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Goal of lecture

Goal of lecture

Today:

Definition of Floer homology in the exact case.

Application: Obstructs Hamiltonian displaceability.

Moduli space of discs with boundary punctures (Associahedra).
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Goal of lecture

Take-home Message

If a closed Lagrangian can be displaced by a Hamiltonian isotopy,
then it admits a non-constant pseudoholomorphic disc.

(X , ω)

L φ1
H(L)

Figure: The blue Lagrangian L is displaceable by a Hamiltonian isotopy
and bounds a holomorphic disc; the green Lagrangian which is
homologically essential is not Hamiltonian displaceable.
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Goal of lecture

Plan
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Diplaceability

Displaceability

Definition

We say that a compact subset C ⊂ (X , ω) is Hamiltonian
displaceable if there exists a Hamiltonian H : X × R→ R for which
C ∩ φ1

H(C ) = ∅.

Gromov showed in [Gro85] that a closed Lagrangian L which is
Hamiltonian displaceable must admit a J-holomorphic disc with
boundary on L for all tame J . Also see Chekanov’s refinement
[Che98].
Floer later refined this to a chain complex in [Flo88], whose
homology is a lower bound for

|L t φ1
H(L)| ≥ 0

This complex is typically impossible, or at least difficult, to define
in the presence of pseudoholomorphic discs with boundary on L.
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Diplaceability

Displaceability

Example

Any compact subset C ⊂ (Cn, ω0) is Hamiltonian displaceable;
e.g. the translation xi 7→ xi + t is generated by the Hamiltonian
H = −yi .
For curves in surfaces, the question of Hamiltonian
displaceability can be solved completely by area considerations.

Remark

In order to deduce the existence of a J-holomorphic disc with
boundary on a closed displaceable Lagrangian inside a non-compact
symplectic manifold, one needs to control the behaviour of J outside
of a compact subset�
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Diplaceability

Displaceability

Why we need control at infinity:

There are plenty of Hamiltonian isotopies, and they act on the
space of tame almost complex structures:

(φ1
H)∗J := (Dφ1

H)−1 ◦ J ◦ Dφ1
H .

We may use this action repeatedly to push some part of the
interior of a J0-holomorphic curve in Cn, n > 1, with boundary
on a fixed Lagrangian out to ∞ (make sure it leaves every
compact subset).
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The maximum principle

Conditions on J

To gain control at infinity of a noncompact (X , ω) we will here
assume that J ∈ J tame(X , ω) satisfies the following property: there
exists a smooth proper function f : X → [−N ,+∞) such that:

Non-negativity of the “Levi two-form” on J-complex lines, i.e.

−dd c f (v , Jv) ≥ 0, v ∈ TpX ,

holds for all p ∈ f −1[0,+∞) ⊂ X .

(This is a condition only on J outside of some compact subset.)
We will now derive a maximum-principle under these assumptions,
that makes it impossible for J-holomorphic curves to partly escape to
infinity.
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The maximum principle

Conditions on J
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The maximum principle

Conditions on J

Proposition

Let u : (Σ, j)→ (X , J) be pseudoholomorphic, and Σ a connected
(possibly open) Riemann surface whose boundary is contained inside
f −1[−N , 0]. If f ◦ u : Σ→ R assumes a positive value, then f ◦ u is
constant.

Proof (1/2).

It suffices to show that f ◦ u is sub-harmonic in local coordinates near
a point which maps to a positive value under f ◦ u.
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The maximum principle

Conditions on J
Proposition

Let u : (Σ, j)→ (X , J) be pseudoholomorphic, and Σ a connected
(possibly open) Riemann surface whose boundary is contained inside
f −1[−N , 0]. If f ◦ u : Σ→ R assumes a positive value, then f ◦ u is
constant.

Proof (2/2).

For a loc. def. J-holomorphic map u : (B2
ε , j0)→ (X , J) we have

4∆(f ◦ u)dx ∧ dy = 2i∂∂(f ◦ u) = −dd c(f ◦ u)

(see [Lecture I]). The assumption on the Levi form gives

4∆(f ◦ u)dx ∧ dy(∂x , j0∂y ) ≥ 0

and thus ∆(f ◦ u) ≥ 0.Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 11 / 49



The maximum principle

Conditions on J
The above is clearly satisfied for Cn: for J = J0 and f = ‖z‖2/4
we even have

−dd c f = ω0.

