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Weinstein domains

Section 2

Weinstein domains
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Weinstein domains

Weinstein domains

Weinstein domains are classes of Liouville domains with a particularly
well-behaved skeleton.

The class of Weinstein domains is very rich, and their wrapped
Fukaya categories realise many interesting algebraic structures;

We know almost nothing about Liouville domains that do not
admit Weinstein structures, but we have no reason to believe
that they are rare.
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Weinstein domains

Weinstein domains

Definition

A Weinstein domain is a triple (W , η, f ) where

(W , dη) is a Liouville domain (in particular the Liouville vector
field ζ is outwards transverse to ∂W );

f : W → R is a Morse function which is a pseudo-gradient for
the Liouville vector-field ζ of η.

Since the Liouville flow expands the symplectic form while it
contracts the stable manifolds of the critical points of ζ we get:

Lemma

The smooth part of Skel(W , η) is isotropic, i.e. dη|T Skel ≡ 0. In
particular, the maximum dimension of the cells in the skeleton is
equal to n = dimW /2 (these cells are Lagrangian).
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Weinstein domains

Weinstein domains

Figure: The stable manifold is isotropic (in particular it is at most
half-dimensional) while the unstable manifold is coisotropic (in particular
at least half-dimensional)
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Weinstein domains

Weinstein domains

Example

A compact Stein-domain (X , J , ρ) with smooth boundary, i.e.

J integrable;

i∂∂ρ is symplectic;

∂X is a regular level-set of ρ;

gives rise to the Weinstein structure

(X ,−d cρ/2, ρ)

in the case when ρ is a Morse function. (The Morse property can be
assumed after a generic C∞-small perturbation of ρ; the symplectic
condition is stable under such perturbations.)
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Weinstein domains

Weinstein domains

Example

(D2n,−d cρ0/2, ρ0) where ρ0 = ‖z‖2/2 and

η0 = −d cρ0/2 =
1

2

∑
i

(xidyi − yidxi)

is Weinstein (as we saw: the skeleton is the origin).

For any two Liouville (resp. Weinstein) domains X1 and X2, the
product (X1 × X2, dη1 ⊕ dη2), which has boundary with corners,
can be smoothed to form a Liouville (resp. Weinstein) domain.
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Weinstein domains

Subcritical Weinstein domains

Example

In particular, the skeleton of W = D2n1 × V 2n2 is of dim. at
most 0 + n2 < dimW /2 when V is Weinstein.

More generally, a Weinstein domain W for which all critical
points are of index < dimW /2 is called subcritical.

The wrapped Fukaya category of a subcritical Weinstein domain
is quasi-equivalent to zero; All wrapped Floer complexes vanish
by the vanishing criterion given at the end of [Lecture 9] (the
skeleton is less than half-dimensional).
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Weinstein domains

Weinstein structure on T ∗M

Example

The standard Liouville form on the cotangent bundle θM has a
Liouville vector field which is critical along the entire zero-section. A
perturbation can be seen to be Weinstein: Take a Morse function
g : M → R which is a pseudo-gradient for a vector field V ∈ Γ(TM)
that generates the positive “gradient flow” ψt : M → M . The domain

(DT ∗M , θM + d(pidq
i(V )), p2/2 + f )

is Weinstein. The new Liouville vector-field is the Morsification
p∂p + V of the degenerate Liouville vector field p∂p of θM , where the
latter has a critical manifold equal to the zero section (the original
Liouville vector field is non-degenerate in the Bott sense).
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Weinstein domains Equivalence relation on Liouville domains

When is a Liouville domain Weinstein?

A generic Liouville structure is not Weinstein. But, there is a natural
notion of equivalence of Liouville domains:

Definition

Two compact Liouville domains (X , dη0) and (X , dη1) are equivalent
if there is a path of exact symplectic forms dηt that connect dη0 and
dη1, such that (X , dηt), t ∈ [0, 1], all are compact Liouville domains.

Except in dimension two, we know almost nothing about the question
regarding which Liouville domains are equivalent to a Weinstein
domain.
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Weinstein domains Equivalence relation on Liouville domains

Weinstein structure on surfaces

Proposition

Any two-dimensional Liouville-domain (X , dη) admits a Weinstein
structure (X , η + dh, ρ) for a suitable exact deformation η + dh of
the Liouville form.

