In particular:
@ X is a closed symplectic manifold with a “divisor at infinity”

CP™! whose neighbourhood is symplectomorphic to a
neighbourhood of

CP™ C (CP", wrs).

@ For an almost complex structure J which is equal to Jy near this
divisor, we know all pseudoholomorphic lines near the divisor.
(They are the same as those in CP").
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Classification of fillings

Lines near CP™ 1.

A neighbourhood of CP7! C X is biholomorphic to a
neighbourhood of CP21 C (CP", Jp).

Figure: Lines near CP7;1 C X are standard holomorphic lines.
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The proof

Theorem (Eliashberg—Floer—-McDuff [McD91b])

Under the above assumptions (X,w) is diffeomorphic D?".

Proof that evaluation map is of degree one.
o Take J = Jy near CP™1 C X.
o Take pt € CP”! and consider M (L; pt) which is a closed
manifold of dimension 2n = dimp X.
o Since [u] @ [CP™'] = 1 holds when [u] = L, and since each
intersection of a J-holomorphic curve with a J-holomorphic
divisor contributes positively, if u € M (L; pt) passes through a

second point pt’ € CP™1, then u is contained entirely in the
divisor. (And is thus a classical linear embedding inside CP7 1))

DJ
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The proof

Theorem (Eliashberg—Floer—-McDuff [McD91b])

Under the above assumptions (X,w) is diffeomorphic D?".

Proof that evaluation map is of degree one.
If we compute the degree of

ev: My(L;pt) = X

by taking the second point pt’ € CP™! as well, then the same
classical argument as in the case of (CP", Jy) gives that ev is of
degree one. n

v

SN DT g Ty TN NP2 QUL BV VS Holomorphic Curve Theories in Symplectic Ge 26 /55



Classification of fillings

Lines near CP™ 1.

A neighbourhood of CP7t C X is biholomorphic to a
neighbourhood of CP™1 C (CP", Jy).

Figure: Lines can also enter the interior of X.
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Classification of fillings

Lines near CP™ 1.

A neighbourhood of CP"* C X is biholomorphic to a
neighbourhood of CP21 C (CP", Jy).

Figure: Lines can not enter the interior of X and then touch the divisor at
a second point pt’.
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The proof

Theorem (Eliashberg—Floer—-McDuff [McD91b])

Under the above assumptions (X,w) is diffeomorphic D?".

Proof that m;(X) = 0.
@ Pass to the universal cover (X, J, &) — (X, J,w). Note that

CP™! lifts to a number |7(X)| of disjoint divisors.

@ Pseudoholomorphic spheres admit lifts that touch precisely one
of the divisors.

@ The lift of the evaluation is again of “degree one”, which
contradicts positivity of intersection with the other divisors.

@ Use Seifert-van Kampen to deduce 71(X) = 0.
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The proof

Theorem (Eliashberg—Floer-McDuff [McD91b])

Under the above assumptions (X,w) is diffeomorphic D?".

Proof.

See Ghiggini—Niederkriiger's recent work [GN20] for the rest of the

proof in dimension > 6.

Punchline: X is a simply connected Z-homology ball. Use Smale's

h-cobordism theorem to produce the diffeomorphism.

The h-cobordism theorem applies only in dimension > 6! @ O
1
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Classification of fillings The four-dimensional case

The proof in dimension four

In dimension four, however, something much stronger is true:

Theorem (Gromov [Gro85])

When 2n = 4 any symplectic filling (X*,w) of S® is symplectomorphic
to (D*,wy), after a finite number of symplectic blow-downs.

First we will need to use some facts about pseudoholomorphic curves
in dimension four.
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[GECSITEINIRIITICIN The four-dimensional case

In dimension four

When dim X = 2n = 4 (i.e. n = 2) positivity of intersection holds
between pseudoholomorphic curves. More precisely:

Proposition (McDuff [McD91al)

Consider two connected pseudoholomorphic curves u and v in a
four-dimensional almost complex manifold that are not branched
covers of some common underlying curve. Then

@ u and v intersect in a discrete subset;

@ each geometric intersection point gives a positive contribution to
the algebraic intersection number [u] @ [v] > 0; and

@ if an intersection point between the two curves moreover is not a
transverse intersection (e.g. a tangency of u and v), then that
geometric intersection contributes at least +2.
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[GECSITEINIRIITICIN The four-dimensional case

The proof in dimension four

A second intermediate result which holds for symplectic manifolds
(X*,w) of dimension 2n = 4:

Lemma

An embedded pseudoholomorphic sphere of self-intersection
[u] ® [u] = k has Fredholm index

index(u) = nx(CP*) +2¢]/*[u] = 4 +2(2 + k) = 8 + 2k.

