Modal Logic

(Lecture Notes for Applied Logic)

Anton Hedin

October 2, 2008

Contents

1 Introduction 2

2 Basic Modal Logic 3
2.1 Syntax . ... 3
2.2 Semantics . . . . ... 4

3 Engineering of Modal Logics 9
3.1 Frame correspondence . . . . . . .. ... .. ... ..., 11
3.2 Normal modal logics . . . . . ... .. ... ... ... .. 15

4 Neighborhood Semantics: A remark on normal modal logics 20

5 Intuitionistic Propositional Calculus 23

6 Generalizing the basic framework 29



1 Introduction

In (classical) propositional and predicate logic, every formula is either true
or false in any model. But there are situations were we need to distinguish
between different modes of truth, such as necessarily true, known to be true,
believed to be true and always true in the future (with respect to time). For
example, consider the sentence

"The math department is located on the
fourth floor of the Angstrom building”.

It expresses something that is true today, but was false some years ago.
Moreover, it might be false again some time in the future. Another example,
whose mode of truth is more stable with respect to time, is

"The Earth has exactly one moon”.

The sentence expresses something that is true and maybe will be true for
ever in the future, but it is not necessarily true in the sense that there might
as well have been two moons, or none for that matter (since we know this is
possible for planets). However, most people would consider the statement

"The square root of 9 is 3”7

as expressing something that is both necessarily true as well as always true.
But it does not enjoy all modes of truth, for example it may not be believed
to be true (for example by someone who is mistaken) or known to be true
(for example by someone that hasn’t learned mathematics).

There are also more practical examples were reasoning about different modes
of truth is helpful. For example, think of a multi-agent system in computer
science. There, each agent may have different knowledge about the system
and even about other agents knowledge. In such a scenario a sentence is
'necessarily’ true when known. It should be clear that not every sentence
needs to be necessarily true in this sense.

In the examples given above we are using the same way of reasoning. A
sentence ¢, if true, will be so with respect to the current state of affairs, i.e.



how the world actually is, but (depending on ¢) we might be able to conceive
of a state of affairs (a different world) were ¢ is false, and if this is the case
 will not be necessarily true. These states of affairs can be points in time
as in the first example, possible worlds as in the second example or states of
knowledge of a person/agent as in the last two examples.

We will develop a general framework in which we will be able to reason about
situations as the ones above. First we take a look at basic modal logic.

2 Basic Modal Logic

2.1 Syntax

The language of Basic Modal Logic is an extension of classical propositional
logic. What we add are two unary connectives [J and ¢. We have a set Atoms
of propositional letters p,q,r, ..., also called atomic formulas or atoms.

Definition 1. Formulas of basic modal logic are given by the following rule

eu=L]T|p|l-@|(@Ae)](@Ve)l(@—=v) (@O O

where p is any atomic formula.

Examples of well formed formulas (wffs) are (¢ A =0p) and (Op — O0(r v
OT)), while pOd- — Op or VpOyg are clearly non-wffs!

Just as in predicate logic, the unary connectives bind most closely so that
for example Op V r is read as (Op) V r and not O(p V 7).

The new connectives [ and ¢ are read 'box’ and 'diamond’ respectively,
and are dual of each other similarly to how V and 3 are dual of each other
in predicate logic (we will return to this later). And just as V and 3 are
read as 'for every’ and ’there exists’ respectively, we will also want to give
special readings for box and diamond. Although the readings will be different
depending on the situation we want to study, i.e. what mode of truth we are
interested in. For example in case we want to study necessity and possibility
(as in the case of the second sentence above), O is read as necessarily’” and



¢ as ’possibly’. In such a logic there are some formulas we might regard
as being correct principles, for example Ly — Q¢ 'whatever is necessary is
possible’ or ¢ — Q¢ 'whatever is, is possible’. However, other formulas may
be harder to decide. Should ¢ — OOy 'whatever is, is necessarily possible’
be regarded as a general truth about necessity and possibility? A precise
semantics will bring clarity to questions like these.

Remark 2.1. We could just as well have defined a formula ¢ by the following
(shorter) rule

pu=L|p|l-e|(@Ae)](p— )| O,

and then, as is usually done, define the rest of the connectives from the ones
given. In this case, diamond would be defined as ¢ := —=[J—.

