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Goal of lecture

Goal of lecture

Today:

Lagrangians from Hamiltonian torus actions.

Local model of Lagrangians.

The Fredholm index and Maslov index of discs.

Gromov’s Compactness for pseudoholomorphic discs.

Next time:

“Uniruledness” of Lagrangians in (CPn, ωFS, J) for any tame J .
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Goal of lecture

Take-home message

The moduli spaces of pseudoholomorphic curves with boundary
behave like real algebraic 1-dim varieties. I.e. they are more
complicated.

The nodal Gromov limits of pseudoholomorphic closed curves
form a moduli space of (expected) codimension two.

The nodal Gromov limits of pseudoholomorphic curves with
boundary form a moduli space of (expected) codimension one.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 4 / 56



Goal of lecture

Example: Real conics
We consider the family Ct = {z1z2 = t} ⊂ CP2 where t ∈ R is a real
parameter, and thus the Lagrangian RP2 ⊂ CP2 divides Ct into two
discs with boundary on the Lagrangian.
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Figure: The bdy. in RP2 of the disc components from C0.5 \ RP2.
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Figure: The bdy. in RP2 of the disc components from C0.1 \ RP2.
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Example: Real conics
We consider the family Ct = {z1z2 = t} ⊂ CP2 where t ∈ R is a real
parameter, and thus the Lagrangian RP2 ⊂ CP2 divides Ct into two
discs with boundary on the Lagrangian.
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Figure: The bdy. in RP2 of the disc components from C−0.1 \ RP2.
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Goal of lecture

Example: Real conics

When passing through t = 1 to t = −1 we must pass the nodal
configuration at t = 0 if we want to pass through real conics.

In the closed case, we could avoid t = 0 by utilizing the freedom
to choose t ∈ C∗ as a complex variable. (These solutions,
however, are not doubled pseudoholomorphic discs boundary on
RPn.)
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Lagrangian submanifolds

Lagrangian submanifolds

Definition

A half-dimensional manifold Ln ⊂ (X 2n, ω) of a symplectic
manifold is called Lagrangian if the pullback of the symplectic
form vanishes, i.e. ω|TL ≡ 0.

A half-dimensional manifold Ln ⊂ (X 2n, dλ) of an exact
symplectic manifold with primitive λ of the symplectic form is
called an exact Lagrangian submanifold if the pullback of the
primitive is exact, i.e. λ|TL = dg is exact (g : L→ R a smooth
function on L).
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Lagrangian submanifolds Examples

Prime examples: real parts
Fixed-point loci of anti-symplectic involutions

I : (X 2n, ω)→ (X 2n,−ω)

which are of maximal dimension (i.e. dimR = n).

Example

Products of projective spaces (the n-torus when all ni = 1)

RPn1 × . . .× RPnk ⊂ (CPn1 × . . .× CPnk , ωFS ⊕ . . .⊕ ωFS)

The 2-sphere

{(z , z)} ⊂ (CP1 × CP1, ωFS ⊕ ωFS)
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Lagrangian submanifolds Examples

Prime examples: orbits in toric systems

Another important example comes from integrable systems. Assume
that we are given

a symplectic Tn = (R/2πZ)n Lie-group action on (X 2n, ω).

which moreover is a Hamiltonian group action, i.e. there is a map

TeTn → C∞(X ,R),

V 7→ HV ,

which is a morphism of Lie algebras that satisfies

etV = φt
HV

: (X , ω)→ (X , ω).

(The action of etV ∈ Tn is given by the Hamiltonian time-t map
φt
HV

generated by HV : X → R.)

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 13 / 56



Lagrangian submanifolds Examples

The Poisson bracket

Definition

The Poisson bracket of two autonomous Hamiltonians
H ,G ∈ C∞(X ,R) on a symplectic manifold (X , ω) is the
autonomous Hamiltonian

{H ,G} := ω(XH ,XG )

where XH := φ̇t
H and XG := φ̇t

G are the infinitesimal generators.

Proposition (See [MS98])

φ̇t
{H,G} = [XH ,XG ].
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Lagrangian submanifolds Examples

Prime examples: orbits in toric systems

Proposition

Any regular n-dimensional orbit Tn · pt ⊂ X of a Hamiltonian
Tn-action is a Lagrangian n-torus.

