

Holomorphic Curve Theories in Symplectic Geometry Lecture VI

Georgios Dimitroglou Rizell

Uppsala University

Georgios Dimitroglou Rizell (Uppsala UniversHolomorphic Curve Theories in Symplectic Ge

Goal of lecture

Today:

- Definition of Floer homology in the exact case.
- Application: Obstructs Hamiltonian displaceability.
- Moduli space of discs with boundary punctures (Associahedra).

Take-home Message

If a closed Lagrangian can be displaced by a Hamiltonian isotopy, then it admits a non-constant pseudoholomorphic disc.

Figure: The blue Lagrangian *L* is displaceable by a Hamiltonian isotopy and bounds a holomorphic disc; the green Lagrangian which is homologically essential is not Hamiltonian displaceable.

Plan

- Diplaceability
- The maximum principle
- 4 The Floer complex
- 5 Associahedra

Displaceability

Definition

We say that a compact subset $C \subset (X, \omega)$ is Hamiltonian displaceable if there exists a Hamiltonian $H: X \times \mathbb{R} \to \mathbb{R}$ for which $C \cap \phi^1_H(C) = \emptyset$.

- Gromov showed in [Gro85] that a closed Lagrangian *L* which is Hamiltonian displaceable must admit a *J*-holomorphic disc with boundary on *L* for all tame *J*. Also see Chekanov's refinement [Che98].
- Floer later refined this to a chain complex in [Flo88], whose homology is a lower bound for

$$|L \pitchfork \phi^1_H(L)| \ge 0$$

This complex is typically impossible, or at least $\underline{difficult}$, to define in the presence of pseudoholomorphic discs with boundary on *L*.

Displaceability

Example

- Any compact subset C ⊂ (Cⁿ, ω₀) is Hamiltonian displaceable;
 e.g. the translation x_i → x_i + t is generated by the Hamiltonian H = −y_i.
- For curves in surfaces, the question of Hamiltonian displaceability can be solved completely by *area considerations*.

Remark

In order to deduce the existence of a *J*-holomorphic disc with boundary on a closed displaceable Lagrangian inside a non-compact symplectic manifold, one needs to control the behaviour of *J* outside of a compact subset \diamond

Displaceability

Why we need control at infinity:

• There are plenty of Hamiltonian isotopies, and they act on the space of tame almost complex structures:

$$(\phi_H^1)_*J \coloneqq (D\phi_H^1)^{-1} \circ J \circ D\phi_H^1.$$

 We may use this action repeatedly to push some part of the interior of a J₀-holomorphic curve in Cⁿ, n > 1, with boundary on a fixed Lagrangian out to ∞ (make sure it leaves every compact subset).

To gain control at infinity of a noncompact (X, ω) we will here assume that $J \in \mathcal{J}^{tame}(X, \omega)$ satisfies the following property: there exists a smooth proper function $f: X \to [-N, +\infty)$ such that:

Non-negativity of the "Levi two-form" on J-complex lines, i.e.

$$-dd^{c}f(v, Jv) \geq 0, v \in T_{p}X,$$

holds for all $p \in f^{-1}[0, +\infty) \subset X$.

(This is a condition only on J outside of some compact subset.) We will now derive a maximum-principle under these assumptions, that makes it impossible for J-holomorphic curves to partly escape to infinity.

Proposition

Let $u: (\Sigma, j) \to (X, J)$ be pseudoholomorphic, and Σ a connected (possibly open) Riemann surface whose boundary is contained inside $f^{-1}[-N, 0]$. If $f \circ u: \Sigma \to \mathbb{R}$ assumes a positive value, then $f \circ u$ is constant.

Proof (1/2).

It suffices to show that $f \circ u$ is sub-harmonic in local coordinates near a point which maps to a positive value under $f \circ u$.

Proposition

Let $u: (\Sigma, j) \to (X, J)$ be pseudoholomorphic, and Σ a connected (possibly open) Riemann surface whose boundary is contained inside $f^{-1}[-N, 0]$. If $f \circ u: \Sigma \to \mathbb{R}$ assumes a positive value, then $f \circ u$ is constant.