In particular, the expected (virtual) dimension of the moduli space of
the curve is

vdim(u) := index(u) — dimg Aut(CP') = 2 + 2k

(after taking quotient by reparam.)
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Classification of fillings The four-dimensional case

The proof in dimension four

Proof.
TC

In order to compute ¢;X[u] we use ¢/ CF" = \(CP') = 2 and the
adjunction formula.

(The normal bundle of the sphere is a C-bundle of Chern number k
by the assumption [u] e [u] = k.) O
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[GECSITEINIRIITICIN The four-dimensional case

Negative self-int. spheres

A second intermediate result which holds for symplectic manifolds
(X*, w) of dimension 2n = 4:

Lemma

An embedded pseudoholomorphic sphere of self-intersection
[u] ® [u] = k has Fredholm index

index(u) = nx(CP*) + 2¢/*[u] = 4 +2(2 + k) = 8 + 2k.

In particular, the expected (virtual) dimension of the moduli space of
the curve is

vdim(u) := index(u) — dimg Aut(CP') = 2 + 2k.

(This is the actual dimy if the transversality is achieved, i.e. when
coker D,0, =0.)
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[GECSITEINIRIITICIN The four-dimensional case

Negative self-int. spheres

Since embedded curves can be made transversely cut out for generic
J, after a generic choice of tame almost complex structure J on
(X*,w) one can conclude that:

Lemma

There exists no embedded pseudoholomorphic spheres of
self-intersection strictly less than —1 for generic tame J, and the
embedded spheres of self-intersection number —1 which satisfy some
fixed bound on their energy form a 0-dimensional compact manifold;
i.e. they form a finite set of points.
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[GECSITEINIRIITICIN The four-dimensional case

The proof in dimension four

Proof.

The fact that the manifold compact (and thus a finite nr. of points)
follows by Gromov's compactness, but one needs to make sure that
there exists no nodal spheres that are potential limits. O

We have used the sub-additivity of expected dimension which holds in
dimension four.

([u] + [vVI)? = [u]* + + v

vdim([u + v]) = vdim([u]) + vdim([v]) + 2

Figure: The self-intersection of a nodal sphere
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[GECSITEINIRIITICIN The four-dimensional case

The proof in dimension four

@ A solution which lives in a moduli space of expected negative
dimension cannot exist if transversality is achieved. (There are
no manifolds of negative dimension!)

@ Sub-additivity of the expected dimension comes from the fact
that a node z;z, = 0 can be smoothed by deforming the
right-hand side with the complex one-dimensional (real
two-dimensional) parameter € € C.
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The four-dimensional case
Sub-additivity of the expected dimension

The sub-additivity of expected dimension which holds in dimension
four:

Lemma

The (expected) dimension of moduli space of the psh. spheres u; for
i > 0 and the (expected) dimensions dy of the moduli spaces that
contain the components u’_ in the nodal limit of u; satisfy the relation

d=> di+2N
k

where N > 0 is the number of nodes of the limit.
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Classification of fillings The four-dimensional case

The proof in dimension four

Theorem (Gromov [Gro85])

When 2n = 4 any symplectic filling (X*, w) of S® is symplectomorphic
to (D*,wo) after a finite number of symplectic blow-downs.

v

Proof that moduli space is cpct. after blow-down.

@ The 2-dimensional manifold M (L; pt) need not be compact.
However..

@ By above a nodal limit must consist of one embedded sphere of
self-intersection —1 (expected dimension 0) disjoint from CPL
and one embedded sphere of self-intersection 0 (expected
dimension 2) which passes through pt.
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[GECSITEINIRIITICIN The four-dimensional case

A nodal line.

pt Cprt

0,0

Figure: The numbers denote the self-intersection indices of the different
lines. E is the exceptional divisor (line) of a blow-up. The red point is the
unique intersection between the line of self intersection 0 and E. The lines
of self-intersection number one (shown in black) converge to the nodal
line consisting of a line of self-intersection 0 (blue) and the exceptional
line (green).
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[GECSITEINIRIITICIN The four-dimensional case

The proof in dimension four

Theorem (Gromov [Gro85])

When 2n = 4 any symplectic filling (X,w) of S* is symplectomorphic
to (D*, wy) after a finite number of symplectic blow-downs.

v

Proof that moduli space is cpct. after blow-down.

@ To preclude a non-compact M (L) it thus suffices to blow down
all exceptional spheres of self-intersection —1 of symplectic area
less than [, wrs = .

° ‘There number such spheres is finite by the previous lemma!

@ We also need the fact that: a sphere of self-int. —1 has a
nbhd. which is symplectomorphic to a nbhd. of the exceptional
divisor E C B/D‘\*F(CZ for some 0 < \ < 1.

A

y.
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Classification of fillings The four-dimensional case

The proof in dimension four

Theorem (Gromov [Gro85])

When 2n = 4 any symplectic filling (X,w) of S* is symplectomorphic
to (D*,wo) after a finite number of symplectic blow-downs.

v

Idea of proof of diffeomorphism.