More generally: when (X , ω) is symplectomorphic to a “half
symplectisation”

((0,+∞)t × Y , d(etα))

outside of a compact subset (where (Y , α) is a closed contact
manifold) one can take f = et and J to be cylindrical in the
same subset. (See next slide.)

Example

The latter condition is satisfied for (T ∗M , dθM) for M closed; take
e.g. the complement of any fibre-wise convex smooth domain.
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The maximum principle

Cylindrial almost complex structures

Definition

An almost complex structure J ∈ Jcomp on the symplectisation

(Rt × Y , d(etα))

is said to be cylindrical if

J is t-invariant,

J(kerα ∩ TY ) = kerα ∩ TY (i.e. J preserves the contact planes
kerα ⊂ TY )

J∂t ∈ TY and satisfies

dα(J∂t , ·) = 0 and α(J∂t) = 1

(i.e. J∂t is the Reeb vector field on Y defined by α).

In the above setting

−dd cet = d(etα) = ω

as sought.
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The maximum principle

Cylindrial almost complex structures

An almost complex structure J ∈ Jcomp on the symplectisation

(Rt × Y , d(etα))

which is cylindrical satisfies

−dd cet = d(etα) = ω.

In other words, if (X , ω) can be equipped with an almost complex
structure which is “cylindrical outside of a compact subset,” then the
aforementioned maximum principle is satisfied.
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The Floer complex

The Floer complex: The vector space
For two closed Lagrangians L0, L1 ⊂ (X , ω) that intersects
transversely L0 t L1 (the intersection is a finite number of points) we
define:

CF (L0, L1) =
⊕

x∈L0∩L1

F · x

The above canonical basis is graded under the presence of
suitable additional data. (To be dealt with later.)

The coefficients are taken to be in a suitable field F; in general
one needs the “Novikov field”, i.e. power series of the form

ΛR :=

{
∞∑
i=1

aiT
λi , ai ∈ R , λi ∈ R, lim

i→+∞
λi = +∞

}
.
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The Floer complex

The Floer complex: The vector space

For two closed Lagrangians L0, L1 ⊂ (X , ω) that intersects
transversely L0 t L1 (the intersection is a finite number of points) we
define:

CF (L0, L1) =
⊕

x∈L0∩L1

F · x

We can always take F = Z2 when both Li are exact Lagrangians.

If, in addition, Li are equipped with spin structures we we can
take F = Q (or even Z).
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The Floer complex

The Floer complex: The vector space
From now on we will assume that Li are closed, connected, exact
Lagrangians and will take F = Z2.
In particular (X , ω) = (X , dλ) and λ|TLi = dfi for primitives

fi : Li → R.

Definition

The action of an intersection x ∈ L0 ∩ L1 is

a(x) := f0(x)− f1(x) ∈ R

The primitives fi of dλ|TLi are only determined by the
embedding Li ⊂ (X , dλ) up to an unspecified constant.
Likewise, only difference of action between two generators is
uniquely determined by Li ⊂ X .
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The Floer complex

The Floer complex: The differential

The differential
d : CF (L0, L1)→ CF (L0, L1)

is defined as follows.

The differential d depends only on the choice Jt of a generic
one-parameter family of tame almost complex structures on
(X , ω)

For x ∈ L0 ∩ L1 a basis element of CF (L0, L1) we define

d(x) =
∑

y∈L0∩L1

∑
M∈π0(MJt

(x,y))

indexM=1

y

where we proceed to describe the moduli space MJt (x , y).
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The Floer complex

The Floer complex: The moduli space
The “moduli space of Floer strips from x to y”

MJt (x , y)

consists of those smooth maps

u : ({s + it; t ∈ [0, 1]}, {t = 0}, {t = 1})→ (X , L0, L1)

which

are pseudoholomorphic for the domain-dependent complex
structure Jt on X , i.e.

du(∂t) = du(j0 · ∂s) = Jt · du(∂s)

is satisfied.
have finite energy 0 ≤

∫
u
ω <∞.