In particular: (X , dη) is equivalent to a Weinstein domain.

Proof (1/5).

Take a compatible integrable complex structure on X . (This we can
do because of the assumption that dimX = 2. In general we do not
know if this can be done.) We may assume that it is cylindrical in the
collar (−ε, 0]× Y of ∂X , and hence we can write η = −d cet there (t
is the coordinate on the collar).
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Weinstein domains Equivalence relation on Liouville domains

Weinstein structure on surfaces

Proposition

Any two-dimensional Liouville-domain (X , dη) admits a Weinstein
structure (X , η + dh, ρ) for a suitable exact deformation η + dh of
the Liouville form.

Proof (2/5).

We can inflate the Liouville domain in the collar by replacing η with
ηC = −d ceσC (t) where σ′′C (t) ≥ 0, σC (t) = t near t = −ε, and
σC (0) = C ≥ 0.
By using the Liouville flow, can readily construct a diffeomorphism of
X that pulls back ηC to eCη. In other words, it suffices to construct
a Weinstein structure (X , ηC + dh, ρC ).
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Weinstein domains Equivalence relation on Liouville domains

Weinstein structure on surfaces

Proposition

Any two-dimensional Liouville-domain (X , dη) admits a Weinstein
structure (X , η + dh, ρ) for a suitable exact deformation η + dh of
the Liouville form.

Proof (3/5).

The symplectic form dη can be written as dη = i∂∂ρ by a standard
argument:
We can write η = α0,1 + α0,1 since this is a real one-form. By
Cartan’s Theorem B (X is an open Riemann surface) we have
α0,1 = ∂f for some f : X → C. From this we compute

i∂∂(−i)(f − f ) = ∂∂f − ∂∂f = ∂∂f + ∂∂f = d(∂f + ∂f ) = dη.
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Weinstein domains Equivalence relation on Liouville domains

Weinstein structure on surfaces
Proposition

Any two-dimensional Liouville-domain (X , dη) admits a Weinstein
structure (X , η + dh, ρ) for a suitable exact deformation η + dh of
the Liouville form.

Proof (4/5).

It follows that η = −d c(−i)(f − f )/2 + γ for some closed real
one-form γ. Pick a holomorphic one-form β1,0 such that
γ = β1,0 − dh1 (embed X in a closed Riemann surface). Cartan’s
Theorem B implies β1,0 = ∂2g . Since ∂g and −∂g are
d-cohomologous, we get

β1,0 = (∂ − ∂)g = −id cg .

I.e.: ρ = (−i)(f − f + g − g) satisfies −d cρ/2 = η + dh.
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Weinstein domains Equivalence relation on Liouville domains

Weinstein structure on surfaces

Proposition

Any two-dimensional Liouville-domain (X , dη) admits a Weinstein
structure (X , η + dh, f ) for a suitable exact deformation η + dh of
the Liouville form.

Proof (5/5).

The Liouville vector field of the symplectic form
d(η + dh) = −d(d cρ/2) is not necessarily outwards pointing along
∂X . We amend this by deforming ρ near the by the formula

ρC := ρ + 2(eσC (t) − et), for C � 0.

Note that −d cρC = ηC + dh is an exact deformation of the inflated
Liouville form, from which the claim finally follows.
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Weinstein domains Equivalence relation on Liouville domains

Equivalence of Liouville structures

Theorem

If (X , dη0) and (X , dη1) are equivalent Liouville domains, then there
is a quasi-equivalence W(X , η0) ' W(X , η0) of their wrapped Fukaya
categories.

Proof (1/3).

We only show how the objects (exact Lagrangians) are related in the
two categories W(X , dη0) and W(X , dη1).
Complete (X , dη0) by gluing half a symplectisation

X = X ∪ ((0,+∞)× Y , d(etα0)), Y = ∂X , α0 = η0|TY .

along ∂X . Note that the coordinate t on the collar (−ε, 0]×Y of ∂X
defined by η0 extends to the entire infinite cylinder (−ε,+∞)× Y .
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Weinstein domains Equivalence relation on Liouville domains

Equivalence of Liouville structures

Theorem

If (X , dη0) and (X , dη1) are equivalent Liouville domains, then there
is a quasi-equivalence W(X , η0) ' W(X , η0) of their wrapped Fukaya
categories.

