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Goal of lecture

Goal of lecture

Today:

Gromov’s Compactness for pseudoholomorphic discs.

“Uniruledness” proofs for certain Lagrangians in (CPn, ωFS, J).

The superpotential: a Hamiltonian isotopy invariant for
monotone Lagrangians.
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Gromov’s Compactness Theorem

Gromov’s compactness for discs

To control global properties of the moduli-space of
pseudoholomorphic discs we need Gromov’s compactness
theorem.

The energy E (u) =
∫
u
ω of a pseudoholomorphic disc is defined

in the same way as in the closed case, and it is positive
whenever u is non-constant.

The condition for a nodal pseudoholomorphic disc to be stable
seems complicated at first sight (but is natural from the point of
view of doubling).
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Gromov’s Compactness Theorem

Nodal pseudoholomorphic discs

Definition

A nodal pseudoholomorphic disc is a continuous map
u∞ : (D2, ∂D2)→ (X , L) which is J-holomorphic for some almost
complex structure j∞ defined on D2 \ Γ, such that

The double (CP1, Γdbl , jdbl∞ ) of (D2, Γ, j∞) is a nodal
pseudoholomorphic sphere.
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Gromov’s Compactness Theorem

Collapsed boundary

The case ∂D2 ⊂ Γ happens exactly when u∞(∂D2) ⊂ L is a
single point. In this case, the component of D2 \ Γ adjacent to the
boundary is necessarily a punctured sphere (and not a disc!)

(B2, j0) 6∼= (CP1 \ {∞} = C, j0)�
Carleman’s similarity principle implies that a holomorphic disc
with constant boundary is itself constant.

When the nodal disc has no component with a boundary, the
boundary corresponds to a node. We say that the bounadary has
“collapsed to a node”.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 6 / 59



Gromov’s Compactness Theorem

Stable nodal pseudoholomorphic discs

Definition

A nodal pseudoholomorphic disc is stable if the doubled nodal sphere
is stable.

In particular this means that a constant component of (D2 \ Γ, j∞)
has

at least three nodes if is a (punctured) sphere; and

at least

three boundary nodes,
one boundary node and one internal node, or
two internal nodes,

if it is a (punctured) disc.
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Gromov’s Compactness Theorem

Stable nodal pseudoholomorphic discs

Remark

In a stable nodal disc, each constant component has only finitely
many automorphisms that fix the nodes. (If the nodes are
supposed to be fixed point-wise, then there are even no
non-trivial automorphisms.)
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Gromov’s Compactness Theorem

Stable nodal pseudoholomorphic discs

E > 0E = 0
E > 0

E > 0

Figure: Example of a stable nodal disc: there are two components which
are punctured holomorphic discs, while two components are punctured
holomorphic spheres. OBS: (B2, j0) 6∼= (CP1 \ {∞} = C, j0).
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Gromov’s Compactness Theorem

Stable nodal pseudoholomorphic discs

E > 0
E = 0

E > 0

E > 0

Figure: Example of a stable nodal disc: all components are punctured
spheres, i.e. the boundary of the disc has collapsed to a node (of the
double). OBS: (B2, j0) 6∼= (CP1 \ {∞} = C, j0).
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Gromov’s Compactness Theorem

Gromov’s Compactness Theorem

Theorem (Gromov [Gro85] and Frauenfelder [Fra08])

Assume that 0 < E (ui) ≤ C is uniformly bounded. After passing to a
subsequence, we may assume that there exists either:

1 A sequence φi ∈ Aut(D2) of reparametrisations that makes
‖d(ui ◦ φi)‖ uniformly bounded, and the subsequence {ui ◦ φi} is
C∞-convergent to a J-holomorphic disc u∞.