Proof.

Tn is an abelian Lie group, so its Lie algebra (TeTn, [·, ·]) is
abelian. (The Lie bracket vanishes.)

For U ,V ∈ TeTn we have

ω(U ,V ) = {HU ,HV} = H[U,V ] = H0 = 0.

(So any two tangent vectors in the orbit have vanishing
symplectic pairing.)
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Lagrangian submanifolds Examples

A non-example

The symplectic 2-torus

(T2 = C/(2πZ⊕ i2πZ), ω0)

has an obvious symplectic T2-action by translation.
However, the vector-fields ∂x or ∂y are not Hamiltonian on the torus:
Reason: The two-forms

−ι∂xω0 = −dy and − ι∂yω0 = dx

are not exact on the torus. (Even though they are exact on (C, ω0).)
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Lagrangian submanifolds Examples

The toric action on CPn

The Fubini–Study form

ωFS =
i

2
∂∂ log (1 + ‖z‖2)

is preserved under the action by

U(1)n ⊂ U(n) ⊂ Aut(CPn, ωFS) = PSU(n + 1)

where U(1)n = Tn.
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Lagrangian submanifolds Examples

The toric action on CPn

Two general results:

Since CPn is simply connected π1(CPn) = 0, it follows that
H1(CPn,R) = 0 and hence
any symplectic action is Hamiltonian.

When there is a compatible almost complex structure
J ∈ J comp(X , ω), the gradient of the Hamiltonian satisfies

ω(·, J∇gH) = gω,J(·,∇gH) = dH(·)

and hence J∇gH = XH = φ̇t
H . (Recall that

gω,J(·, ·) = ω(·, J ·).)

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 18 / 56



Lagrangian submanifolds Examples

The toric action on CPn

We now describe the map

µ : CPn → Rn

whose i :th value is µi := H∂θi , where

TeU(1)n = Rn = 〈∂θ1 , . . . , ∂θn〉
I.e. µi is the Hamiltonian that generates the S1-action

{e}i−1 × U(1)× {e}n−i ⊂ U(1)n.

Lemma

The U(1)n-action on (CPn, ωFS) is generated by the Hamiltonian

∂θi 7→ µi := H∂θi =
‖zi‖2

2(1 + ‖z‖2)
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Lagrangian submanifolds Examples

The toric action on CPn

Proof (1/2).

Use the symplectomorphism

(Cn = CPn \ CPn−1
∞ , ωFS)

∼=−→ (B2n, ω0),

(ri , θi) 7→

(
ri√

1 + ‖r‖2
, θi

)

which obviously pulls back the primitive −d c ρ0

4
=
∑

i
r2
i

2
dθi of

ω0 to the primitive −d c ρ
4

=
∑

i
r2
i

2(1+‖r‖2)
dθi of ωFS.
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Lagrangian submanifolds Examples

The toric action on CPn

Proof (2/2).

The induced action of U(1)n on B2n again is the standard U(1)n

action, and hence

∂θi 7→ µi = H∂θi = ‖zi‖2/2 = r 2
i /2.

Indeed the gradient of r 2/2 in the Euclidean metric ω0(·, J0·) is
ri∂ri and

J0 · ri∂ri = ∂θi .
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Lagrangian submanifolds The momentum map

The momentum map

Definition

The map

µ = (µ1, . . . , µn) : X → Rn, µi = H∂θi ,

is called the momentum map of the Tn-action.

The splitting µ = (µi) depends on a choice of basis of TeTn�
Since

dH(φ̇t
H) = dH(XH) = ω(XH ,XH) = 0

it follows that H is constant along Hamiltonian orbits of φt
H .
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Lagrangian submanifolds The momentum map

The momentum map

More generally, since Tn is abelian and
TeTn 3 V 7→ HV ∈ C∞(X , ω) is a morphism of Lie algebras, we get

0 = {µi , µj} = ω(Xµi ,Xµj ) = dµj(Xµi )

which means that the momentum map µ is invariant under the
Tn-action. This, in turn, implies that:

Lemma

Preimages of regular values of the momentum map are Tn-orbits and
thus they are Lagrangian n-tori.
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Lagrangian submanifolds The momentum map

