

Holomorphic Curve Theories in Symplectic Geometry Lecture III

Georgios Dimitroglou Rizell

Uppsala University

Georgios Dimitroglou Rizell (Uppsala UniversHolomorphic Curve Theories in Symplectic Ge

Goal of lecture

Today:

- "Uniruledness" of $(\mathbb{C}P^n, \omega_{FS}, J)$ for any tame J.
 - Positivity of intersection.
 - Cobordisms of moduli spaces.
- Continuation of proof: Restriction of the topology of "symplectic fillings" of the round contact sphere (S²ⁿ⁻¹, α₀) (Gromov [Gro85], Eliashberg–Floer–McDuff [McD91b]).
- Definition of Lagrangian submanifolds.

Take-home message

There are J_0 -holomorphic lines $\mathbb{C}P^1 \to \mathbb{C}P^n$ through every pair of points, this property remains for all tame J.

- 2 Uniruledness
- Classification of fillings
- 4 Lagrangian submanifolds
- 5 References

Uniruledness

We show that $\mathbb{C}P^n$ is *uniruled* for any tame almost complex structure $J \in \mathcal{J}^{tame}(\mathbb{C}P^n, \omega_{FS})$. First we need to recall the definitions from last time. Let $L \in H_2(\mathbb{C}P^n)$:

$$\mathcal{M}_J(L) = \\ = \{u \colon (\mathbb{C}P^1, j) \to (\mathbb{C}P^n, J); \overline{\partial}_J u = 0, [u] = L\} / \operatorname{Aut}(\mathbb{C}P^1).$$

which is a smooth manifold of dim 2n + 2(n + 1) - 6 = 4n - 4; and

$$\mathbb{C}P^1 \to \tilde{\mathcal{M}}_J(L) \to \mathcal{M}_J(L)$$

the associated $\mathbb{C}P^1$ -bundle with evaluation map

$$\mathsf{ev}\colon ilde{\mathcal{M}}_J(L) o \mathbb{C}P^n$$

We also need the 2*n*-dim. moduli space $\tilde{\mathcal{M}}_J(L; \mathrm{pt})$ with fibration:

$$\mathbb{C}P^1 \to \tilde{\mathcal{M}}_J(L; \mathrm{pt}) \to \mathcal{M}_J(L; \mathrm{pt}) = \mathsf{ev}^{-1}(\mathrm{pt}).$$

Uniruledness

By uniruledness we mean that:

Theorem (Gromov [Gro85])

The evaluation map

$$ilde{\mathcal{M}}_J(L;\mathrm{pt}) o \mathbb{C}P^n$$

is of degree one for any generic

$$J \in \mathcal{J}^{tame}(\mathbb{C}P^n, \omega_{\mathsf{FS}})$$

and arbitrary $pt \in \mathbb{C}P^n$.

The proof relies on:

- The property is true for $J_0 = J$. We know *all* solutions in the linear case (uses positivity of intersection).
- A cobordism argument for the moduli space.

Uniruledness for $J = J_0$

For the standard integrable complex structure $J = J_0$ on $\mathbb{C}P^n$ something even stronger is true:

Proposition

There exists a unique holomorphic curve of degree one (i.e. homologous to $L \in H_2(\mathbb{C}P^n) = \mathbb{Z} \cdot L$) that passes through two given points $P_1 \neq P_2 \in \mathbb{C}P^n$, up to reparametrisation. This is the complex line

$$\mathbb{C}P^1 \to \mathbb{C}P^n,$$

[x_1:x_2] $\mapsto x_1 \cdot P_1 + x_2 \cdot P_2.$

The proof relies heavily on *positivity of intersection* between complex curves $(\dim_{\mathbb{C}} = 1)$ and complex hypersurfaces $(\dim_{\mathbb{C}} = n - 1)$.

Positivity of intersection

Proposition (Positivity of intersection, Bézout)

Consider a connected holomorphic curve $u: \Sigma \to X$ and a holomorphic hypersurface $D \subset X$, i.e. $\dim_{\mathbb{C}} = \dim_{\mathbb{C}} X - 1$, such that u is not contained inside D. Then:

- u and D intersect in a discrete subset;
- each geometric intersection point gives a positive contribution to the algebraic intersection number [u] ● [D] ≥ 0; and
- if an intersection point moreover is not a transverse intersection (e.g. a tangency or an intersection of D and a singular point of u), then that geometric point contributes at least +2.