t 7→ us(t) = u(s + it) converge uniformly to the constant map
t 7→ x ∈ L0 ∩ L1 (resp. t 7→ y) as s → +∞ (resp. s → −∞).
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The Floer complex

The Floer complex: The moduli space

Figure: A Floer strip used in the differential. The input is x ∈ L0 ∩ L1 and
the output is y ∈ L0 ∩ L1.
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The Floer complex

The Floer complex: The moduli space

Figure: A strip whose symplectic area is infinite; it is given as the universal
cover of a holomorphic annullus with boundary on two disjoint
Lagrangians.
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The Floer complex

The Floer complex: The moduli space

The reason why we need a t-dependence is to achieve
transversality, so that the moduli spaces of Floer strips becomes
a smooth manifold of the expected dimension i.e. the Fredholm
index.

In [EES07] Ekholm–Etnyre–Sullivan managed to get rid of this
assumption in the exact case (for a carefully chosen almost
complex structure).

Georgios Dimitroglou Rizell (Uppsala University)Holomorphic Curve Theories in Symplectic Geometry 22 / 49



The Floer complex

The Floer complex: The moduli space

The requirement of finite symplectic area (energy) together with
holomorphicity gives an a priori uniform convergence of the
functions t 7→ us(t) = u(s + it) to constants as s → ±∞.

One can get rid of the domain-dependence of the
Cauchy–Riemann equation by considering instead J-holomorphic
sections over

X × {s + it; t ∈ [0, 1]} → {s + it; t ∈ [0, 1]}

with J(pt,s,t) = Jt(pt)⊕ j0.
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The Floer complex

The Floer complex: The moduli space

By Stokes’ theorem, any u ∈MJt (x , y) satisfies∫
u

ω =

∫
u

dλ = a(x)− a(y)

(Exactness is of course crucial here!) On the other hand, recall that
pseudoholomorphic maps satisfy∫

u

ω ≥ 0

with equality if and only if u is constant.
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The Floer complex

The Floer complex: The moduli space

The moduli space of Floer strips has a linearisation which is
elliptic, and hence there is a well-defined Fredholm index.

The index of a contant strip in MJt (x , x) which maps into a
double point x ∈ L0 ∩ L1 is equal to zero.

In the exact case, only the constant strip lives in the moduli
space MJt (x , x); the formula for its symplectic area in terms of
the asymptotics yields a(x)− a(x) = 0;

The moduli space has a natural R-action by reparametrisation
s → s + s0 which is free unless the strip is constant (by its
asymptotic properties).
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The Floer complex

The Floer complex: The differential

The differential
d : CF (L0, L1)→ CF (L0, L1)

is defined on a basis element x ∈ L0 ∩ L1 by

d(x) =
∑

y∈L0∩L1

∑
M∈π0(MJt

(x,y))

indexM=1

y

where the area formula (Stoke’s theorem) implies that d(x) is a sum
of generators action strictly lower than a(x).
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The Floer complex

The Floer complex

Theorem

Floer [Flo88] When Li ⊂ (X , dλ), i = 0, 1, are closed exact
Lagrangian submanifolds and Jt is cylindrical outside of a compact
subset then

1 d is well-defined;

2 d2(x) = 0;

3 A compactly supported Hamiltonian isotopy φt
H of (X , dλ), and

choice of two-parameter family of almost complex structures
Js,t , induces a chain map

ΦH,Js,t : CF (L0, L1; J−1,t)→ CF (L0, φ
1
H(L1); J1,t)

which induces isomorphism in homology; and
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The Floer complex

The Floer complex

Theorem

Floer [Flo88] When Li ⊂ (X , dλ), i = 0, 1, are closed exact
Lagrangian submanifolds and Jt is cylindrical outside of a compact
subset then

4 When L1 is obtained by perturbing L0 to the graph of
dg ∈ Ω1(L) inside a Weinstein neighbourhood U ⊂ T ∗L0 of L0,
then suitable choices yields an identification

(CF (L0, L1), d) = (CMorse(−g), ∂Morse),

of complexes with action filtration (R.H.S. is the Morse
homology complex of −g : L0 → R generated by crit(g)).
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The Floer complex

The Floer complex: An example

L1
L0

y x

p

θ

g

θ

0
dg

y
x

y

Figure: The Floer homology complex CF (L0, L1) for L0 = 0M the zero
section in (T ∗S1, dp ∧ dθ) and L1 = dg the exterior derivative of a Morse
function g : S1 → R with precisely two critical points. The two
holomorphic strips contribute d(x) = y − y = 0.
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The Floer complex

The Floer complex

Corollary

When the homology HF (L0, L1) is nonzero, then L0 intersects
any image of L1 under any compactly supported Hamiltonian
isotopy.