2 A stable nodal pseudoholomorphic disc u∞ whose double has
at least two non-constant components, and reparametrisations
φi , such that:

(φi )
∗j is a sequence of complex structures on D2 which

C∞loc -converges to the complex structure j∞ on the nodal disc;
ui ◦ φi converges uniformly to u∞ and C∞loc -converges on
CP1 \ Γ to u∞.
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Gromov’s Compactness Theorem

Example of Gromov’s compactness

Consider the sequence of biholomorphisms in Aut(CP1) of the form

z 7→ z

tz + 1
=

1

t + z−1
, t ∈ [0,+∞),

determined uniquely by the property

0 7→ 0, 1 7→ 1

1 + t
, ∞ 7→ 1/t.

Hence these automorphism fix RP1 and restrict to automorphisms of
either disc (hemisphere) {±Imz ≥ 0} ⊂ CP1.
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Gromov’s Compactness Theorem

Example of Gromov’s compactness
The elements

z 7→ z

tz + 1
=

1

t + z−1
, t ∈ [0,+∞),

in Aut(CP1) will be used to act on the holomorhic disc

({Imz ≥ 0},RP1) ∼= (D2, ∂D2)→ (CP1,RP1),

z 7→ z2.

Remark

The map is degree zero when restricted to the boundary, since it only
covers the positive real part

{Rez ≥ 0} ⊂ RP1.
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Gromov’s Compactness Theorem

Example of Gromov’s compactness

The composition of the disc z 7→ z2 with the automorphism z
tz+1

yields a sequence of pseudoholomorphic discs

({Imz ≥ 0},RP1) ∼= (D2, ∂D2)→ (CP1,RP1),

z 7→ z2

tz2 + 1
=

1

t + z−2
, t ∈ [0,+∞)

which

takes the boundary RP1 → RP1 ∩ {Rez ∈ [0, 1/t]}, and

and which takes 0 7→ 0, i
√
t 7→ ∞,∞ 7→ 1/t.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 14 / 59



Gromov’s Compactness Theorem

Example of Gromov’s compactness

i√
t

∞

0

1
t

∞

0

Figure: As t → +∞ the discs converge to a nodal disc which consists of a
single component which is a sphere, i.e. the boundary collapses to a node
(of the double).

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 15 / 59



Gromov’s Compactness Theorem

Example of Gromov’s compactness

∞

0 = i√
t

∞

0

Figure: As t → +∞ the discs converge to a nodal disc which consists of a
single component which is a nodal sphere of one component. I.e. the
boundary collapses to a node (of the double), which is mapped to the
point 0 ∈ RP1.
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Gromov’s Compactness Theorem

Example of Gromov’s compactness

Gromov’s compactness theorem for discs implies that the moduli
space of the above discs, modulo reparametrisation, is a
two-dimensional manifold with boundary.

Indeed, the Maslov index is twice the Maslov index of the
hemisphere, i.e.

µ = 2cTCP1

1 [CP1] = 4

and thus v dim = 1− 3 + 4 = 2.

The sphere with a node (collapsed boundary) which maps to
RP1 is a part of the boundary stratum.

Exercise

Give a description of the entire moduli space and its boundary.
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Uniruledness The real plane

The case of RPn ⊂ CPn

A real line

CP1 → CPn,

[x1 : x2] 7→ x1 · P1 + x2 · P2, P1,P2 ∈ RPn

splits into two holomorphic discs with boundary on RPn.
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Uniruledness The real plane

The case of RPn ⊂ CPn

A real line

CP1 → CPn,

[x1 : x2] 7→ x1 · P1 + x2 · P2, P1,P2 ∈ RPn,

splits into two holomorphic discs with boundary on RPn. Last time
we computed:

The Maslov index of the disc is equal to the first chern class of
the double (i.e. the complex line)

µ = cTCPn

1 (L) = n + 1.

The discs thus live in a moduli space of

v dim = n − 3 + n + 1 = 2n − 2

after taking the quotient by the three-dimensional group
Aut(D2).
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Uniruledness The real plane

Real lines
There is a unique real J0-holomorphic line CP1 → CPn through every
pair of points on RPn. Each real line splits into two J0-holomorphic
discs with coinciding boundaries, equal to a real line RP1 ⊂ RPn.