The momentum map on CP1

J0∇µ
∇µ

µ(∞) = 1/2

µ(0) = 0

µ

Figure: The image of the momentum map µ of the U(1) action of CP1.
The Hamiltonian action is a rotation of the sphere which fixes the south
pole 0 and north pole ∞, turning clockwise when seen from above the
north pole. (Here µ = r2

2(1+r2)
in affine polar coordinates.)
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Lagrangian submanifolds The momentum map

The momentum map on CP1 × CP1 and CP2

µ2

µ1

µ2

µ1
1/2 1/2

1/2 1/2
CP1 × {∞}

{∞} × CP1

CP1
∞

Figure: The image of the momentum map of the U(1)2 action on
CP1 × CP1 and CP2 for the standard basis of TeU(1). In polar Darboux

coordinates, the momentum map is given by µ =
∑

i r
2
i

2 . (Recall that
(CPn \ CPn−1

∞ , ωFS) = (B2n, ω0))
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Local model of Lagrangians

Local model of Lagrangians

We will now spend some time on understanding the local model of a
Lagrangian submanifold. We refer to [MS98] for a good introduction
to the techniques on which these results are based.
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Local model of Lagrangians Weinstein’s Lagrangian neighbourhood theorem

Weinstein’s Lagrangian neighbourhood theorem

Recall that the Darboux theorem implies that a symplectic
manifold locally is symplectomorphic to the standard symplectic
vector space.

In other words, there is no interesting local features of a
symplectic manifold.

Similarly, Lagrangians have no interesting local features, since
they admit a standard neighbourhood by a classical result
[Wei71] due to Weinstein.

We proceed to describe the local model of a neighbourhood of a
Lagrangian L ⊂ (X , ω): its cotangent bundle (T ∗L, dθL) (more
precisely: a neighbourhood of the zero section).
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Local model of Lagrangians Weinstein’s Lagrangian neighbourhood theorem

Local model

The cotangent bundle T ∗M of any smooth n-dimensional manifold
M has a tautological one-form θ ∈ Ω1(T ∗M) defined in the following
manner. Let π : T ∗M → M be the canonical bundle projection. Let
α ∈ T ∗M be a point. The point α is itself a one-form on some
tangent space TptM of M . We can now define:

θα : Tα(T ∗M)→ R,
θα = π∗α

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 28 / 56



Local model of Lagrangians Weinstein’s Lagrangian neighbourhood theorem

Local model
The cotangent bundle T ∗M of any smooth n-dimensional manifold
M has a tautological one-form θ ∈ Ω1(T ∗M) which in local
coordinates qi ∈ M takes the form

θ =
∑
i

pidqi

where pi are the canonical conjugate momenta corresponding to the
coordinates qi . In other words,

(qi , pi) 7→
∑
i

pidqi ∈ T ∗M

is a local diffeomorphism. Note that the exterior differential

dθ =
∑
i

dpi ∧ dqi

is the linear symplectic form in local coordinates!
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Local model of Lagrangians Weinstein’s Lagrangian neighbourhood theorem

Local model

For any smooth n-dimensional manifold M we thus have an exact
symplectic 2n-dimensional manifold (T ∗M , dθM) with a canonical
choice of primitive θM .

The Liouville vector field is of the form ζM =
∑

i pi∂pi in local
coordinates.

Since the graph of a form α ∈ Ω1(M) is a section α : M → T ∗M
which satisfies α∗θM = α, any graph of a closed (resp. exact)
one-form on M is a Lagrangian (resp. exact Lagrangian) section

of T ∗M . This is why θM is called the tautological form!
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Local model of Lagrangians Weinstein’s Lagrangian neighbourhood theorem

Local model

For any smooth n-dimensional manifold M we thus have an exact
symplectic 2n-dimensional manifold (T ∗M , dθM) with a canonical
choice of primitive θM .

Another aspect of the tautological nature of θM :

Any diffeomorphism φ : M → M induces a pull-back which itself
is a diffeomorphism

Φ := φ∗ : T ∗M → T ∗M ,

α 7→ φ∗α.

Lemma

Φ∗θM = θM
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Local model of Lagrangians Weinstein’s Lagrangian neighbourhood theorem

Local model

Proof.