Since the Morse homology always is non-zero, it follows that a
closed exact Lagrangian is not Hamiltonian displaceable.

Instead of proving isomorphism with Morse homology, the next
lecture we will mimic the proof of the fact that “Morse
homology is nonvanishing” to give a condition for when the
Floer homology is nonvanishing.
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The Floer complex

The Floer complex

Proof that d is well-def.

This follows from a version of Gromov’s compactness theorem that
we will formulate later:

Since Li are exact, the components of the moduli spaces
MJt (x , y) which consist of solutions of index = 1 become
compact zero-dimensional manifold after taking quotients by
automorphisms (translations).

For compactness, the fact that the energy of solutions in
MJt (x , y) are automatically bounded, is crucial. (Gromov’s
compactness needs an assumption of energy bound!)
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The Floer complex

The Floer complex

Proof that d2 = 0.

This follows from a compactness argument together with a gluing
argument, that we will postpone until next time.
Roughly:

Two strips u, v can be glued to a new solution u]v if their
asymptotics match;

The Fredholm index is additive under this operation
i.e. index(u]v) = index(u) + index(v);

After taking a quotient by reparam. we obtain a compact
1 + 1− 1 = 1-dimensional manifold; A compact one-dimensional
manifold has an even number of boundary points!
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The Floer complex

The Floer complex

Proof of invariance (1/3).

Today we define the chain map

ΦH,Js,t : CF (L0, L1; J−1,t)→ CF (L0, φ
t
H(L1); J1,t).

The chain-map property, as well as the property of being invertible in
homology, will be postponed until next time.
We assume that

Js,t is constant inside {|s| ≥ 1};
φs
H = IdX for s ≤ 0, and φs

H = φ1
H for s ≥ 1.
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The Floer complex

The Floer complex

Proof of invariance (2/3).

Consider a moduli space MJs,t (x , y) is defined similarly as before; It
consists of smooth maps

u : ({s + it; t ∈ [0, 1]}, {t = 0})→ (X , L0)

which

satisfy the boundary condition u(s + i) ∈ φ−sH (L1)

satisfies the Cauchy–Riemann equation

du(∂t) = J−s,tdu(∂s)

The asymptotic at s = +∞ (resp. s = −∞) is x ∈ L0 ∩ L1
(resp. y ∈ L0 ∩ φ1

H(L1)).
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The Floer complex

The Floer complex: The moduli space

Figure: A strip used in the continuation map, the input is x ∈ L0 ∩ L1
while the output is y ∈ L0 ∩ φ1H(L1).
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The Floer complex

The Floer complex

Proof of invariance (3/3).

We finally define

ΦH,Js,t (x) =
∑

y∈L0∩φ1H(L1)

∑
M∈π0(MJs,t

(x,y))

indexM=0

y

on any basis element x ∈ L0 ∩ L1, where y ∈ L0 ∩ φ1
H(L1).

Note that the components of the above moduli spaces that are
counted all have expected dimension zero. (In the definition of the
differential, the components had expected dimension one.)
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The Floer complex

The Floer complex

Definition

The map

ΦH,Js,t : CF (L0, L1; J−1)→ CF (L0, φ
1
H(L1); J1)

between Floer complexes induced by the Hamiltonian isotopy φt
H and

path of almost complex structures Js,t is called a continuation map.

Exercise

The continuation map induced by H ≡ 0 and Js,t ≡ Jt is the identity
map.
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Associahedra

Associahedra

For more operations in Floer homology, we need to introduce the
configurations space of boundary punctures on D2.
Recall:

There is a unique simply connected Riemann surface with
boundary by the uniformisation theorem: (D2, j0).