Figure: Real lines RP1 ⊂ RP2 ⊂ CP2. Each oriented line is the boundary
of a unique holomorphic disc of Maslov class µ = 3.
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Uniruledness The real plane

The case of RPn ⊂ CPn

Consider the long exact sequence

H2(RPn) H2(CPn) H2(CPn,RPn) H1(RP1) H1(CP1) = 0

Z2 Z · L Z2 0

0

of homology groups. Hence

β ∈ H2(CPn,RPn) = Z · β, 2β = L
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Uniruledness The real plane

The case of RPn ⊂ CPn

The relative second homology is generated by “half a line”:

β ∈ H2(CPn,RPn) = Z · β, 2β = L.

Since the space of holomorphic lines (holomorphic spheres in class L)
can be classified by positivity of intersection [see Lecture III]. Since
hol. discs in class β can be doubled to a hol. sphere in class L by a
standard application of a Schwarz reflection we obtain:

Proposition

All holomorphic discs in class β are “half complex lines”.
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Uniruledness The real plane

The case of RPn ⊂ CPn

The discs are in bijection with oriented real lines in the class

The space of oriented real lines is equal to
MJ0(β) = Gr+

2 (Rn+1) (Grassmannian of oriented two-planes).

The space of oriented real lines through a point in RPn is equal
to MJ0(β; pt) = Sn−1.

The bundle of boundary points of the discs that pass through pt
is equal to

S1 → M̃J0(β; pt)→MJ0(β)

and is of dimension n. (In fact M̃J0(β; pt) = S1 ×MJ0(β) is
trivial in this case.)
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Uniruledness The real plane

The case of RPn ⊂ CPn

Similarly to the case of the uniruledness of CP1, the existence of a
cobordism between moduli spaces with evaluation maps shows that

Theorem

For an arbitrary generic tame almost complex structure J on CPn,
there exists a J-holomorphic disc in class β that passes through two
any pair pt, pt′ ∈ RPn of distinct points.
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Uniruledness The real plane

The case of RPn ⊂ CPn

To produce a compact cobordism obtained by considering a
one-parameter family of almost complex structures that interpolates
between the standard J0 and the arbitrary tame J , we need Gromov’s
compactness theorem. (Non-compact cobordisms with boundary are
not so useful...)
Gromov’s compactness applies since:

The symplectic area of the discs∫
β

ωFS =
1

2

∫
L

ωFS = π/2

is minimal among discs of positive symplectic area.(And there are no
spheres in this class).
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Uniruledness The real plane

The case of RPn ⊂ CPn

However, at one point the cobordism argument needs to be modified:

The evaluation map evMJ(β; pt)→ RPn takes values in a
non-orientable manifold if n is even. In addition the degree is
0 ∈ Z2 when n ≥ 2.

This can be amended lifting the evaluation map to the universal
two-fold cover Sn → RPn; the lift has degree 1 ∈ Z2.
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Uniruledness Coherent orientations

Coherent orientations
Recall: In the case of the moduli space of pseudoholomorphic
spheres, the moduli space has itself an almost complex structure,
and is thus naturally an oriented manifold (whenever
transversality is achieved)!

This is obviously not the case for the space of discs with a
Lagrangian boundary condition.

Example

Take the moduli space of discs of vanishing symplectic area
(i.e. constant discs) with boundary on L = RP2k ⊂ CP2k :{

u : (D2, ∂D2)→ (X , L);

∫
u

ω = 0

}
∼= L.

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 27 / 59



Uniruledness Coherent orientations

Coherent orientations

Remark

In the above case:

the Maslov class vanishes, and hence index = n + 0 = dim L,

transversality holds (since the linearisation of ∂J is easy to
compute at a constant u – it is the Cauchy–Riemann operator
on a trivial complex bundle – transversality is easy to check),

since Aut(D2) does not act freely: taking the quotient by
reparam. does not make sense in this case. �.
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Uniruledness Coherent orientations

Coherent orientations
Answer is given by Fukaya–Ohta–Ono–Oh [FOOO09, Chapter 8].