Proof (2/4).

One can readily construct a smooth isotopy of X supported in
(−ε, 0]× Y which “straightens” the Liouville vector fields ζs defined
by ιζsdηs = ηs in the collar, so that ζs ≡ ζ0 = ∂t holds there for all
s ∈ [0, 1]. Consequently, the forms ηs are all of the form etαs in the
same neighbourhood. (Hence αs ∈ Ω1(Y ) is a smooth family of
contact one-forms, and ηs extend smoothly to the completion X by
the formula etαs .) From now on we assume without loss of generality
that all ηs are of this form.
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Weinstein domains Equivalence relation on Liouville domains

Equivalence of Liouville structures

Theorem

If (X , dη0) and (X , dη1) are equivalent Liouville domains, then there
is a quasi-equivalence W(X , η0) ' W(X , η0) of their wrapped Fukaya
categories.

Proof (3/4).

By deforming the family etαs on the collar by a smooth bump
function etαsρ(t) where ρ(t) ∈ [0, 1], ρ(t) = 1 for t ≤ 0, ρ(0) = 1 for
all t � 0, and |ρ′(t)| sufficiently small, we get a new family of
Liouville forms whose Liouville vector fields all have a positive
component of ∂t in the infinite collar (−ε,+∞)× Y , and which all
coincide with η0 outside of a compact subset.
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Weinstein domains Equivalence relation on Liouville domains

Equivalence of Liouville structurs

Theorem

If (X , dη0) and (X , dη1) are equivalent Liouville domains, then there
is a quasi-equivalence W(X , η0) ' W(X , η0) of their wrapped Fukaya
categories.

Proof (4/4).

Call the resulting compactly supported path of Liouville forms η̃s ,
where η̃0 = η0. An application of Moser’s trick produces a compactly
supported smooth isotopy ψs : X → X for which ψ∗s d η̃s = dη0. Now,
any exact L ⊂ (X , dη0) which is cylindrical inside (−ε,+∞)× Y ,
produces

φ−N
ζ̃1

(ψ1(L)) ∩ X , for N � 0

which is an exact Lagrangian of the same type in (X , dη1).
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Weinstein domains Lagrangian cocores

Lagrangian cocores

Except in the case of cotangent bundles, the skeleton of a
Weinstein manifold is singular. This makes Floer homology
difficult to define.

While closed Lagrangians seemingly are very rare, there exist
plenty of exact Lagrangians with Legendrian boundary in every
Liouville domain; However, as we saw, we have no guarantees
that they give rise to interesting objects in the wrapped Fukaya
category.

It turns out that the embedded exact Lagrangian cocore discs
will play a crucial role in the wrapped Fukaya category.
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Weinstein domains Lagrangian cocores

Lagrangian cocores

Let dimW = 2n. We again point out the fact that, since
(φt

ζ)
∗dη = etdη gives a positive rescaling of the symplectic form, it

follows that:

The stable manifolds W s of the critical points of ζ are isotropic,
i.e. ω|TW s ≡ 0 or equivalently TW s ⊂ (TW s)ω. Consequently,
the critical points c of ζ have index that satisfies
index c = dimW s(c) ≤ n.

The unstable manifolds W u of the critical points of ζ are
coisotropic, i.e. the ω-orthogonal complement satisfies the
inclusion (TW u)ω ⊂ (TW u); Observe that
dimW u = 2n − dimW s in this case.
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Weinstein domains Lagrangian cocores

Lagrangian cocores

The Lagrangian cocore discs

They are the unstable manifolds of the critical points of f of Morse
index n = dimW /2, i.e. the top index critical points.

Coisotropic and half-dimensional implies Lagrangian.

The cocores thus consistute a finite number D1, . . . ,Dk of
disjoint exact Lagrangian discs inside W which are cylindrical
near ∂W .

For a subcritical Weinstein manifold, there are no Lagrangian
cocore discs.