Sketch of proof.

Non-contant holomorphic maps have a *positive* local degree.

Uniruledness for $J = J_0$

Proposition

There exists a unique holomorphic curve of degree one (i.e. homologous to $L \in H_2(\mathbb{C}P^n) = \mathbb{Z} \cdot L$) that passes through two given points $P_1 \neq P_2 \in \mathbb{C}P^n$, up to reparametrisation. This is the complex line

$$\mathbb{C}P^1 \to \mathbb{C}P^n,$$

 $[x_1:x_2] \mapsto x_1 \cdot P_1 + x_2 \cdot P_2.$

Proof.

If a curve $u: (\Sigma, j) \to (\mathbb{C}P^n, J_0)$ in class [u] = L is not of the above form, then we can find a linear hyperplane $\mathbb{C}P^{n-1} \subset \mathbb{C}P^n$ which is tangent to the curve at some point, but which does not contain it.

Uniruledness for standard J_0 .

Proposition

There exists a unique holomorphic curve of degree one (i.e. homologous to $L \in H_2(\mathbb{C}P^n) = \mathbb{Z} \cdot L$) that passes through two given points $P_1 \neq P_2 \in \mathbb{C}P^n$, up to reparametrisation. This is the complex line

$$\mathbb{C}P^1 \to \mathbb{C}P^n,$$

 $[x_1:x_2] \mapsto x_1 \cdot P_1 + x_2 \cdot P_2.$

Proof.

Positivity of intersection of the curve and the hyperplane implies that $H \bullet [u] \ge 2$ (each geometric intersection contributes positively, and a tangency contributes at least +2). This contradicts $H \bullet L = 1$.

Uniruledness

By uniruledness we mean that:

Theorem (Gromov [Gro85])

The evaluation map

$$ilde{\mathcal{M}}_J(L;\mathrm{pt}) o \mathbb{C}P^n$$

is of degree one for any generic

$$J \in \mathcal{J}^{tame}(\mathbb{C}P^n, \omega_{\mathsf{FS}})$$

- We have now established the property for $J_0 = J$.
- Now we outline the cobordism argument.

In general, any k-parameter family

$$\mathbf{J}\colon I^k\to \mathcal{J}^{\mathrm{tame}}(X,\omega)$$

of almost complex structures with

$$J_{\mathbf{s}} \coloneqq \mathbf{J}(\mathbf{s}), \ \mathbf{s} \in I^k,$$

gives rise to a moduli space $\mathcal{M}_{\mathbf{J}} \to I^k$ where the fibres over $\mathbf{s} \in I^k$ is the moduli space $\mathcal{M}_{J_{\mathbf{s}}}$ of $J_{\mathbf{s}}$ -holomorphic curves in X

Gromov compactness holds in the setting when u_i is a sequence of J_i -holomorphic curves where J_i are tame almost complex structures on (X, ω) which C^{∞} -converge to some tame J_{∞} as $i \to \infty$.

Gromov compactness with parameter.

We can construct a tame almost complex structure of the form $\mathbf{J} \oplus J_Y$ on $(X \times Y, \omega_X \oplus \omega_Y)$ for a suitable symplectic manifold (Y, ω_Y, J_Y) equipped with a tame almost complex structure, which contains a smooth embedding $I^k \hookrightarrow Y$. I.e.

•
$$\mathbf{J} \oplus J_Y = J_{\mathbf{s}} \otimes J_Y$$
 over

$$X \times {\mathbf{s}} \subset X \times I^k \hookrightarrow X \times Y$$

which is both a symplectic and an almost complex submanifold.

 $\bullet~\mathcal{M}_{\mathit{J}_{s}}$ consists of those curves contained entirely inside

$$X \times {\mathbf{s}} \subset X \times I^k \hookrightarrow X \times Y.$$

Remark

The choice of Y here is irrelevant, we can take e.g.

$$(Y, \omega, J_Y) = (\mathbb{C}P^N, \omega_{\mathsf{FS}}, J_0).$$

Figure: A cobordism $W = M_J$ of moduli spaces from $X_- = M_{J_0}$ to $X_+ = M_{J_1}$.