Proof (2/2).

For a loc. def. J-holomorphic map $u \colon (B^2_{\epsilon}, j_0) \to (X, J)$ we have

$$4\Delta(f \circ u)dx \wedge dy = 2i\partial\overline{\partial}(f \circ u) = -dd^{c}(f \circ u)$$

(see [Lecture I]). The assumption on the Levi form gives

$$4\Delta(f \circ u)dx \wedge dy(\partial_x, j_0\partial_y) \geq 0$$

• The above is clearly satisfied for \mathbb{C}^n : for $J = J_0$ and $f = \|\mathbf{z}\|^2/4$ we even have

$$-dd^{c}f = \omega_{0}.$$

More generally: when (X, ω) is symplectomorphic to a "half symplectisation"

$$((0,+\infty)_t \times Y, d(e^t\alpha))$$

outside of a compact subset (where (Y, α) is a closed contact manifold) one can take $f = e^t$ and J to be *cylindrical* in the same subset. (See next slide.)

Example

The latter condition is satisfied for $(T^*M, d\theta_M)$ for M closed; take e.g. the complement of any fibre-wise convex smooth domain.

Cylindrial almost complex structures

Definition

An almost complex structure $J \in J^{comp}$ on the symplectisation

 $(\mathbb{R}_t \times Y, d(e^t \alpha))$

is said to be *cylindrical* if

- J is t-invariant,
- J(ker α ∩ TY) = ker α ∩ TY (i.e. J preserves the contact planes ker α ⊂ TY)
- $J\partial_t \in TY$ and satisfies

$$d\alpha(J\partial_t,\cdot)=0$$
 and $\alpha(J\partial_t)=1$

(i.e. $J\partial_t$ is the Reeb vector field on Y defined by α).

Cylindrial almost complex structures

An almost complex structure $J \in J^{comp}$ on the symplectisation

 $(\mathbb{R}_t \times Y, d(e^t \alpha))$

which is cylindrical satisfies

$$-dd^{c}e^{t}=d(e^{t}\alpha)=\omega.$$

In other words, if (X, ω) can be equipped with an almost complex structure which is "cylindrical outside of a compact subset," then the aforementioned maximum principle is satisfied.

The Floer complex: The vector space

For two closed Lagrangians $L_0, L_1 \subset (X, \omega)$ that intersects transversely $L_0 \pitchfork L_1$ (the intersection is a finite number of points) we define:

$$CF(L_0, L_1) = \bigoplus_{x \in L_0 \cap L_1} \mathbb{F} \cdot x$$

- The above canonical basis is graded under the presence of <u>suitable additional data.</u> (To be dealt with later.)
- The coefficients are taken to be in a suitable field F; in general one needs the "Novikov field", i.e. power series of the form

$$\Lambda^{R} := \left\{ \sum_{i=1}^{\infty} a_{i} T^{\lambda_{i}}, \ a_{i} \in R, \lambda_{i} \in \mathbb{R}, \lim_{i \to +\infty} \lambda_{i} = +\infty \right\}$$

The Floer complex: The vector space

For two closed Lagrangians $L_0, L_1 \subset (X, \omega)$ that intersects transversely $L_0 \pitchfork L_1$ (the intersection is a finite number of points) we define:

$$CF(L_0, L_1) = \bigoplus_{x \in L_0 \cap L_1} \mathbb{F} \cdot x$$

- We can always take $\mathbb{F} = \mathbb{Z}_2$ when both L_i are *exact* Lagrangians.
- If, in addition, L_i are equipped with spin structures we we can take 𝔽 = 𝓿 (or even ℤ).

The Floer complex: The vector space

From now on we will assume that L_i are closed, connected, *exact* Lagrangians and will take $\mathbb{F} = \mathbb{Z}_2$. In particular $(X, \omega) = (X, d\lambda)$ and $\lambda|_{TL_i} = df_i$ for primitives

$$f_i: L_i \to \mathbb{R}.$$

Definition

The *action* of an intersection $x \in L_0 \cap L_1$ is

$$\mathfrak{a}(x) \coloneqq f_0(x) - f_1(x) \in \mathbb{R}$$

- The primitives f_i of dλ|_{TLi} are only determined by the embedding L_i ⊂ (X, dλ) up to an unspecified constant.
- Likewise, only difference of action between two generators is uniquely determined by L_i ⊂ X.