Recall that at the point α ∈ T ∗M we have

θα = π∗α

by construction. We now compute

(Φ∗θ)α =

= Φ∗(π∗(φ−1)∗α)

= π∗(φ∗((φ−1)∗α))

= π∗α = θα.

where we have used that π ◦ Φ = φ.
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Local model of Lagrangians Weinstein’s Lagrangian neighbourhood theorem

Local model

Theorem (Weinstein [Wei71], also see [MS98])

For any Lagrangian embedding L ⊂ (X , ω) there exists a
neighbourhood (called Weinstein neighbourhood) U ⊃ L and a
symplectomorphism

Φ: (U , ω) ↪→ (T ∗L, dθL)

such that Φ|L is the canonical inclusion of the zero-section in the
cotangent bundle.
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Local model of Lagrangians Weinstein’s Lagrangian neighbourhood theorem

Local deformations
Weinstien’s neighbourhood theorem can be used to classify the space
of C∞-small deformations of a Lagrangian submanifold L ⊂ (X , ω)
up to Hamiltonian isotopy.

The C∞-small deformations of L are C∞-small Lagrangian
sections sections Γα, α ∈ Ω1(L), inside the Weinstein
neighbourhood T ∗L of L; i.e. dα = 0.

Two such sections Γα and Γα′ are Hamiltonian isotopic inside
the neighbourhood if and only if α− α′ = df .

Proof.

The Hamiltonian f ◦ π : T ∗L→ R induces a Hamiltonian isotopy
which takes

φ1
f ◦π(Γα′) = Γα.
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Local model of Lagrangians Weinstein’s Lagrangian neighbourhood theorem

Local deformations

Weinstien’s neighbourhood theorem can be used to classify the space
of C∞-small deformations of a Lagrangian submanifold L ⊂ (X , ω)
up to Hamiltonian isotopy. In other words:

Theorem

The space of C∞-small Lagrangian perturbations of L ⊂ (X , ω) up to
Hamiltonian isotopy can be naturally identified with a neighbourhood
of the origin 0 ∈ H1(L,R).

Remark

The global classification question, or even the C 0-close classification
question, is typically beyond current technology (except for a handful
of cases in low dimension).
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Local model of Lagrangians Cotangent bundle of tori

Example of local model: T ∗S1

The case of the torus Tn = (S1)n is of particular importance:

(T ∗Tn, dθM) =

(
Cn/i2πZn, d

∑
i

pidθi

)
,

where
[yi ] = θi ∈ S1 = R/2πZ.

is an angular coordinate and

pi = xi ∈ R

is the corresponding “conjugate momentum.”
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Local model of Lagrangians Cotangent bundle of tori

The momentum map on T ∗Tn

The cotangent bundle

(C/i2πZ = T ∗S1, d(p, dθ)), p = x ∈ R, θ = [y ] ∈ S1

has a Hamiltonian S1-action which can be seen in either of the
following ways:

the S1-action on M = S1 by diffemorphism lifted to
T ∗M = T ∗S1,

a rotation in the “imaginary direction” of C/i2πZ, or

the Hamiltonian x = p : C/i2πZ→ R.
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Local model of Lagrangians Cotangent bundle of tori

The momentum map on T ∗Tn

T ∗θ0
S1

θ

p

µ = p

θ0

Figure: The image of the momentum map p on T ∗S1. The S1-action is a
rotation of the angular coordinate in the positive direction. The cotangent
fibre T ∗θ0

S1 is a Lagrangian section of the momentum map.
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Local model of Lagrangians Cotangent bundle of tori

The momentum map on T ∗Tn

Since
(T ∗Tn, dθTn) = ((T ∗S1)n, dθT1 ⊕ . . .⊕ dθT1)

there is an Hamiltonian Tn-action on T ∗Tn with momentum map

µT∗Tn : T ∗Tn → Rn,

(pi = xi , θi = [yi ]) 7→ pi = xi .

In this case of regular fibres of momentum maps, the local model can
be easily identified with the above model, while
preserving the momentum map.
Note the existence of the Lagrangian sections T ∗θ0

Tn of the
momentum map (the cotangent fibres).
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Local model of Lagrangians Cotangent bundle of tori

Local model of the momentum map

Theorem (Arnol’d–Liouville [Arn89])

Any regular torus fibre µ−1(pt) ⊂ (X , ω) of a momentum map on a
symplectic manifold (X , ω) with a Hamiltonian Tn-action has a
neighbourhood which is symplectomorphic to a neighbourhood of
µ−1
T∗Tn(pt), where the symplectomorphism φ moreover satisfies
µ = µT∗Tn ◦ φ.