Recall the following basic fact in differential topology about degrees and cobordisms:

Lemma

Let $F: W^{n+1} \to M^n$ be a smooth map between compact oriented manifolds, where $\partial M = \emptyset$. Choose a decomposition of ∂W into compact manifolds X_{\pm} , i.e. $\partial W^{n+1} = X_+ \sqcup X_-$. If we orient X_+ (resp. X_-) along (resp. against) the boundary orientation, then we have

 $\deg(F|_{X_+}) = \deg(F|_{X_-}).$

 In the above case we call Wⁿ⁺¹ a smooth compact cobordism from X₋ to X₊.

Recall the following basic fact in differential topology about degrees and cobordisms:

Lemma

Let $F: W^{n+1} \to M^n$ be a smooth map between compact oriented manifolds, where $\partial M = \emptyset$. Choose a decomposition of ∂W into manifolds X_{\pm} , i.e. $\partial W^{n+1} = X_+ \sqcup X_-$. If we orient X_+ (resp. X_-) along (resp. against) the boundary orientation, then we have

$$\deg(F|_{X_+}) = \deg(F|_{X_-}).$$

The pieces X_± of the boundary of Wⁿ⁺¹ may themselves be disconnected manifolds. In this case, deg(F|_{X±}) = 1 does not imply that that there exists a single component for which the degree is one.

Theorem (Gromov [Gro85])

The evaluation map $\tilde{\mathcal{M}}_J(L; \mathrm{pt}) \to \mathbb{C}P^n$ is of degree <u>one</u> for any generic tame J.

Proof.

- Recall Gromov's lemma that J^{tame}(CPⁿ, ω_{FS}) is contractible. In particular we can find a one-parameter family J which connects the standard J₀ to J₁ = J.
- Consider the moduli space *M*_J(*L*; pt), which is a cobordism from *M*_{J0}(*L*; pt) to *M*_{J1}(*L*; pt). It admits a compactification by Gromov's compactness thm. (cobordism version).

Theorem (Gromov [Gro85])

The evaluation map $\tilde{\mathcal{M}}_J(L; \mathrm{pt}) \to \mathbb{C}P^n$ is of degree <u>one</u> for any generic tame J.

Proof.

- Since L is the class of smallest positive symplectic area in (ℂPⁿ, ω_{FS}), ∫_L ω_{FS} = π, Gromov's compactness theorem implies the above moduli space already is *compact*.
- A transversality argument shows that *M*_J(*L*) is a compact manifold of dimension 2*n* + 1 with smooth boundary when the path J is generic. (We gloss over this point.)

Theorem (Gromov [Gro85])

The evaluation map $\tilde{\mathcal{M}}_J(L; \mathrm{pt}) \to \mathbb{C}P^n$ is of degree <u>one</u> for any generic tame J.

Proof.

The moduli space \$\tilde{\mathcal{M}}_{J}(L; pt)\$ is a cobordism from \$\tilde{\mathcal{M}}_{J_0}(L; pt)\$ to \$\tilde{\mathcal{M}}_{J}(L; pt)\$, and the evaluation map extends to the entire cobordism: there is a fibration

$$\mathbb{C}P^1 \to \tilde{\mathcal{M}}_{\mathsf{J}}(L; \mathrm{pt}) \to \mathcal{M}_{\mathsf{J}}(L; \mathrm{pt}).$$

Theorem (Gromov [Gro85])

The evaluation map $\tilde{\mathcal{M}}_J(L; \mathrm{pt}) \to \mathbb{C}P^n$ is of degree <u>one</u> for any generic tame J.

Proof.

• Since the evaluation map

 $\tilde{\mathcal{M}}_{\mathsf{J}}(L; \mathrm{pt}) \to \mathbb{C}P^n$

restricts to the evaluation map

 $\tilde{\mathcal{M}}_{J_0}(L; \mathrm{pt}) \to \mathbb{C}P^n,$

which is of degree one (the classical holomorphic case), the differential topological lemma shows the claim.