2.2 Semantics

We now want to give some mathematical content to our suggestive discussion
above. A model in propositional logic is simply a valuation function assigning
truth values to the set of atoms, i.e. a function

v: Atoms — {T,L}.

As we’ve hinted at in the discussion, we now want to consider models in
which an atom can have different truth values at different states. Therefore:

Definition 2. A model, M, in basic modal logic is a triple (W, R, L), where

e WV is a set of states or worlds,
e Risarelation RCW x W,

e and L is a function L : W — P(Atoms), called the labelling function.

These models are called Kripke models after Saul Kripke who was the first
to introduce them in the 1950s. Intuitively w € W is a possible world and
R is an accessibility relation between worlds. That is, wRw’ (which we will
use as shorthand for (w,w’) € R) means that w’ is accessible from w. This
intuition will be made more precise in the next definition. But first some
examples.



Example 1. Although the definition of a Kripke model might look somewhat

complicated, we can use an easy graphical notation for such a model: Suppose
M = (W, R, L) is a Kripke model where

W = {xl,xg,$3,$4,1?5},
R = {(:cl,az'g),(x1,$4),(:c2,x2),(x2,x3),

(23, 2), (3, 74), (25, 25), (T5, ¥2), (T35, 74) }

and
{p,q,?”}, =1
{r}, i=2
L(z;)) =< {p,}, 1=3
{r}, i =4
0, 1=295

Then we can picture M as follows:

1 M@ Ty
\ -
290

$3

c

Where an arrow x; — x; means that z;Rz;.

Example 2. A Kripke model M = (W, R, L) can be used to describe how
truth values vary over time. A common example is when W = N and R is
the ordinary ordering < of the natural numbers.

Then we can think of W as a set of points in time and R as the relation of
being ahead in time. Then L(t) will describe the truth values of propositions
at time t € W.



Example 3. If we consider the model ({x}, ), L), we see that it is in fact just
an ordinary model for propositional logic (when restricting our attention to
formulas of propositional logic). Namely, we can define an ordinary valuation
function V' : Atoms — {T, L} by

T, ifpe L(x)
Vip) = { 1 ifi & L(+)

Now we will define what it means for a formula to be true at a state in a
model.

Definition 3. Let M = (W, R, L) be a model in basic modal logic. Suppose
x € W and ¢ is a formula. We will define when ¢ is true in the world x. This
is done via a satisfaction relation x I ¢ by structural induction on ¢:

o zIFT

xlf L

zlFpiff pe L(x)

xlF—piff zlF ¢

xlFeAY it xlFpand x -y

rlFeVy it xl-porxl-qy

x - ¢ — ¢ iff x |- whenever x IF ¢

rlFp—=yiffxlFpiff -y

x IF Oy iff for each y € W with x Ry we have y I ¢

x IF O iff there exists y € W such that xRy and y IF ¢

When z Ik ¢, we say that 'z satisfies/forces ¢’ or ’¢ is true in world x/at
state x’.



The first eight clauses are straightforward from propositional logic, the only
difference being that an atom p can be true at many worlds x. The interesting
cases are the ones for box and diamond. For Oy to be true at x, ¢ must
hold at every world y related to z, and for ¢ to be true at x there must be
at least one world y related to = such that ¢ is true at y. Note that [J and
¢ act a bit like the quantifiers V and 3, but quantifiers over states instead of
variables. The above interpretation of the logical constants of basic modal
logic is usually called possible worlds semantics.

Example 4. Consider the model of example 1. According to definition 3 we

have

since xoRy implies that y = x5 or y = x3 and we have both x5 IF p and
x3 - p, ie. p € L(z2) and p € L(x3). Moreover we have

x1 = O(r ANOq)

since 1 Rx4 and x4 IF r and x4 IF Og since there is no y € W such that z4Ry.

Definition 4. A model M = (W, R, L) is said to satisfy a formula ¢ if every
state in the model satisfies it. Thus, we write M |= ¢ if and only if z IF ¢
for every x € W.

Example 5. Again considering the model M of example 1 we see that for
example the modal formula r V Op is satisfied by M: zy, 23,24 IF r and

T, Ts H_ <>p
Next we define semantic entailment.

Definition 5. Let I' be set of formulas. Then we say that I' semantically
entails a formula ¢ if for any world z in any model M = (W, R, L) we have
x I ¢ whenever z IF 4 for every ¢ € I'. In that case we write I' = .