However, one can always introduce cancelling handles to
introduce more cocores, while keeping the equivalence class of
the Liouville structure.
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Weinstein domains Lagrangian cocores

Lagrangian cocore in T ∗S1

Figure: In general, the cocore(s) in any D∗M with the above Weinstein
can be identified with the cotangent fibre. The depicted case is the cocore
in D∗S1.
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Weinstein domains Lagrangian cocores

Cocores in the punctured torus

Figure: The two Lagrangian cocores for the standard handle
decomposition on the punctures torus.
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A generation result

Section 3

A generation result for the wrapped Fukaya

category of a Weinstein manifold
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A generation result

Generation by cocores

We have already seen that: If there are no Lagrangian cocores,
then the critical points of ζ are all of index at most
n − 1 < n = dimW /2. Hence W is subcritical, and the wrapped
Fukaya category W(W , η) is quasi-equivalent to the trivial category.

Definition

A quasi-equivalence between two A∞-categories {fd} : A → B is an
A∞-functor (generalisation of morphism of A∞-algebra, f0 map of
objects) for which f1 induces an isomorphism

[f1] : H(HomA(L0, L1))
∼=−→ H(HomB(f0(L0), f0(L1)))

on the level of homology.
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A generation result

Generation by cocores

The remaining part of this lecture will be devoted to making the
following statement meaningful:

Theorem ([CRGG19], [GPS19])

For a Liouville domain (X , dη), and set of Lagrangian cocores for an
equivalent Weinstein structure generate the wrapped Fuakaya
category W(X , η).
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A generation result

Enlarging the wrapped Fukaya category

In order to formulate the generation we need to consider the
following enlargement of A∞-categories.

W(X , η) ⊂ TwW(X , η) ⊂ Π(TwW(X , η)).

These notions all appear in the work [Sei08] by Seidel (which
concerns the Fukaya category for closed manifolds).

Remark

In fact, the generation result presented here only needs the first
enlargement.
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A generation result

Categories and Algebras

A category (resp. A∞-category) is like an algebra (resp. A∞-algebra),
except that:

One is usually not allowed to multiply elements; i.e. compose
morphisms) unless the composition makes sense; In an additive
category, this can be amended by passing to sums of objects.

When there is infinitely many objects, then this trick does still
not produce a unital algebra: an infinite direct sum of unital
algebras is not unital.

Nevertheless, the category still behaves as an algebra in many
respects, and sometimes it is even equivalent in a certain
technical sense to an algebra.
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A generation result

Categories and Algebras

To pass from an A∞-subcategory B ⊂ A to an A∞-subcategory
TwB ⊂ TwA is analogous to

Passing from a subcategory B ⊂ ModA of A to the additive
closure

add(B) ⊂ ModA

in its module category (i.e. B = {A} produces the subcategory
of finitely generated free modules);

Even better: Passing from a subcategory B ⊂ Cbdg (A) of
bounded DG-modules over a DG-algebra A to its triangulated
envelope inside the triangulated category Cbdg (A).
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A generation result

Triangulated categories

A triangulated category satisfies a number of axioms that we do not
have time to describe. Roughly, it prescribes:

An endofunctor Σ called “suspension”; In our situation, this
functor simply shifts grading of modules, i.e.

(ΣM)∗ = M∗+1 = M[1].

A set of exact triangles such that each morphism
x ∈ Hom(L0, L1) can be completed to an exact triangle

L0
x−→ L1 → Cone(x)→ L0[1].

(A typical example is the mapping cone construction in
homological algebra.)
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A generation result

Categories and Algebras: Twisted complexes
The constructions of

TwB ⊂ TwA ⊂ ModA

can be performed via a closure inside a module category:

Take the triangulated envelope of the images

Yr (B) ⊂ Yr (A) ⊂ ModA

of the categories B ⊂ A under the fully faithful Yoneda
embedding

Yr : A → ModA
into the category of A∞-category modules over A.

We will instead give an explicit construction of this enlargement
below, which bypasses the Yoneda embedding.
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A generation result

Categories and Algebras: Twisted complexes

The construction of the further enlargements

Π(TwB) ⊂ Π(TwA) ⊂ ModA

needs an additional step

Add all summands that correspond to idempotents. (I.e. take
the split-closure.)

Example

Analogy with modules over an algebra A: The triangulated envelope
of A yields bounded complexes of free modules. Adding all
summands that correspond to idempotents yields the bounded
complexes of projective modules, i.e. Perf (A).
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A generation result

Precise generation result

We are now ready to reformulate the generation result in the
following manner:

Theorem ([CRGG19], [GPS19])

For a Liouville domain (X , dη), and the full subcategory
D ⊂ W(X , η) whose objects consist of the Lagrangian cocores for an
equivalent Weinstein structure, we have a natural quasi-equivalence

TwD
'
⊂ TwW(X , η)

of A∞-categories.