Georgios Dimitroglou Rizell (Uppsala UniversHolomorphic Curve Theories in Symplectic Ge

Classification of fillings

The question that we want to study is:

Question

What are the possible symplectic fillings (X, ω) of (S^{2n-1}, α_0) , n > 1, up to symplectomorphism? Simplifying assumption: $\int_{\alpha} \omega = 0$ on each $\alpha \in H_2(X)$.

Theorem (Eliashberg–Floer–McDuff [McD91b])

Under the above assumptions (X, ω) is diffeomorphic D^{2n} .

For the proof, the properties of the smooth map

$$\mathsf{ev}\colon ilde{\mathcal{M}}_J(L;\mathrm{pt}) o \overline{X}$$

between equidimensional manifolds will be analysed.

The proof

Recall that

$$\overline{X} = (X \setminus \partial X) \sqcup \mathbb{C}P_{\infty}^{n-1}$$

with the induced symplectic form $\overline{\omega}$. In particular:

$$\mathbb{C}P^{n-1}_{\infty} \subset (\mathbb{C}P^n, \omega_{\mathsf{FS}}).$$

For an almost complex structure J which is equal to J₀ near this divisor, we know all pseudoholomorphic lines near the divisor. (They are the same as those in CPⁿ).

Lines near $\mathbb{C}P_{\infty}^{n-1}$.

A neighbourhood of $\mathbb{C}P_{\infty}^{n-1} \subset \overline{X}$ is biholomorphic to a neighbourhood of $\mathbb{C}P_{\infty}^{n-1} \subset (\mathbb{C}P^n, J_0)$.

Figure: Lines near $\mathbb{C}P_{\infty}^{n-1} \subset \overline{X}$ are standard holomorphic lines.

The proof

Theorem (Eliashberg–Floer–McDuff [McD91b])

Under the above assumptions (X, ω) is diffeomorphic D^{2n} .

Proof that evaluation map is of degree one.

• Take
$$J = J_0$$
 near $\mathbb{C}P_{\infty}^{n-1} \subset \overline{X}$.

- Take pt ∈ CPⁿ⁻¹_∞ and consider M̃_J(L; pt) which is a closed manifold of dimension 2n = dim_ℝ X.
- Since [u] [ℂPⁿ⁻¹_∞] = 1 holds when [u] = L, and since each intersection of a J-holomorphic curve with a J-holomorphic divisor contributes positively, if u ∈ M_J(L; pt) passes through a second point pt' ∈ ℂPⁿ⁻¹_∞, then u is contained entirely in the divisor. (And is thus a classical linear embedding inside ℂPⁿ⁻¹_∞.)

The proof

Theorem (Eliashberg–Floer–McDuff [McD91b])

Under the above assumptions (X, ω) is diffeomorphic D^{2n} .

Proof that evaluation map is of degree one.

If we compute the degree of

$$\mathsf{ev} \colon \tilde{\mathcal{M}}_J(L; \mathrm{pt}) o \overline{X}$$

by taking the second point $pt' \in \mathbb{C}P_{\infty}^{n-1}$ as well, then the same classical argument as in the case of $(\mathbb{C}P^n, J_0)$ gives that ev is of degree one.

Lines near $\mathbb{C}P_{\infty}^{n-1}$.

A neighbourhood of $\mathbb{C}P_{\infty}^{n-1} \subset \overline{X}$ is biholomorphic to a neighbourhood of $\mathbb{C}P_{\infty}^{n-1} \subset (\mathbb{C}P^n, J_0)$.

Figure: Lines can also enter the interior of X.

Lines near $\mathbb{C}P_{\infty}^{n-1}$.

A neighbourhood of $\mathbb{C}P_{\infty}^{n-1} \subset \overline{X}$ is biholomorphic to a neighbourhood of $\mathbb{C}P_{\infty}^{n-1} \subset (\mathbb{C}P^n, J_0)$.

Figure: Lines can *not* enter the interior of X and then touch the divisor at a second point pt'.