Theorem

A spin structure on L, i.e.

the choice of a trivialisation of TL (when dim L ≤ 2: replace TL
by TL⊕ R2, i.e. stable trivalisation) along the one-skeleton of L
(in particular, this orients L); which moreover

extends over the two-skeleton of L,

induces an orientation of the moduli space of psh. discs with
boundary on L. Moreover:

Reversing the orientation of L reverses the orientation of the
moduli spaces.

Changing the spin-structure along u(∂D2) ⊂ L reverses the
orientation of the moduli space at the point u.
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Uniruledness Clifford tori

The case of CP1

Recall: In the previous lecture we saw that the tori
µ−1(a) ⊂ CP1 bounds precisely two holomorphic discs of Maslov
index two.

Next we generalise these disc counts to certain torus fibres of
the momentum maps µ on (CP1)n and CPn.
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Uniruledness Clifford tori

A basis of holomorphic discs

v

µ

a

0

1/2

Figure: A pseudoholomorphic disc v inside CP1 with Maslov index two
with boundary on a fiber of the momentum map µ.
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Uniruledness Clifford tori

A basis of holomorphic discs

u

µ

a

0

1/2

Figure: A pseudoholomorphic disc u inside CP1 with Maslov index two
with boundary on a fiber of the momentum map µ.
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Uniruledness Clifford tori

In the affine part
Observe that both

(CP1)n \
n⋃

i=1

{zi =∞} and CPn \ CPn
∞

are biholomorphic to the affine plane Cn. However, the symplectic
forms are very different, which is exhibited by the images of the
momentum maps:
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Uniruledness Clifford tori

In the affine part
Nevertheless, in the either affine plane

(CP1)n \
n⋃

i=1

{zi =∞} or CPn \ CPn−1
∞

the Lagrangian fibres of µ are orbits of the standard U(1)n-action in
the affine space, and hence of the form

{‖z1‖2 = A1, . . . , ‖zn‖2 = An}
for both symplectic structures on Cn. Recall:

µi =
1

2

‖zi‖2

1 + ‖zi‖2

in the case of (CP1)n, while in the case of CPn:

µi =
1

2

‖zi‖2

1 + ‖z‖2
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Uniruledness Clifford tori

In (CP1)n

Recall the basis

H2((CP1)n,µ−1(a)) =
n⊕

i=1

Z[ui ]⊕ Z[vi ]

which can be represented by holomorphic discs ui , vi of Maslov index
µ = 2.
Here ui parametrises the disc

{
√
A1} × . . .× {

√
Ai−1} × D2√

Ai
× {
√

Ai+1} × . . .× {
√

An}

while vi parametrises the disc

{
√
A1}× . . .×{

√
Ai−1}× (CP1 \B2√

Ai
)×{

√
Ai+1}× . . .×{

√
An},

i.e. the reflection of ui .
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Uniruledness Clifford tori

In (CP1)n

Lemma

The above discs ui and vi both have Maslov index two.

Proof.

The calculation follows from cTCP1

1 [CP1] = 2 together with the fact
that the normal bundle of

A = {
√

A1} × . . .× {
√

Ai−1} × CP1 × {
√
Ai+1} × . . .× {

√
An},

is a trivial complex bundle, and hence

cTX1 (A) = cTCP1

1 [CP1] + 0 = 2

by the splitting principle for the first Chern class.
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Uniruledness Clifford tori

In (CP1)n

A dual basis of [ui ], [vi ] is represented by the divisors

{zi = 0} and {zi =∞}.

More precisely:

[ui ] • {zj = 0} =

{
1, i = j ,

0, o.w.
, and [ui ] • {zj =∞} = 0,

[vi ] • {zj =∞} =

{
1, i = j ,

0, o.w.
, and [vi ] • {zj = 0} = 0.
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Uniruledness Clifford tori

In (CP1)n

Proposition

The Maslov class of any continuous disc in (CP1)n with boundary on
µ−1(a) is equal to twice the intersection number with the divisor

n⋃
i=1

{zi = 0 or ∞}.