The Floer complex: The differential

The differential

$$d: CF(L_0, L_1) \rightarrow CF(L_0, L_1)$$

is defined as follows.

- The differential d depends only on the choice J_t of a generic one-parameter family of tame almost complex structures on (X, ω)
- For $x \in L_0 \cap L_1$ a basis element of $CF(L_0, L_1)$ we define

$$d(x) = \sum_{\substack{y \in L_0 \cap L_1}} \sum_{\substack{M \in \pi_0(\mathcal{M}_{J_t}(x,y)) \\ \text{index}M=1}} y$$

where we proceed to describe the moduli space $\mathcal{M}_{J_t}(x, y)$.

The "moduli space of Floer strips from x to y"

 $\mathcal{M}_{J_t}(x, y)$

consists of those smooth maps

$$u: (\{s+it; t \in [0,1]\}, \{t=0\}, \{t=1\}) \to (X, L_0, L_1)$$

which

• are pseudoholomorphic for the domain-dependent complex structure J_t on X, i.e.

$$du(\partial_t) = du(j_0 \cdot \partial_s) = J_t \cdot du(\partial_s)$$

is satisfied.

• have finite energy
$$0 \leq \int_u \omega < \infty$$
.

• $t \mapsto u_s(t) = u(s + it)$ converge uniformly to the constant map $t \mapsto x \in L_0 \cap L_1$ (resp. $t \mapsto y$) as $s \to +\infty$ (resp. $s \to -\infty$).

Figure: A strip whose symplectic area is infinite; it is given as the universal cover of a holomorphic annullus with boundary on two disjoint Lagrangians.

- The reason why we need a *t*-dependence is to achieve transversality, so that the moduli spaces of Floer strips becomes a smooth manifold of the expected dimension i.e. the Fredholm index.
- In [EES07] Ekholm–Etnyre–Sullivan managed to get rid of this assumption in the exact case (for a carefully chosen almost complex structure).

- The requirement of finite symplectic area (energy) together with holomorphicity gives an a priori uniform convergence of the functions t → u_s(t) = u(s + it) to constants as s → ±∞.
- One can get rid of the domain-dependence of the Cauchy–Riemann equation by considering instead J-holomorphic sections over

$$X \times \{s + it; t \in [0, 1]\} \rightarrow \{s + it; t \in [0, 1]\}$$

with $\mathbf{J}_{(\mathrm{pt},s,t)} = J_t(\mathrm{pt}) \oplus j_0$.

By Stokes' theorem, any $u \in \mathcal{M}_{J_t}(x, y)$ satisfies

$$\int_{u} \omega = \int_{u} d\lambda = \mathfrak{a}(x) - \mathfrak{a}(y)$$

(Exactness is of course crucial here!) On the other hand, recall that pseudoholomorphic maps satisfy

$$\int_{u} \omega \geq 0$$

with equality if and only if u is constant.

- The moduli space of Floer strips has a linearisation which is elliptic, and hence there is a well-defined Fredholm index.
- The index of a contant strip in $\mathcal{M}_{J_t}(x, x)$ which maps into a double point $x \in L_0 \cap L_1$ is equal to zero.
- In the exact case, only the constant strip lives in the moduli space M_{Jt}(x, x); the formula for its symplectic area in terms of the asymptotics yields a(x) – a(x) = 0;
- The moduli space has a natural \mathbb{R} -action by reparametrisation $s \rightarrow s + s_0$ which is free unless the strip is constant (by its asymptotic properties).