The proof

Theorem (Eliashberg–Floer–McDuff [McD91b]) Under the above assumptions (X, ω) is diffeomorphic D^{2n} .

Proof that $\pi_1(\overline{X}) = 0$.

- Pass to the universal cover $(\tilde{X}, \tilde{J}, \tilde{\omega}) \to (\overline{X}, J, \omega)$. Note that $\mathbb{C}P_{\infty}^{n-1}$ lifts to a number $|\pi(\overline{X})|$ of disjoint divisors.
- Pseudoholomorphic spheres admit lifts that touch precisely one of the divisors.
- The lift of the evaluation is again of "degree one", which contradicts positivity of intersection with the other divisors.
- Use Seifert–van Kampen to deduce $\pi_1(X) = 0$.

The proof

Theorem (Eliashberg–Floer–McDuff [McD91b])

Under the above assumptions (X, ω) is diffeomorphic D^{2n} .

Proof.

See Ghiggini–Niederkrüger's recent work [GN20] for the rest of the proof in dimension ≥ 6 . Punchline: X is a simply connected \mathbb{Z} -homology ball. Use Smale's *h*-cobordism theorem to produce the diffeomorphism. The *h*-cobordism theorem applies only in dimension $\geq 6!$

The proof in dimension four

In dimension four, however, something much stronger is true:

Theorem (Gromov [Gro85])

When 2n = 4 any symplectic filling (X^4, ω) of S^3 is symplectomorphic to (D^4, ω_0) , after a finite number of symplectic blow-downs.

First we will need to use some facts about pseudoholomorphic curves in dimension four.

In dimension four

When dim X = 2n = 4 (i.e. n = 2) positivity of intersection holds between pseudoholomorphic curves. More precisely:

Proposition (McDuff [McD91a])

Consider two connected pseudoholomorphic curves u and v in a four-dimensional almost complex manifold that are not branched covers of some common underlying curve. Then

- u and v intersect in a discrete subset;
- each geometric intersection point gives a positive contribution to the algebraic intersection number [u] ● [v] ≥ 0; and
- if an intersection point between the two curves moreover is not a transverse intersection (e.g. a tangency of u and v), then that geometric intersection contributes at least +2.

The proof in dimension four

A second intermediate result which holds for symplectic manifolds (X^4, ω) of dimension 2n = 4:

Lemma

An embedded pseudoholomorphic sphere of self-intersection $[u] \bullet [u] = k$ has Fredholm index

index
$$(u) = n\chi(\mathbb{C}P^1) + 2c_1^{TX}[u] = 4 + 2(2+k) = 8 + 2k.$$

In particular, the expected (virtual) dimension of the moduli space of the curve is

$$\operatorname{vdim}(u) \coloneqq \operatorname{index}(u) - \operatorname{dim}_{\mathbb{R}}\operatorname{Aut}(\mathbb{C}P^1) = 2 + 2k$$

(after taking quotient by reparam.)

The proof in dimension four

Proof.

In order to compute $c_1^{TX}[u]$ we use $c_1^{T\mathbb{C}P^1} = \chi(\mathbb{C}P^1) = 2$ and the adjunction formula.

(The normal bundle of the sphere is a \mathbb{C} -bundle of Chern number k by the assumption $[u] \bullet [u] = k$.)

Negative self-int. spheres

A second intermediate result which holds for symplectic manifolds (X^4, ω) of dimension 2n = 4:

Lemma

An embedded pseudoholomorphic sphere of self-intersection $[u] \bullet [u] = k$ has Fredholm index

index
$$(u) = n\chi(\mathbb{C}P^1) + 2c_1^{TX}[u] = 4 + 2(2+k) = 8 + 2k.$$

In particular, the expected (virtual) dimension of the moduli space of the curve is

$$\operatorname{vdim}(u) \coloneqq \operatorname{index}(u) - \dim_{\mathbb{R}} \operatorname{Aut}(\mathbb{C}P^1) = 2 + 2k.$$

(This is the actual dim_{\mathbb{R}} if the transversality is achieved, i.e. when coker $D_u \overline{\partial}_J = 0.$)

Georgios Dimitroglou Rizell (Uppsala UniversHolomorphic Curve Theories in Symplectic Ge

Negative self-int. spheres

Since embedded curves can be made transversely cut out for generic J, after a generic choice of tame almost complex structure J on (X^4, ω) one can conclude that:

Lemma

There exists no embedded pseudoholomorphic spheres of self-intersection strictly less than -1 for generic tame J, and the embedded spheres of self-intersection number -1 which satisfy some fixed bound on their energy form a 0-dimensional compact manifold; i.e. they form a finite set of points.