In particular, positivity of intersection between curves and divisors
implies that

Corollary

Any holomorphic disc of Maslov index two intersects the above
divisor transversely in precisely one point.
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Uniruledness Clifford tori

Discs under the momentum map

µ2

µ1

µ2

µ1
1/2 1/2

1/2 1/2

u2 u2

a1 a1

a2

a2

CP1
∞

Figure: The image of the standard holomorphic disc under the momentum
maps.
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Uniruledness Clifford tori

Discs under the momentum map

µ2

µ1

µ2

µ1
1/2 1/2

1/2 1/2

u1

u1

a1 a1

a2

a2

CP1
∞

Figure: The image of the standard holomorphic disc under the momentum
maps.
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Uniruledness Clifford tori

Discs under the momentum map

µ2

µ1

µ2

µ1
1/2 1/2

1/2 1/2

v2

u3

a1 a1

a2

a2

CP1
∞

Figure: The image of the standard holomorphic disc under the momentum
maps.
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Uniruledness Clifford tori

In CPn

In CPn one can deduce a similar result:
Since La = µ−1(a) ⊂ Cn is is null-homotopic, we get a long exact
sequence

H2(La) H2(CPn) H2(CPn, La) H1(La) H1(CP1) = 0

Z · L Zn 0

0 δ

where thus

H2(CPn, La) = Z · L⊕ Z[u1]⊕ . . .⊕ Z[un],

and ui are holomorphic discs of Maslov index two which live in the
affine part Cn.
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Uniruledness Clifford tori

In CPn

Recall that CPn \ CPn−1
∞ is biholomorphic to the affine part of

(CP1)n, and that the torus La = µ−1(a) is identified with a
torus fibre under the biholomorphism. (In other words: The tori
are simultaneously Lagrangian for both symplectic forms.)

The discs [ui ] with boundary on La ⊂ CPn can thus be identified
with the analogous discs inside the affine part of (CP1)n, and
are of Maslov index two as well.
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Uniruledness Clifford tori

In CPn

L is a sphere, but can be considered as the class of a chain with
a constant boundary on La of Maslov index

2cTCPn

1 (L) = 2(n + 1).

Hence the class

[un+1] := L− ([u1] + . . . + [un])

is of Maslov index two.

A dual basis for the basis [u1], . . . , [un], [un+1] of H2(CPn, La) is
moreover given by the divisors

{z1 = 0}, . . . , {zn = 0},CPn−1
∞ .
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Uniruledness Clifford tori

In CPn

Proposition

The Maslov class of any continuous disc in CPn with boundary on
µ−1(a) is equal to twice the intersection number with the divisor

CPn−1
∞ ∪

n⋃
i=1

{zi = 0}.

In particular, positivity of intersection between curves and divisors
implies that

Corollary

Any such holomorphic disc of Maslov index two intersects the divisor
transversely in precisely one point.
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Uniruledness Clifford tori

The standard discs

Proposition

For the fibre La of the momentum map in either X = (CP1)n or
CPn, there only classes in H2(X , La) that admit J0-holomorphic discs
of Maslov index two are the classes in the aforementioned bases.
Moreover, in each such homology class, there is a unique
J0-holomorphic disc of Maslov index two that passes through a fixed
point on La.
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Uniruledness Clifford tori

The standard discs

Proof.

Since there is a unique intersection with the divisor by the above
corollaries, after applying a suitable holomorphic symplectomorphism
of (X , ω) induced by a reordering of the coordinates, we may assume
that the disc intersects only the divisor {z1 = 0}. (Here it is
important to note that such a coordinate change takes the fibres of
the momentum map µ to fibres.)
In particular, the disc may be assumed to be contained inside the
affine part Cn.
Since the projection to the coordinate planes is holomorphic, and
since the boundary of the disc is on a product of circles, it follows by
the maximum principle that only the projection to the 1:st coordinate
is a non-constant holomorphic disc.
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Uniruledness Clifford tori

Discs under the momentum map

µ2

µ1

µ2

µ1
1/2 1/2

1/2 1/2

u2 u2

a1 a1

a2

a2

CP1
∞

Figure: The image of the standard holomorphic disc under the momentum
maps.
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Uniruledness Clifford tori