We will say that two formulas ¢ and ¢ are semantically equivalent when they
semantically entail each other, and then we write ¢ = .

Example 6. We have already seen that [] acts as a universal quantifier on
worlds while { acts as an existential quantifier on worlds. Therefore it may
not be so surprising that we have the following semantical equivalences:

Dgp = —\Q—\gp
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Op = ~U-p

How can we see this? Well, let M = (W, R, L) be an arbitrary model and
let € W be any world. Suppose z I Op, then y IF ¢ for every y € W
such that xRy. So there cannot exist a world y € W such that xRy and
y IF =, but then = If O—¢p. Hence z IF =0—p. Conversely, if z IF =0—¢p
then z I O—¢p so that there is no world y such that xRy and y I —¢. Hence,
for any y € W such that xRy, we must have y I . But then x IF Uy. Hence
Ly = =0—p. The second equivalence follows easily from the first one.

Example 7. It is also not surprising that [ distributes over A and that ¢
distributes over V but not the other way around. That is

O Ay) = (Op ADY)

Ol V) = (Op V)
but
D((p V) #Z (Op v Oy)

Ol A1) Z (O A OY).

For the first equivalence, let M = (W, R, L) be an arbitrary model and let
x € W be any world. Suppose z IF O(¢p A1), then for every y such that z Ry,
y IF ¢ and y I 4. But then of course x IF Uy and x |- [Ty, i.e. x - OpAhp.
Likewise, if x IF O Ay, then for every y such that xRy, y IF ¢ and y IF 9,
i.e. ylF @A and hence z IF O(p A ).

To see that O(¢ V ) # Og V O, we consider the following kripke model:

y z

We see that z I O(pVq), since y IF pVg and z |- pVq. However x ¥ OpVv g
since y If p and z Iff q.

FEzercise 1. Show that O(p V) = (Op V1) and that O(p A1) Z (Op AOY).



Now, we need a notion of validity. In our case this will mean not just being
true with respect to every valuation, but also with respect to every underlying
relational structure (W, R). More precisely we have

Definition 6. We say that a formula ¢ is valid if it is true in every world of

every model. We denote this by = ¢.

From the results in example 6 and 7 we have that the following formulas are
valid

<>(p — =
O(p Ay) < (O AT)

Qo V1) « Qp Vv O

Another important formula which can be seen to be valid is the following
O(p — ¢) — (Op — Oy).

This formula (formula scheme to be more precise) is called K (honoring S.
Kripke). To see that K is valid, let M = (W, R, L) be any model and let
x € W be some world in M. Assume that = IF O(¢ — ) and x I+ Og. This
holds if and only if for every y € W such that xRy, we have y I+ ¢ — 1 and
y I ¢ which implies that y I ¢ for every y such that xRy. But this on the
other hand holds if and only if z |- 0. Hence z IF O(p — ¢) — (Op —
[(0¢), which shows that K is valid.

Ezercise 2. Is the converse of the K formula valid? That is, do we have

F (Op —Oyp) — O(p — ) ?

3 Engineering of Modal Logics

As we discussed in the introduction we are interested in modeling situations
were we need to distinguish between different modes of truth. And as we saw
the applications can vary from temporal to epistemological. The framework
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for basic modal logic is quite general (although it can be further generalized
as we will see later) and can be refined to yield the properties appropriate for
the intended application. We will concentrate on three different applications:
logic of necessity, temporal logic and logic of knowledge. That is, we will
engineer the basic framework to fit the following readings of [p:

e [t is necessarily true that ¢
o [t will always be true that ¢

e Agent A knows ¢.

We know that ¢¢ = —[—y, so the reading of Qo in each situation is given
automatically by that of Cy:

e It is not necessarily true that not ¢
= It is possible that not not ¢
= It is possible that ¢.

o It will not always be true that not ¢
= At some point in the future not ¢ will not hold
= At some point in the future ¢ will hold.

e Agent A does not know not ¢
= As far as A knows, ¢ could be the case
=  is consistent with A’s knowledge.

Exercise 3. Suppose we want to interpret [y as "We have a proof of ¢”.
What would the corresponding interpretation of ¢ be?