The proof in dimension four

Proof.

The fact that the manifold compact (and thus a finite nr. of points) follows by Gromov's compactness, but one needs to make sure that there exists no nodal spheres that are potential limits.

We have used the sub-additivity of expected dimension which holds in dimension four.

$$([u] + [v])^2 = [u]^2 + 2[u] \bullet [v] + [v]^2$$

 $\operatorname{vdim}([u+v]) = \operatorname{vdim}([u]) + \operatorname{vdim}([v]) + 2$

Figure: The self-intersection of a nodal sphere

The proof in dimension four

- A solution which lives in a moduli space of expected negative dimension cannot exist if transversality is achieved. (There are no manifolds of negative dimension!)
- <u>Sub</u>-additivity of the expected dimension comes from the fact that a node z₁z₂ = 0 can be smoothed by deforming the right-hand side with the complex one-dimensional (real two-dimensional) parameter ε ∈ C.

Sub-additivity of the expected dimension

The sub-additivity of expected dimension which holds in dimension four:

Lemma

The (expected) dimension of moduli space of the psh. spheres u_i for $i \gg 0$ and the (expected) dimensions d_k of the moduli spaces that contain the components u_{∞}^k in the nodal limit of u_i satisfy the relation

$$d=\sum_k d_k+2N$$

where N > 0 is the number of nodes of the limit.

The proof in dimension four

Theorem (Gromov [Gro85])

When 2n = 4 any symplectic filling (X^4, ω) of S^3 is symplectomorphic to (D^4, ω_0) after a finite number of symplectic blow-downs.

Proof that moduli space is cpct. after blow-down.

- The 2-dimensional manifold $\mathcal{M}_J(L; \mathrm{pt})$ need not be compact. However..
- By above a nodal limit must consist of one embedded sphere of self-intersection −1 (expected dimension 0) disjoint from CP¹_∞ and one embedded sphere of self-intersection 0 (expected dimension 2) which passes through pt.

A nodal line. pt $\mathbb{C}P_{\infty}^{n-1}$ $E \stackrel{1}{\longrightarrow} 1$

Figure: The numbers denote the self-intersection indices of the different lines. E is the exceptional divisor (line) of a blow-up. The red point is the unique intersection between the line of self intersection 0 and E. The lines of self-intersection number one (shown in black) converge to the nodal line consisting of a line of self-intersection 0 (blue) and the exceptional line (green).

The proof in dimension four

Theorem (Gromov [Gro85])

When 2n = 4 any symplectic filling (X, ω) of S^3 is symplectomorphic to (D^4, ω_0) after a finite number of symplectic blow-downs.

Proof that moduli space is cpct. after blow-down.

- To preclude a non-compact $\mathcal{M}_J(L)$ it thus suffices to blow down all exceptional spheres of self-intersection -1 of symplectic area less than $\int_L \omega_{\text{FS}} = \pi$.
- There number such spheres is finite by the previous lemma!
- We also need the fact that: a sphere of self-int. -1 has a nbhd. which is symplectomorphic to a nbhd. of the exceptional divisor $E \subset Bl_{D_{\sqrt{\lambda}}^4} \mathbb{C}^2$ for some $0 < \lambda < 1$.

The proof in dimension four

Theorem (Gromov [Gro85])

When 2n = 4 any symplectic filling (X, ω) of S^3 is symplectomorphic to (D^4, ω_0) after a finite number of symplectic blow-downs.

Idea of proof of diffeomorphism.