The Floer complex: The differential

The differential

$$d\colon CF(L_0,L_1)\to CF(L_0,L_1)$$

is defined on a basis element $x \in L_0 \cap L_1$ by

$$d(x) = \sum_{\substack{y \in L_0 \cap L_1}} \sum_{\substack{M \in \pi_0(\mathcal{M}_{J_t}(x,y)) \\ \text{index}M=1}} y$$

where the area formula (Stoke's theorem) implies that d(x) is a sum of generators action strictly lower than $\mathfrak{a}(x)$.

Theorem

Floer [Flo88] When $L_i \subset (X, d\lambda)$, i = 0, 1, are closed exact Lagrangian submanifolds and J_t is cylindrical outside of a compact subset then

d is well-defined;

2
$$d^2(x) = 0;$$

 A compactly supported Hamiltonian isotopy φ^t_H of (X, dλ), and choice of two-parameter family of almost complex structures J_{s,t}, induces a chain map

$$\Phi_{H,J_{s,t}}: CF(L_0, L_1; J_{-1,t}) \to CF(L_0, \phi^1_H(L_1); J_{1,t})$$

which induces isomorphism in homology; and

Theorem

Floer [Flo88] When $L_i \subset (X, d\lambda)$, i = 0, 1, are closed exact Lagrangian submanifolds and J_t is cylindrical outside of a compact subset then

• When L_1 is obtained by perturbing L_0 to the graph of $dg \in \Omega^1(L)$ inside a Weinstein neighbourhood $U \subset T^*L_0$ of L_0 , then suitable choices yields an identification

$$(CF(L_0, L_1), d) = (C^{Morse}(-g), \partial^{Morse}),$$

of complexes with action filtration (R.H.S. is the Morse homology complex of $-g: L_0 \to \mathbb{R}$ generated by $\operatorname{crit}(g)$).

The Floer complex: An example

Figure: The Floer homology complex $CF(L_0, L_1)$ for $L_0 = 0_M$ the zero section in $(T^*S^1, dp \land d\theta)$ and $L_1 = dg$ the exterior derivative of a Morse function $g: S^1 \to \mathbb{R}$ with precisely two critical points. The two holomorphic strips contribute d(x) = y - y = 0.

Corollary

- When the homology HF(L₀, L₁) is nonzero, then L₀ intersects any image of L₁ under any compactly supported Hamiltonian isotopy.
- Since the Morse homology always is non-zero, it follows that a closed exact Lagrangian is not Hamiltonian displaceable.
- Instead of proving isomorphism with Morse homology, the next lecture we will mimic the proof of the fact that "Morse homology is nonvanishing" to give a condition for when the Floer homology is nonvanishing.

Proof that *d* is well-def.

This follows from a version of Gromov's compactness theorem that we will formulate later:

- Since L_i are exact, the components of the moduli spaces
 M_{Jt}(x, y) which consist of solutions of index = 1 become
 compact zero-dimensional manifold after taking quotients by
 automorphisms (translations).
- For compactness, the fact that the energy of solutions in $\mathcal{M}_{J_t}(x, y)$ are automatically bounded, is crucial. (Gromov's compactness needs an assumption of energy bound!)

Proof that $d^2 = 0$.

This follows from a compactness argument together with a gluing argument, that we will postpone until next time. Roughly:

- Two strips *u*, *v* can be glued to a new solution $u \sharp v$ if their asymptotics match;
- The Fredholm index is *additive* under this operation
 i.e. index(u\$\\$\\$v\$) = index(u) + index(v);
- After taking a quotient by reparam. we obtain a compact 1+1-1 = 1-dimensional manifold; A compact one-dimensional manifold has an *even* number of boundary points!

Proof of invariance (1/3).

Today we define the chain map

$$\Phi_{H,J_{s,t}}: CF(L_0, L_1; J_{-1,t}) \to CF(L_0, \phi_H^t(L_1); J_{1,t})$$

The chain-map property, as well as the property of being invertible in homology, will be postponed until next time.

We assume that

•
$$J_{s,t}$$
 is constant inside $\{|s| \ge 1\}$;

•
$$\phi_H^s = \operatorname{Id}_X$$
 for $s \leq 0$, and $\phi_H^s = \phi_H^1$ for $s \geq 1$.