In the last section we saw some examples of valid formulas, i.e. formulas
that are satisfied in every model. Many other formulas, of course, are not.
Some examples are Ly — ¢, Op — O0¢p and 0T (Why?). However, if we
want to study the logic of necessity we would like the first of these, Ly — ¢
("What is necessarily true is also true’), to be valid, in the case that Oy is
read "Agent A knows ¢’ we might want (e — OOg ('If A knows ¢, A also
knows that he/she/it knows ¢’) to be valid, and in the case of temporal logic
we might want QT ("There is always a future world’) to be valid.
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So for each situation, or reading of [, we would like to restrict the class of
models so that the desired formulas are valid (with respect to this restricted
class of models).

Now, each reading of [J also provides some corresponding reading of the
accessibility relation xRy:

e y is a possible world according to the information at z
e y is in the future of x

e y could be the actual world according to A’s knowledge at x.

Ezercise 4. Consider again the interpretation in exercise 3. Can you say
anything about the accessibility relation xRy in this case?

The question now is what properties the relation R should have in the various
cases. In the first case for example, is it desirable that R be reflexive? Well,
this would mean that at each world z, x itself is a possible world. So the
answer seems to be yes. We may note a similarity to the argument validating
the formula Uy — ¢ under the same reading of . In fact, there is a close
connection between this formula and the property of reflexivity. In the next
section we will see that some elementary classes of models correspond to
simple formulas in basic modal logic. This will yield a connection between
what formulas should be valid and what general structure the models should
have in each situation.

3.1 Frame correspondence

We start with some definitions.
Definition 7. A structure (W, R) with W a non-empty set and R a binary

relation on W is called a frame and is denoted F.

A frame F is the underlying structure of any model M, and so from any
model we can extract a frame by simply forgetting about the labeling func-
tion.

11



Definition 8. A formula ¢ is valid on a frame F, written F | ¢, if for
every labelling function L and each x € W we have M, x I ¢, where M =
(W.R, L).

Remark 3.1. We defined validity of a formula ¢, = ¢, by saying that ¢ is true
at every state of every model, but we could equivalently say that a formula
¢ is valid when F |= ¢ for all frames F.

Example 8. Consider the following frame F:

)
[ J
T2

{*\ N
.\.4..1:1 1’3.‘J

Then we have, F = Oy — . Why is this? Well, let L be any labelling
function on F and let x be any state of F. If x IF Uy then y IF ¢ for every
y in F such that x is related to y. But, every state in F is related to itself,
i.e. F has a reflexive accessibility relation. Hence x IF ¢, and so we indeed

have F = Oy — o.

This is a special case of the following result:

Proposition 3.2. Let F = (W, R) be a frame, then

1. R is reflezive if and only if F = Op — ¢,

2. R is transitive if and only if F = Op — O0p.

Proof. (1): Suppose R is reflexive and let L be a labelling function on F so
that we get a model M = (W, R, L). We want to show that M | Oy — ¢,
so let x € W be any state such that x IF Up. Since R is reflexive, we have
xRz and hence z I ¢. But then we have z |- Oy — ¢, and F = Op — ¢
since x was arbitrary.

12



Conversely, suppose F = Oy — . In particular, we then have F = Op — p.
Now, let z € W and let L be a labelling function such that p ¢ L(z) and
p € L(y) for each y € W with xRy. Suppose we don’t have xRz, then
x IF Op. But then, since F satisfies [p — p we also must have z I+ p. But
this is a contradiction to the assumption that p ¢ L(z). Hence, it must be
the case that xRx. Since x was arbitrary this shows that R is reflexive.

(2): Suppose R is transitive. Let L be a labelling function and M =
(W,R,L). We want to show that M | O¢p — OOp. So let x € W be
any state such that x |- Oyp. We then need to show that for every y € W
such that xRy and every z € W such that yRz we have z IF ¢, i.e. z IFO0ep.
But if z Ry and y Rz then xRz since R is transitive, and together with x IF Uy
we then have z IF ¢. Hence z IF OCp. This shows that F = Cp — O0e.

Conversely, suppose F = Oy — OOy, In particular, we then have F =
Up — UUp. Let x,y,z € W be such that xRy and yRz, we want to show
xRz. Let L be a labelling function such that p ¢ L(z) but p € L(w) for
all other worlds w. Suppose we don’t have xRz, then z I [p and hence
x IF O0p since F = Op — OOp. But then y |- Op, since xRy, and z I+ p,
since yRz, which contradicts our assumption that p ¢ L(z). Hence, we must
have xRz. This shows that R is transitive. O]

For other applications there might be other properties of R that are desir-
able. And in many cases these properties will, as above, correspond to some
formula. The following table gives some such correspondences

T: Frame-validity of [y — ¢ corresponds to reflexivity of R.