In this case positivity of intersection implies that $\mathcal{M}_J(L; \mathrm{pt}) \cong \mathbb{C}P^1$ and that

$$\mathsf{ev}\colon ilde{\mathcal{M}}_J(L;\mathrm{pt}) o \overline{X}$$

is *foliation* (i.e. coordinate system) of \overline{X} by pseudoholomorphic lines \mathbb{C} away from $\text{pt} \in \overline{X}$.

Reason: There is a unique line with each tangency at pt. (Just as for standard J_0 .)

Exact symplectic manifolds

Definition

A symplectic manifold $(X^{2n}, d\lambda)$ with a choice of primitive λ for the symplectic form is said to be *exact*.

- Stoke's theorem together with ∫_X dλ^{∧n} > 0 implies that closed symplectic manifolds are never exact.
- Recall that λ induces the Liouville vector field ζ via $\iota_{\zeta}\omega = \lambda$.
- A Kähler potential σ for a symplectic Kähler form $\omega = i\partial \overline{\partial} \sigma$ on a complex manifold (X, J) induces the primitive $\lambda = -d^c \sigma/2$.
- For example: $\omega_0 = d\lambda_0$ where

$$egin{aligned} \lambda_0 &= -d^c \|\mathbf{z}\|^2/4 = rac{1}{2}\sum_i (x_i dy_i - y_i dx_i), \ \zeta_0 &= rac{1}{2}\sum_i (x_i \partial_{x_i} + y_i \partial_{y_i}). \end{aligned}$$

Definition

- A half-dimensional manifold Lⁿ ⊂ (X²ⁿ, ω) of a symplectic manifold is called Lagrangian if the pullback of the symplectic form vanishes, i.e. ω|_{TL} ≡ 0.
- A half-dimensional manifold Lⁿ ⊂ (X²ⁿ, dλ) of an exact symplectic manifold with primitive λ of the symplectic form is called an *exact Lagrangian submanifold* if the pullback of the primitive is exact, i.e. λ|_{TL} = dg is exact (g : L → ℝ a smooth function on L).

Weinstein's creed

"Everything is a Lagrangian submanifold"

- Never the less: Existence of Lagrangians is a difficult problem! When do they exist? We have only partial answers.
- What is meant is that many constructions in symplectic topology can be translated into statements about Lagrangian submanifolds. Main example on next page.

Graphs of symplectomorphisms The graph

$${\sf F}_\phi=\{(x,y)\in X_1 imes X_2;\;\;y=\phi(x)\}\subset (X_1 imes X_2,\omega_1\oplus-\omega_2).$$

is Lagrangian if and only if

$$\phi \colon (X_1, \omega_1) \xrightarrow{\cong} (X_2, \omega_2)$$

is a symplectomorphism. Note the sign $-\omega_2!$

Proof.

The inlcusion $\operatorname{Id} \times \phi \colon X_1 \to X_1 \times X_2$ pulls back $\omega_1 \oplus -\omega_2$ to $\omega_1 - \omega_1 = 0$.

More constructions of *closed* Lagrangians in *closed* symplectic manifolds:

Curves γ_i ⊂ (X²_i, ω_i) of dimension dim_ℝ γ_i = 1 in a symplectic surface, and their products

$$\gamma_1 \times \ldots \times \gamma_n \subset (X_1 \times \ldots \times X_n, \omega_1 \oplus \ldots \oplus \omega_1)$$

• Fixed-loci of anti-symplectic involutions

$$I: (X, \omega) \xrightarrow{\cong} (X, -\omega), \ I^2 = \mathrm{Id}_X$$

(whenever they are half-dimensional).

• Leaves of integrable systems (Hamiltonain torus actions; more details next lecture).

The sphere in $\mathbb{C}P^1 \times \mathbb{C}P^1$

Consider the diagonal sphere

$$\Delta \subset (\mathbb{C}P^1 imes \mathbb{C}P^1, \omega_{\mathsf{FS}} \oplus -\omega_{\mathsf{FS}})$$

which is a Lagrangian sphere. Complex conjugation $z \rightarrow \overline{z}$ in an affine chart induces an anti-symplectic involution

$$I: (\mathbb{C}P^1, \omega_{\mathsf{FS}}) \to (\mathbb{C}P^1, -\omega_{\mathsf{FS}}).$$