Discs under the momentum map

µ2

µ1

µ2

µ1
1/2 1/2

1/2 1/2

u1

u1

a1 a1

a2

a2

CP1
∞

Figure: The image of the standard holomorphic disc under the momentum
maps.
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Uniruledness Clifford tori

Discs under the momentum map

µ2

µ1

µ2

µ1
1/2 1/2

1/2 1/2

v2

u3

a1 a1

a2

a2

CP1
∞

Figure: The image of the standard holomorphic disc under the momentum
maps.
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Uniruledness Clifford tori

Monotonicity

To show that this type of uniruledness persists when changing the
almost complex structure, we need to make an additional assumption
to preclude non-trivial Gromov limits.

Definition

We say that a Lagrangian submanifold L ⊂ (X , ω) is monotone if
there exists a constant c ≥ 0 so that∫

[u]

ω = cµL[u]

is satisfied.
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Uniruledness Clifford tori

Monotonicity

Proposition

The so-called Clifford tori

La0 ⊂ (CP1)n, a0 =

(
1

4
, . . . ,

1

4

)
,

La0 ⊂ CPn, a0 =

(
1

2(n + 1)
, . . . ,

1

2(n + 1)

)
,

are monotone with c = π
4

and c = π
2(n+1)

, respectively.
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Uniruledness Clifford tori

Monotonicity

Exercise

Use the Arnol’d–Liouville theorem from [Lecture IV] to compute
the areas of H2(X , La0) in the above cases, and deduce
monotonicity for the Clifford tori La0 .

Show that pseudoholomorphic discs in the classes in H2(X , La0)
live in compact moduli spaces.
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Uniruledness Clifford tori

Uniruledness

Theorem

The moduli spaces of pseudoholomorphic discs with boundary on the
monotone Clifford tori

La0 ⊂ (CP1)n, a0 =

(
1

4
, . . . ,

1

4

)
,

La0 ⊂ CPn, a0 =

(
1

2(n + 1)
, . . . ,

1

2(n + 1)

)
,

have the property that, for any generic tame almost complex structure
J, the maps ev : M̃J(β)→ La0 is of degree σ0 for the Lie group spin
structure on La0 when β ∈ H2(X , La0) is one of the standard basis
elements above, while it is of degree 0 for any other class.
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Uniruledness Clifford tori

Uniruledness
Remark

Here we do not compute which of the two values σ0 ∈ {±1} that the
degree assumes, however...

Since changing the orientation of L changes the orientation of
both the domain (the moduli space) and the target space
(i.e. the Lagrangian L) of the evaluation map, the sign σ0 does
not depend on the orientation of L.

For the same reason, since there are holomorphic
symplectomorphisms which act transitively on the elements of
the above basis of H2(X , La), it follows that the sign of the
evaluation map is the same for all basis elements. Here it is
important to use the fact that the Lie group spin structure is
preserved under linear automorphisms of the torus (even those
which reverse orientation).
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Uniruledness Clifford tori

Uniruledness and the superpotential

In particular, we get an assignment

m : H2(X , La)→ Z,
η 7→ deg(ev : M̃J(β)→ La)

which is defined to be zero whenever β is not a class of Maslov index
two.
One can encode this invariant as the “Laurent polynomial”

PLa :=
∑

η∈H2(X ,La)

m(η) · [δη] ∈ Z[H1(La)]

called the “superpotential” of La.
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Uniruledness Clifford tori

Uniruledness and the superpotential

Note that:

The group ring of a free abelian group

Z[H1(Tn)] ∼= Z[t±1
1 , . . . , t±1

n ]

is the Laurent polynomial ring.

Finiteness of the sum which defines PLa is a consequence of
Gromov’s compactness theorem, where the assumption of
monotonicity is crucial.
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Uniruledness Clifford tori

Uniruledness

The superpotential is a very powerful invariant that can be used for
distinguishing Hamiltonian isotopy classes of monotone Lagrangian
tori. Vianna showed in [Via16] that there are infinitely many
Hamiltonian isotopy classes in these cases, which we distinguish by
the above function.
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