An equivalent formulation: every object L ∈ W(X , η) is isomorphic
inside TwW(X , η) to an iterated cone built from the cocores
{D1, . . . ,Dk}.
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A generation result

Consequences of generation

The generation result makes W(X , η) of a Weinstein manifold
possible to compute by understanding the full A∞-subcategory
B = {D1, . . . ,Dk} ⊂ W(X , η) consisting of the Lagrangian cocores:

There is a quasi-equivalence between TwB and the triangulated
envelope of the B-modules Yr (D1), . . . ,Yr (Dk) ⊂ ModB
induced by the Yoneda embedding; see [Sei08][Lemmas
3.34,3.36].

Since B can be seen as an A∞-algebra, this has an even more
concrete formulation: TwB is quasi-equivalent to the
triangulated envelope of the A∞-modules
End(Di) = Hom(Di ,Di) ∈ ModB over the A∞-algebra
B = End(D1 ⊕ . . .⊕ Dk).
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A generation result

Consequences of generation

It is sometimes useful to replace the subcategory B consisting of the
cocores by something which is quasi-equivalent:

A quasi-equivalence B1 ' B2 of A∞-categories extends to a
quasi-equivalence TwB1 ' TwB2 of the corresponding twisted
complexes [Sei08][Lemma 3.25].

In particular: A quasi-isomorphism B2 ' B2 of A∞-algebras
induces a quasi-isomorphism of the triangulated envelopes of
B1 ∈ ModB1 and B2 ∈ ModB2. (Recall that A∞-algebras are
A∞-categories with a unique object.)
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A generation result

The closed exact case
Of course, for all we may know, W(X , η) may be quasi-equivalent to
the zero category. This is not always the case; indeed, there are
plenty of examples of interesting wrapped Fukaya categories. We
present one here:

Theorem (Abouzaid [Abo12])

For the standard Weinstein structure on a connected cotangent
bundle D∗M , the unique cocore D satisfies

(Hom(D,D), {µd}) ∼= C∗ΩM

where the right-hand side is the DG-algebra of singular chains in the
based loop-space of M equipped with the Pontryagin product.

(Abouzaid also proved the generation result in the particular case of
the cotangent bundle: [Abo11a])
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A generation result

The closed exact case

In particular, W(D∗M , θM) is quasi-equivalent to full-subcategory of
the semifree DG-modules, i.e. the triangulated envelope of C∗ΩM
inside its category Chbdg (C∗ΩM) of DG-modules.

Theorem (Abouzaid [Abo11b])

The A∞-algebra CF (L, L) for a closed exact Lagrangian L with
F-coefficients is quasi-isomorphic (as an A∞-algebra) to the unital
differential graded algebra C ∗(L,F) of singular chains (this is an
A∞-algebra with µd = 0 for all d ≥ 3).

The original proof goes via an A∞-structure which is constructed on
the Morse complex of the compact manifold L. Instead, we take a
different path here which uses algebraic topology and homological
algebra.
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A generation result

The closed exact case

Proof (1/2).

Since the Lagrangian L is closed and exact, on can compute its
A∞-structure inside its Weinstein neighbourhood (D∗L, dθL).
We consider L as an object inside the wrapped Fukaya category
W(D∗L, θL).

Since D ∩ L intersects transversely in a single point
Hom(D, L) = F. The Yoneda embedding identifies the object
L ∈ W(D∗L, θL) with the one-dimensional Hom(D,D)-module
Hom(D, L).

The Yoneda embedding is fully faithful, so there is a
quasi-isomorphism of A∞-algebras

Hom(L, L) ' HomModHom(D,D)(Hom(D, L),Hom(D, L)).
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A generation result

The closed exact case
Proof (2/2).

Hom(D,D) is quasi-isomorphic to C∗ΩM by Abouzaid’s result.
This identifies the Hom(D,D)-module Hom(D, L) with a
semifree resolution of the C∗ΩM-module F (with module
multiplication on F defined by the DGA-morphism
C ∗(M)→ C ∗{pt} = F induced by {pt} ⊂ M).