Sketch of proof.

The momentum map µ defines n local coordinates on X ;

Find a local Lagr. section of µ, together with the Tn-action we
get angular coordinates on the fibres.

In these coordinates ω becomes dθTn ; The obtained local
coordinates on (X , ω) is called action-angle coordinates.
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Pseudoholomorphic discs

The moduli space of psh. discs

We have seen that closed pseudoholomorphic curves contain
important information about the symplectic manifold. Similarly,
pseudoholomorphic curves with boundary on a Lagrangian
submanifold contain important information about the Lagrangian
submanifolds. For any A ∈ H2(X , L) or A ∈ π2(X , L) we are
interested in the moduli space

MJ(A) =

= {u : (D2, j)→ (X , J); ∂Ju = 0, [u] = A}/Aut(D2).

for J ∈ J tame(X , ω).
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Pseudoholomorphic discs

The moduli space of psh. discs

The Uniformisation Theorem implies that there is a unique
closed and simply connected Riemann surface: The Riemann
sphere (CP1, j).

In addition, there is a unique simply connected Riemann surface
with boundary: The disc (D2, j).

Aut(CP1, j) = PGLC(2) is the dimR = 6 non-compact group of
Möbius transformations.

Since (D2, j) ⊂ (CP1, j) embeds in CP1 with boundary
∂D2 = RP1. Thus Aut(D2, j) ⊂ Aut(CP1, j) is the dimR = 3
non-compact group of “real” Möbius transformations.
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Deformation theory for discs

The Fredholm index

The linearised problem Du∂J is again Fredholm (for a suiable
functional-analytic setup).

The Fredholm index is given by

index(u) = dimR kerDu∂J − dimR cokerDu∂J = n · χ(D2) + µL[A]

where µL : H2(X , L)→ Z is the Maslov class (see below).

The expected (virtual) dimension of the moduli-space is

v dim(u) = index(u)−dimR Aut(D
2) = index(u)−3 = n−3 +µL[A].
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Deformation theory for discs

The Fredholm index
The boundary-value problem should be thought of as the
real-part of the complex moduli space.

This is literally true when L is the fixed-point locus of an
anti-symplectic and anti-holomorphic involution

I : (X , ω, J)→ (X ,−ω,−J).

Namely: A J-holomorphic disc u with boundary on the
fixed-point locus of L can be doubled to a pseudoholomorphic
sphere udbl : CP1 → X which satisfies

udbl(z) = u(z) for z ∈ D2 ⊂ CP1, and
I ◦ udbl(z) = udbl(z)

However, not all deformations of udbl remain
conjugation-invariant: only the real deformations.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 44 / 56



Deformation theory for discs

The Fredholm index

The real part of a complex space is half-dimensional,so the index
of a disc u on the fixed point locus should be half of the index of
the index of the doubled sphere udbl ,i.e.

index(u) =
1

2
index(udbl) =

1

2
(nχ(CP1) + 2cTX1 [udbl ]).

This yields the sought formula if we set µL[u] = cTX1 [udbl ]

where v is the double. This is indeed the case!
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Deformation theory for discs

Discs with boundary on RPn

A real line RP1 ⊂ RPn ⊂ CPn can be realised as a complex line

[x1 : x2]→ x1 · P1 + x2 · P2 ∈ CPn, P1 6= P2 ∈ RPn,

(its complexification) intersected with the Lagrangian
RPn ⊂ CPn.

The complex line CP1 ⊂ CPn lives in a moduli space of virtual
dimension

v dim = n2 + 2(n + 1)− 6.

(Recall: cTCPn

1 (L) = n + 1 where L is the line class.)

The discs given by either side of CP1 \ RPn lives in a moduli
space of virtual dimension

v dim = n + (n + 1)− 3 = 2n − 2.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 46 / 56



Deformation theory for discs

Real lines
There are real J0-holomorphic lines CP1 → CPn through every pair
of points on RPn. Each real line splits into two J0-holomorphic discs
with coinciding boundaries, equal to a real line RP1 ⊂ RPn.