The sphere in $\mathbb{C}P^1 \times \mathbb{C}P^1$

Recall that $\omega_{\rm FS} = \frac{i}{2} \partial \overline{\partial} \rho$ becomes

$$\begin{aligned} & {}^{*}\omega_{\mathsf{FS}} = \\ & = \quad \frac{i}{2}I^{*}(\partial\overline{\partial}\rho) = \frac{i}{2}\overline{\partial}I^{*}\overline{\partial}\rho = \\ & = \quad \frac{i}{2}\overline{\partial}\partial\overline{\rho} = \frac{i}{2}\overline{\partial}\partial\rho = \\ & = \quad -\frac{i}{2}\partial\overline{\partial}\rho = -\omega_{\mathsf{FS}} \end{aligned}$$

under complex conjugation. (ρ is a *real* function!) Consequently

$$\mathcal{S} = \{(z,\overline{z}) \in \mathbb{C}P^1 imes \mathbb{C}P^1\} \subset (\mathbb{C}P^1 imes \mathbb{C}P^1, \omega_{\mathsf{FS}} \oplus \omega_{\mathsf{FS}})$$

is a Lagrangian sphere.

The sphere in $\mathbb{C}P^1 \times \mathbb{C}P^1$

Alternatively the Lagrangian sphere

$$S = \{(z,\overline{z}) \in \mathbb{C}P^1 imes \mathbb{C}P^1\} \subset (\mathbb{C}P^1 imes \mathbb{C}P^1, \omega_{\mathsf{FS}} \oplus \omega_{\mathsf{FS}})$$

is the fixed-point locus of the anti-symplectic involution

$$I: (\mathbb{C}P^1 \times \mathbb{C}P^1, \omega_{\mathsf{FS}} \oplus \omega_{\mathsf{FS}}) \to (\mathbb{C}P^1 \times \mathbb{C}P^1, -\omega_{\mathsf{FS}} \oplus -\omega_{\mathsf{FS}}), (z_1, z_2) \mapsto (\overline{z}_2, \overline{z}_1).$$

$\mathbb{R}P^n$ inside $\mathbb{C}P^n$

Complex conjugation in $\mathbb{C}P^n$ is an anti-symplectic involution with fixed-point locus

$$\mathbb{R}P^n \subset (\mathbb{C}P^n, \omega_{\mathsf{FS}}).$$

In the particular case n = 1 we get the equator $S^1 = \mathbb{R}P^1 \subset \mathbb{C}P^1$.

Remark

The Lagrangian $\mathbb{R}P^1 \subset \mathbb{C}P^1$ divides $\mathbb{C}P^1$ into two hemispheres which by symmetry each bound a symplectic area equal to $\pi/2$. This will be important next lecture.

$\mathbb{R}P^1$ inside $\mathbb{C}P^1$

Figure: The Lagrangian $\mathbb{R}P^1 \subset \mathbb{C}P^1$. The south pole is the origin $0 \in \mathbb{C}$ in the affine chart, and the north pole is ∞ .

Tori inside $(\mathbb{C}P^1)^n$

Example

The *n*-fold product

$$(\mathbb{R}P^1)^n \subset ((\mathbb{C}P^1)^n, \omega_{\mathsf{FS}} \oplus \ldots \oplus \omega_{\mathsf{FS}})$$

is a Lagrangian n-dimensional torus which is the fixed-point locus of an anti-symplectic involution.

This torus is sometimes called the *Clifford torus*.

References

P. Ghiggini and K. Niederkrüger.

On the symplectic fillings of standard real projective spaces. Preprint, https://arxiv.org/abs/2011.14464 [math.SG], 2020.

M. Gromov.

Pseudoholomorphic curves in symplectic manifolds. Invent. Math., 82(2):307-347, 1985.

D. McDuff.

The local behaviour of holomorphic curves in almost complex 4-manifolds. J. Differential Geom., 34(1):143–164, 1991.

D. McDuff.

Symplectic manifolds with contact type boundaries. *Invent. Math.*, 103(3):651–671, 1991.

A. Weinstein.

Symplectic manifolds and their Lagrangian submanifolds. Advances in Math., 6:329–346 (1971), 1971.