Hence
Hom(L, L) ' RhomC∗ΩM(F,F)

and hence the classical result

RhomC∗ΩM(F,F) ' C ∗(M)

from e.g. [FHT95][Theorem 7.2(ii)] then finishes the claim.
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Twisted complexes

Section 4

Twisted complexes and A∞-modules
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Twisted complexes

Modules over algebras

It is useful to use the category ModA of (right) A-modules to
understand an algebra A, even if this category is a gadget that in
some sense is much larger than the algebra itself; for instance

A ∈ ModA is an object with HomModA(A,A) ∼= A.

The same is true for A∞-modules (to be defined below)
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Twisted complexes

Modules over categories

A module over a category A is a functor

F : A → Vect(F)

to the category of vector spaces;

What this means: x : b → c in the category is sent to an element

F(x) ∈ HomF(F(b),F(c)),

i.e. we have a map

F(b)⊗ HomA(a, b)→ F(c),

(m ⊗ x) 7→ F(x)(m)

i.e. the module multiplication.
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Twisted complexes

Modules over categories

This construction works for A∞-categories as well, but one has
to replace functor with A∞-functor (generalisation of
A∞-morphisms from algebras to categories).

Moreover, we want to consider DG-modules, so the correct
definition is the following:

Definition

A module over an A∞-category A is an A∞-functor

F : A → Ch(F)

to the DG-category of chain complexes
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Twisted complexes

A∞-modules

The concrete formulas in the case of an A∞-category with one
object, i.e. an A∞-algebra A, is the following:
An A∞ A-module is a vector space M together with operations

νd : M × Ad → M , d = 1, 2, 3 . . .

that satisfy

∑
n

(−1)zνn+1(νd−n(m, ad−1, . . . , an+1), . . . , a1)

+
∑
m,n

(−1)zνm−d+1(m, ad , . . . , νm(an+m, . . . , an+1), . . . , a1) = 0
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Twisted complexes

Since one can take cones of modules, and shift their grading, they
form a triangulated category. Twisted complexes is an abstract way
to enhance an A∞-category by adding these cones.
We start with the shift functor:

There is a shift of grading L[i ] of the objects, where

Hom∗(L0[i ], L1[j ]) = Hom∗+i−j(L0, L1)

For chain complexes we have C ∗[i ] = C ∗−i (and graded Homs
get shifted as above).

In the wrapped Fukaya category the shift is geometrically
induced by a choice of Maslov potential. (We did not talk about
this.)
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Twisted complexes
We then proceed by sums of objects:

Enlarge the A∞-category by adding the finite sums of shifts of
objects

L = Li1[j1]⊕ . . .⊕ Lik [jk ]

with

Hom(L,T ) = Hom∗+j1(Li1 ,T )⊕ . . .⊕ Hom∗+jk (Lik ,T ),

Hom(T ,L) = Hom∗−j1(T , Li1)⊕ . . .⊕ Hom∗−jk (T , Lik ).

The A∞-operations are defined by additively extending.

Example

Hom∗(L0[i ]⊕ L1[j ], L0[i ]⊕ L1[j ]) =

= End∗(L0)⊕ Hom∗+i−j(L0, L1)⊕ Hom∗+j−i(L1, L0)⊕ End∗(L1)
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Twisted complexes

Figure: In the wrapped Fukaya category, sums of objects has a natural
geometric explanation: immersions given by disjoint unions of Lagrangian
embeddings, e.g. L0 ∪ L1 and its perturbation L′0 ∪ L′1 shown in the figure.
Here x ∈ Hom(L0, L

′
1) ⊂ Hom(L0 ⊕ L1, L

′
0 ⊕ L′1), while

y ∈ Hom(L1, L
′
0) ⊂ Hom(L0 ⊕ L1, L

′
0 ⊕ L′1).
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Twisted complexes

What remains is to add cones.

This is done by twisting the above direct sums by solutions to
the Maurer–Cartan equation which satisfy a certain filtration
property.

One can do this iteratively by defining cones between sums of
two objects:
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Twisted complexes

Definition

The object Cone(x) for a closed morphism x ∈ Hom(L0, L1) is the
object L0[1]⊕ L1 with A∞-operations “twisted” by the element x via

µx
d(ad , . . . , a1) =

∑
k≥0

mud+k(. . . , ad , . . . , ad−1, . . . , x , . . . , a1, . . .)

where the element x has been inserted in all possible ways.