Proof of invariance (2/3).

Consider a moduli space $\mathcal{M}_{J_{s,t}}(x, y)$ is defined similarly as before; It consists of smooth maps

$$u: (\{s+it; t \in [0,1]\}, \{t=0\}) o (X, L_0)$$

which

- satisfy the boundary condition $u(s+i) \in \phi_H^{-s}(L_1)$
- satisfies the Cauchy–Riemann equation

$$du(\partial_t) = J_{-s,t} du(\partial_s)$$

 The asymptotic at s = +∞ (resp. s = -∞) is x ∈ L₀ ∩ L₁ (resp. y ∈ L₀ ∩ φ¹_H(L₁)).

Figure: A strip used in the continuation map, the input is $x \in L_0 \cap L_1$ while the output is $y \in L_0 \cap \phi_H^1(L_1)$.

Proof of invariance (3/3).

We finally define

$$\Phi_{H,J_{s,t}}(x) = \sum_{\substack{y \in L_0 \cap \phi_H^1(L_1)}} \sum_{\substack{M \in \pi_0(\mathcal{M}_{J_{s,t}}(x,y)) \\ \text{index} M = 0}} y$$

on any basis element $x \in L_0 \cap L_1$, where $y \in L_0 \cap \phi_H^1(L_1)$. Note that the components of the above moduli spaces that are counted all have expected dimension zero. (In the definition of the differential, the components had expected dimension one.)

Definition

The map

$$\Phi_{H,J_{s,t}}: CF(L_0, L_1; J_{-1}) \to CF(L_0, \phi^1_H(L_1); J_1)$$

between Floer complexes induced by the Hamiltonian isotopy ϕ_H^t and path of almost complex structures $J_{s,t}$ is called a *continuation map*.

Exercise

The continuation map induced by $H \equiv 0$ and $J_{s,t} \equiv J_t$ is the *identity* map.

For more operations in Floer homology, we need to introduce the configurations space of boundary punctures on D^2 . **Recall:**

- There is a unique simply connected Riemann surface with boundary by the *uniformisation theorem*: (D^2, j_0) .
- The real Möbius transformations $\operatorname{Aut}(D^2)$ act transitively on triples of distinct cyclically ordered points in ∂D^2 . (Any element in $\operatorname{Aut}(D^2)$ is determined uniquely by its image of such a triple.)

Set $p_0 = -1 \in \partial D^2$. The space of configurations of $d \ge 2$ additional distinct points

$$\iota\colon \{p_1,\ldots,p_d\} \hookrightarrow \partial D^2 \setminus \{p_0\},\$$

called boundary punctures, which are required to

• respect the order on $(-\pi,\pi) = \partial D^2 \setminus \{p_0\}$, i.e.

$$\iota(p_1) < \ldots < \iota(p_d),$$

and where

• we identify two such configurations that differ by an element in $Aut(D^2)$ (which thus fixes p_0),

will be denoted by

$$\mathcal{R}_d = \operatorname{Emb}^{\mathit{ord}}(\{p_1,\ldots,p_d\},\partial D^2\setminus\{p_0\})/\sim$$

Since $Aut(D^2)$ acts transitively on three cyclically ordered distinct points, one deduces that

$$\mathcal{R}_d \cong \mathbb{R}^{d-2}, \ d \ge 2.$$

We can e.g. pick the unique representatives which satisfy

$$p_1\mapsto 1$$
 and $p_2\mapsto \sqrt{-1}$.

BUT, there are of course many other choices: $Aut(D^2)$ is a non-compact group.

Non-compactness of the space is a result of the fact that, in a sequence {r_i ∈ R_n}_i, two or more points can collide.

- Assume that $\{r_i\}$ is a sequence of representatives of elements in \mathcal{R}_d which diverge.
- After acting by φ_i ∈ Aut(D²) with φ_i(−1) = −1, we obtain a possibly different divergent sequence.
- For a suitable choice of sequence $\phi_i \circ r_i$ of representatives, we may assume that a subsequence converges to an element in $\mathcal{R}_{d'}$ for $2 \leq d' \leq d$. (Roughly speaking: the automorphisms ϕ_i can be used to separate the limiting clusters of points, making sure that *at least* three clusters form.)