Figure: Real lines RP1 ⊂ RP2 ⊂ CP2. Each is a boundary of two
J0-hol. disc in a moduli space of virtual dimension is 2n − 2 = 2. The two
discs join to form a complex line.
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Deformation theory for discs The Maslov class

The Maslov class
Assume that we are given a continuous map of Riemann surface
u : (Σ, ∂Σ)→ (X , L) with boundary on a Lagrangian L ⊂ (X , ω).

1 Double Σ to a closed Riemann-surface Σdbl = Σ ∪ Σ with an
anti-holomorphic (orientation-reversing suffices) involution

I : Σdbl → Σdbl

whose fixed point locus is exactly ∂Σ ⊂ Σdbl .
2 Extend the complex vector bundle u∗TX → Σ to E → Σdbl so

that I lifts to an anti-complex involution of E which fixes the
real sub-bundle

u∗TL ⊂ u∗TX |∂Σ = E |∂Σ → ∂Σ.

3 Define the Maslov index µL[u] := cE1 of [u] as the first Chern
number of E → Σdbl .
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Deformation theory for discs The Maslov class

The Maslov class
Assume that we are given a continuous map of Riemann surface with
boundary u : (Σ, ∂Σ)→ (X , L). An equivalent definition of µL[u] is
the following:

1 u∗TX → Σ is a C-vector bundle (trivial since Σ is a surface with
non-empty boundary).

2 detC u
∗TX = (u∗TX )∧C dimC TX → Σ is a (trivial) C-bundle.

3 detR u
∗TX → ∂Σ is a R-bundle bundle.

4 If the latter bundle is trivial (the same as orientable since
dimR(∂Σ) = 1), then µL[u] = 2 wind(σ) where σ is a non-zero
section of detR u

∗TX → ∂Σ. (The winding number is computed
in the given trivialisation.)

5 The latter bundle is not always trivial. An odd Maslov nr. is
equivalent to TL being non-orientable along ∂Σ. �
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Deformation theory for discs The Maslov class

The Maslov class relative a trivialisation

Remark

The above definition of the Maslov index only uses the
trivialisation of detC u

∗TX |∂Σ.

Given a choice of trivialisation of detC TX , one can define a
Maslov class

µL : H1(L)→ Z

which coincides with the previous definition on the image of the
connecting homomorphism

δ : H2(X , L)→ H1(L).
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Deformation theory for discs Maslov class of the product tori

Example: Product tori

Example

An embedded curve γ ⊂ CP1 bounds two embedded
holomorphic discs: u and v . The Maslov index is invariant up to
homotopy, and since RP1 is the real part we compute

µγ(u) = µγ(v) = cTCP1

1 [CP1] = χ(CP1) = 2.

Similarly, c
T (CP1)n

1 [{0}i−1 × CP1 × {0}n−i ] = 2 implies

µ(RP1)n [{0}i−1 × u × {0}n−i ] = 2

as well as
µ(RP1)n [{0}i−1 × v × {0}n−i ] = 2.
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Deformation theory for discs Maslov class of the product tori

A basis of holomorphic discs

v

µ

Figure: A pseudoholomorphic disc v inside CP1 with Maslov index two
with boundary on a fiber of the momentum map µ.
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Deformation theory for discs Maslov class of the product tori

A basis of holomorphic discs

u

µ

Figure: A pseudoholomorphic disc u inside CP1 with Maslov index two
with boundary on a fiber of the momentum map µ.
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Deformation theory for discs Maslov class of the product tori

A basis of holomorphic discs

[u] + [v ]

µ

Figure: A pseudoholomorphic disc inside CP1 of Maslov index four with
boundary on a fiber of the momentum map µ, which lives in the homology
class [u] + [v ] ∈ H2(CP1, µ−1pt).
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Deformation theory for discs Maslov class of the product tori

Example: Product tori

Hence: For product tori

L = γ1 × . . .× γn ⊂ (CP1)n = X

(e.g. the fibres of the standard momentum map
µ : (CP1)n → [0, 1/2]n)
there is a basis of H2(X , L) = Z2n which can be represented by
embedded J0-holomorphic discs ui , vi , i = 1, . . . , n, and for which

µL[ui ] = µL[vi ] = 2.
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