(The above sum is finite since x is not an endomorphism.)

Example

µx
1(a) = µ1(a) + µ2(a, x) + µ2(x , a)
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Twisted complexes

Figure: Twisting by a cycle x ∈ Hom(L1, L0) as depicted in the figure
yields 〈µx1(a), b〉 = 〈µ2(a, x), b〉 = 1, where a ∈ Hom(L0,T ) and
b ∈ Hom(L1,T ).
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Twisted complexes

Figure: There is also a geometric explanation: performing surgery at the
double point x ∈ L0 ∪ L1 to produce L0#xL1; again 〈µ1(a), b〉 = 1, where
a, b ∈ Hom(L0#xL1,T ). Note that the “input corner” of
x ∈ Hom(L1, L0) has been rounded.
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Twisted complexes

Remark

If there are more than one intersection point between L0 and L1, then
the result L0#xL1 is connected but typically not embedded. This
makes Floer homology difficult to define. �
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Twisted complexes

Isomorphism and cones
Recall that:

If L0 and L1 are Hamiltonian isotopic Lagrangian submanifolds,
then they are isomorphic object in the Donaldson category, with
an isomorphism given by a continuation element
[cL0,H ] ∈ H(Hom(L0, L1)).
In general, two objects in a classical category are isomorphic in
the category if and only if there exists a morphism
x ∈ Hom(L0, L1) for which left and right composition induces
isomorphisms

lx : Hom(L0, L0)
∼=−→ Hom(L0, L1)

rx : Hom(L0, L1)
∼=−→ Hom(L1, L1).

of morphisms sets. (Check that the above two properties ensure
left and right invertibility of the morphism x .)
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Isomorphism and cones

To every A∞-category one can associate its homology category
HA which consists of the same objects, but where
HomHA(L0, L1) = H(Hom(L0, L1)).

pause HA a classical category which is equal to the Donaldson
category in the case when A is the Fukaya category.

We have the following relation between isomorphism in HA and the
acyclicity of cones in TwA:

Lemma

For a cycle x ∈ Hom(L0, L1) in an A∞-category A, the object
Cone(x) ∈ TwA is acyclic, i.e. H(End(Cone(x))) = 0, if and only if
x is an isomorphism in the homology category HA. Moreover, in this
case the two A∞-algebras Hom(L0, L0) and Hom(L1, L1) are
quasi-isomorphic.
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Twisted complexes

Isomorphism and cones

Proof (1/3).

Technical assumption which can be achieved after
quasi-equivalence: all operations µd , d ≥ 3, involving a unit eL
vanish. (So called strict unitality.)

The property for x to be an isomorphism in HA and acyclicity
H(End(Cone(x))) are equivalent for the following reason:
H(End(Cone(x))) = 0 is equivalent to the unit in Cone(x),
i.e. the cycle given by

eCone(x) = eL0 ⊕ eL1 ∈ End(L0)⊕ End(L1) ⊂ End(Cone(x)),

being a boundary. (That the sum of units is the unit follows
from strict unitality.)
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Twisted complexes

Isomorphism and cones

Proof (2/3).

We now show that End(L0) and End(L1) are quasi-isomorphic when
lx and rx induces an isomorphism between morphism spaces in HA:

Consider the A∞-subalgebra

C := End(L0)⊕ Hom(L0, L1)⊕ End(L1) ⊂ End(Cone(x)).

There are obvious A∞-morphism from C to both A∞-algebras
End(Li) given by the canonical projections

π0 : C → End(L0),

π1 : C → End(L1).

In fact, all fd , d ≥ 2, vanish for these A∞-morphisms.
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Twisted complexes

Isomorphism and cones

Proof (3/3).

These projections are quasi-isomorphism since their kernels

ker π0 = Hom(L0, L1)⊕ End(L1) ⊂ C ⊂ End(Cone(x)),

ker π1 = End(L0)⊕ Hom(L0, L1) ⊂ C ⊂ End(Cone(x)).

both are acyclic cones themselves.

Namely, [πi ] is an isomorphism by the long exact sequences in
homology arising from the short exact sequences

0→ ker πi → C
πi−→ End(Li)→ 0

of complexes.
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Twisted complexes

Thank you!
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