There are many *different* choices of reparametrisations which can be used to extract a limit configuration. Here is one example:

Exercise

For any $j_0 \neq 0$ (resp. $j_0 = 0$), there is a sequence $\{\phi_i\}$, where $\phi_i(-1) = -1$, under which

•
$$\phi_i \circ r_i(p_{j_0}) = 1$$
 (resp. $\phi_i \circ r_i(p_{j_0}) = -1$),

- no sequence {φ_i ∘ r_i(p_j)} for j ≠ j₀ has 1 (resp. −1) as a limit point,
- there are at least three distinct limit points.

I.e. we can "zoom in" on the j_0 :th boundary puncture in the limit, and extract an element in $\mathcal{R}_{d'+1}$ in which p_{j_0} is not forming a cluster of colliding points.

Theorem (Devadoss [Dev99])

For a suitable metric on \mathcal{R}_d there is a natural compactification

$$\overline{\mathcal{R}}_d \cong K_d$$

by adding "nodal configurations", where K_d denotes the d-2-dimensional associahedron (a.k.a. Stasheff polyhedron). Moreover, the boundary faces of the polyhedron $K_d = \overline{\mathcal{R}}_d$ of dimension dim $\overline{\mathcal{R}}_d - 1 = d - 3$ is given by the products

$$K_{d'} \times K_{d''} = \overline{\mathcal{R}}_{d'} \times \overline{\mathcal{R}}_{d''}$$

with d' + d'' = d + 1, where these products naturally correspond to nodal configurations.

The metric on K_d gives the same notion of convergence as in Gromov's compactness theorem:

- There exists a nodal disc in the "Gromov sense", whose every disc component has at least three boundary points which are either *nodes* or *boundary punctures*.
- All nodes and boundary punctures are distinct.
- There exists a sequence of diffeomorphisms ϕ_i of D^2 which identifies (D^2, j_0) with (D^2, Γ, j_i) , and where (D^2, j_i) together and its boundary punctures converge in C_{loc}^{∞} to the nodal disc away from the curves Γ , and which respects the position of the boundary punctures.

Figure: A nodal disc with boundary punctures which lives in $\mathcal{R}_3 \times \mathcal{R}_3 \times \mathcal{R}_2$. Note that each component has at least three boundary points which are either nodes or boundary punctures. In addition, nodes and boundary punctures are disjoint.

Figure: The assoceahedra $K_2 = \overline{\mathcal{R}}_2 = \{\star\}$ and $K_3 = \overline{\mathcal{R}}_3 = I$. The boundary vertices correspond to possible decompositions of the *d*-ary multiplication $d \cdot (d-1) \cdot \ldots \cdot 1$ into sequences of binary operations.

Figure: The associahedron $K_4 = \overline{\mathcal{R}}_4$ is the pentagon. The boundary vertices corresponds to possible decompositions of the 4-ary multiplication $4 \cdot 3 \cdot 2 \cdot 1$ into sequences of binary operations.

References

Yu. V. Chekanov.

Lagrangian intersections, symplectic energy, and areas of holomorphic curves. *Duke Math. J.*, 95(1):213–226, 1998.

S. L. Devadoss.

Tessellations of moduli spaces and the mosaic operad.

In Homotopy invariant algebraic structures (Baltimore, MD, 1998), volume 239 of Contemp. Math., pages 91–114. Amer. Math. Soc., Providence, RI, 1999.

T. Ekholm, John Etnyre, and Michael Sullivan.

Legendrian contact homology in $P \times \mathbf{R}$.

Trans. Amer. Math. Soc., 359(7):3301-3335 (electronic), 2007.

A. Floer.

Morse theory for Lagrangian intersections. J. Differential Geom., 28(3):513–547, 1988.

M. Gromov.

Pseudoholomorphic curves in symplectic manifolds. Invent. Math., 82(2):307–347, 1985.