In this case positivity of intersection implies that M (L; pt) = CP!
and that N o

ev: M,(L;pt) — X
is foliation (i.e. coordinate system) of X by pseudoholomorphic lines
C away from pt € X.

Reason: There is a unique line with each tangency at pt. ‘ (Just as
for standard Jy.) O

v
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Lagrangian submanifolds

Exact symplectic manifolds

Definition
A symplectic manifold (X", d\) with a choice of primitive A for the
symplectic form is said to be exact.

@ Stoke's theorem together with fx dA\"" > 0 implies that closed
symplectic manifolds are never exact.

@ Recall that A induces the Liouville vector field ¢ via tcw = A.

e A Kihler potential o for a symplectic Kahler form w = iddc on
a complex manifold (X, J) induces the primitive A = —do/2.

@ For example: wy = d)\g where

1
No = —dI|z|[*/4 = 5 3 (xidy — yidk),

1

CO = 5 § (Xiax,- + yiay,-)-
i
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Lagrangian submanifolds

Lagrangian submanifolds

Definition

@ A half-dimensional manifold L" C (X?",w) of a symplectic
manifold is called Lagrangian if the pullback of the symplectic
form vanishes, i.e. w|7. = 0.

e A half-dimensional manifold L" C (X?",d\) of an exact
symplectic manifold with primitive \ of the symplectic form is
called an exact Lagrangian submanifold if the pullback of the
primitive is exact, i.e. |7, = dg is exact (g: L — R a smooth
function on L).
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Lagrangian submanifolds

Lagrangian submanifolds

Weinstein's creed
“Everything is a Lagrangian submanifold” J

@ Never the less: Existence of Lagrangians is a difficult problem!
When do they exist? We have only partial answers.

@ What is meant is that many constructions in symplectic
topology can be translated into statements about Lagrangian
submanifolds. Main example on next page.

SN DT A geTA TV P2 QUL ERU VIS Holomorphic Curve Theories in Symplectic Ge 46 /55



Lagrangian submanifolds

Graphs of symplectomorphisms
The graph

Mo ={(x,y) € Xi x Xo1 y = ¢(x)} C (X1 x Xo,w1 © —wn).

is Lagrangian if and only if

o

¢ (Xi,wi) = (Xo, w2)

is a symplectomorphism. Note the sigh —w,! @

-
Proof.

The inlcusion Id x ¢: X; — X; x X5 pulls back w; & —w, to

W1 — w1 = 0.
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Lagrangian submanifolds

Lagrangian submanifolds
More constructions of closed Lagrangians in closed symplectic
manifolds:
@ Curves v; C (X?,w;) of dimension dimg~y; = 1 in a symplectic
surface, and their products

'yl><...x'ynC(Xlx...xXn,wl@...@wl).

@ Fixed-loci of anti-symplectic involutions

~

I+ (X,w) = (X, —w), I*=1dx
(whenever they are half-dimensional).

@ Leaves of integrable systems (Hamiltonain torus actions; more
details next lecture).

SR DTy g Ty TN P2 QUL BV VS Holomorphic Curve Theories in Symplectic Ge 48 /55



The sphere in CP! x CP!

Consider the diagonal sphere
A C (CPl X CPl,wFs D —w,:s)

which is a Lagrangian sphere. Complex conjugation z — Z in an
affine chart induces an anti-symplectic involution

I: (CP* wes) — (CP', —wes).
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The sphere in CP! x CP!

Recall that wgs = éagp becomes

s = .
- é/*(aap) - éé/*ép -
= 90p= ;00 =
= —é@gp = —Wrs

under complex conjugation. (p is a real function!) Consequently
S =1{(z,Z) € CP* x CP'} C (CP* x CP*,wes @ wrs)

is a Lagrangian sphere.
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The sphere in CP! x CP!

Alternatively the Lagrangian sphere
S =1{(z,2Z) € CP' x CP'} C (CP* x CP*, wrs @ wrs)
is the fixed-point locus of the anti-symplectic involution

I: (CP' x CP,wes @ wrs) — (CP' x CPY, —wrs @ —wrs),

(Zl, 22) — (22,21).
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IRP" inside CP"

Complex conjugation in CP" is an anti-symplectic involution with
fixed-point locus
RP™ C (CP", wgs).

In the particular case n = 1 we get the equator S! = RP! C CP!.

Remark

The Lagrangian RP* C CP?! divides CP! into two hemispheres which
by symmetry each bound a symplectic area equal to /2. This will be
important next lecture.
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RP! inside CP?

Figure: The Lagrangian RP! C CP!. The south pole is the origin 0 € C
in the affine chart, and the north pole is co.
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Tori inside (CP)"

Example
The n-fold product

(RP)" C ((CPY)",wes @ . .. ® wrs)

is a Lagrangian n-dimensional torus which is the fixed-point locus of
an anti-symplectic involution.
This torus is sometimes called the Clifford torus.
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