The real Möbius transformations Aut(D2) act transitively on
triples of distinct cyclically ordered points in ∂D2. (Any element
in Aut(D2) is determined uniquely by its image of such a triple.)
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Associahedra

Associahedra
Set p0 = −1 ∈ ∂D2. The space of configurations of d ≥ 2 additional
distinct points

ι : {p1, . . . , pd} ↪→ ∂D2 \ {p0},
called boundary punctures, which are required to

respect the order on (−π, π) = ∂D2 \ {p0}, i.e.

ι(p1) < . . . < ι(pd),

and where

we identify two such configurations that differ by an element in
Aut(D2) (which thus fixes p0),

will be denoted by

Rd = Embord({p1, . . . , pd}, ∂D2 \ {p0})/ ∼
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Associahedra

Associahedra

Since Aut(D2) acts transitively on three cyclically ordered distinct
points, one deduces that

Rd
∼= Rd−2, d ≥ 2.

We can e.g. pick the unique representatives which satisfy

p1 7→ 1 and p2 7→
√
−1.

BUT, there are of course many other choices: Aut(D2) is a
non-compact group.

Non-compactness of the space is a result of the fact that, in a
sequence {ri ∈ Rn}i , two or more points can collide.
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Associahedra

Associahedra

Assume that {ri} is a sequence of representatives of elements in
Rd which diverge.

After acting by φi ∈ Aut(D2) with φi(−1) = −1, we obtain a
possibly different divergent sequence.

For a suitable choice of sequence φi ◦ ri of representatives, we
may assume that a subsequence converges to an element in Rd ′

for 2 ≤ d ′ ≤ d . (Roughly speaking: the automorphisms φi can
be used to separate the limiting clusters of points, making sure
that at least three clusters form.)
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Associahedra

Associahedra

There are many different choices of reparametrisations which can be
used to extract a limit configuration. Here is one example:

Exercise

For any j0 6= 0 (resp. j0 = 0), there is a sequence {φi}, where
φi(−1) = −1, under which

φi ◦ ri(pj0) = 1 (resp. φi ◦ ri(pj0) = −1),

no sequence {φi ◦ ri(pj)} for j 6= j0 has 1 (resp. −1) as a limit
point,

there are at least three distinct limit points.

I.e. we can “zoom in” on the j0:th boundary puncture in the limit,
and extract an element in Rd ′+1 in which pj0 is not forming a cluster
of colliding points.
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Associahedra

Associahedra

Theorem (Devadoss [Dev99])

For a suitable metric on Rd there is a natural compactification

Rd
∼= Kd

by adding “nodal configurations”, where Kd denotes the
d − 2-dimensional associahedron (a.k.a. Stasheff polyhedron).
Moreover, the boundary faces of the polyhedron Kd = Rd of
dimension dimRd − 1 = d − 3 is given by the products

Kd ′ × Kd ′′ = Rd ′ ×Rd ′′

with d ′ + d ′′ = d + 1, where these products naturally correspond to
nodal configurations.
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Associahedra

Associahedra

The metric on Kd gives the same notion of convergence as in
Gromov’s compactness theorem:

There exists a nodal disc in the “Gromov sense”, whose every
disc component has at least three boundary points which are
either nodes or boundary punctures.

All nodes and boundary punctures are distinct.

There exists a sequence of diffeomorphisms φi of D2 which
identifies (D2, j0) with (D2, Γ, ji), and where (D2, ji) together
and its boundary punctures converge in C∞loc to the nodal disc
away from the curves Γ, and which respects the position of the
boundary punctures.
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Associahedra

The Floer complex: The moduli space

Figure: A nodal disc with boundary punctures which lives in
R3 ×R3 ×R2. Note that each component has at least three boundary
points which are either nodes or boundary punctures. In addition, nodes
and boundary punctures are disjoint.
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Associahedra

Associahedra

Figure: The assoceahedra K2 = R2 = {?} and K3 = R3 = I . The
boundary vertices correspond to possible decompositions of the d-ary
multiplication d · (d − 1) · . . . · 1 into sequences of binary operations.
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Associahedra

Associahedra

Figure: The associahedron K4 = R4 is the pentagon. The boundary
vertices corresponds to possible decompositions of the 4-ary multiplication
4 · 3 · 2 · 1 into sequences of binary operations.
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Associahedra

Associahedra

Figure: The space K5. Source: Wikipedia
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