B: Frame-validity of ¢ — OO corresponds to symmetry of R.

D: Frame-validity of Ly — Q¢ corresponds to R being serial.

4: Frame-validity of Uy — Uy corresponds to transitivity of R.

13



5: Frame-validity of Q¢ — [0y corresponds to R being FEuclidean.

The first symbol on each line is the commonly used name of the corresponding
modal formula (cf. axiom K).

Definition 9. We say that a BML formula ¢ defines a property P of a frame
F = (W,R) if F |= ¢ if and only if R has the property P.

FExercise 5. Show that both 0T and D : Uy — Q¢ defines the same property.

Example 9. We will prove the last of the correspondences above, that F =
O — OOy if and only if R is Euclidean. The relation R is Euclidean if for
every x,y,z € W, xRy and xRz implies that yRz. First, suppose that R is
Euclidean. Let L be any labelling function on F and let € W such that
x IF Op. Then there is z € W with Rz and z IF ¢. Now suppose y € W
with xRy, then yRz since R is Euclidean. But then we have y IF O, and
hence x IF OO0y, ie. z - Op — 0.

We prove the converse by contraposition. Assume F is non-Euclidean, then
there must be states x,y, 2z € W such that xRy, xRz but not yRz. We will
try to falsify 5 in z by finding a labelling function L such that z I {p and
x If OOp. That is, we have to make p true at some R-successor of x and
false at all R-successors of some R-successor of . Let L be given by

p € L(w) iff it is not the case that yRw

then p € L(z) while {w | yRw} N{w | p € L(w)} = 0. Now clearly y I Op,
so that z I JOp. On the other hand, since we have z IF p and xRz, we have
x |- Op. Hence, F £~ Op — O0¢.

Exercise 6. Prove the remaining frame correspondences in the list.

Exercise 7. Can you find a modal formula that defines linearity? R is linear
if it is reflexive, transitive and satisfies (Vx,y)(zRy V yRzx).

We now have a way of deciding what formulas of basic modal logic should
be included as axioms in our logic: On the one hand we are guided by the
reading of the unary connectives [J and ¢, and on the other hand by the
desired properties of models.

14



For example, say we want to interpret [J as the temporal connective Always
in the future. Then we have already argued that we would like to have the
formula ¢T as an axiom. Furthermore it would be reasonable to consider
only transitive models, which would simply mean that if y is ahead in time
of x and z is ahead in time of y, then z is also ahead in time of . So we add
the formula 4 as an axiom.

So how could logics for our three readings of Uy look like? Before we can
investigate this further we need a proper definition of what we mean by a
logic.

3.2 Normal modal logics

Given a class of frames F, we denote by Ag the set of formulas valid on
every frame in F. So for example, if F is the class of all reflexive frames, we
know that Oy — ¢ € Ag. Now, are there syntactic mechanisms capable of
generating Ap? And are such mechanisms able to cope with the associated
semantic consequence relation?

We are going to define a Hilbert-style axiom system called K, which is a
‘minimal’ system for reasoning about frames.

Definition 10. A K-proof is a finite sequence of formulas, each of which
is an axiom, or follows from one or more earlier items in the sequence by
applying a rule of proof. The axioms of K are all instances of propositional
tautologies and:

K: O(p — ¢) — (T — Oy),

Dual: Q¢ < —O—¢p.
The rules of proof of K are:

e Modus ponens: given ¢ and ¢ — 1, prove .

o Uniform substitution: given o, prove v, where v is obtained from ¢
by replacing proposition letters in ¢ by arbitrary formulas.
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e Rule of necessitation: given ¢, prove L.

A formula ¢ is K-provable if it occurs as the last item of some K-proof, in
this case we write Fg .

The definition needs some explaining. Adding all propositional tautologies
of course yields a very large axiom set and we could have chosen a small
set of tautologies capable of generating the rest by using the rules of proof.
However, we are not at the moment interested in having a minimal generating
set of axioms.

Modus ponens preserves validity. That is, if = ¢ and |= ¢ — 1 then also | ¢
S0 it is a correct rule for reasoning about frames. Furthermore, modus ponens
preserves global truth (if M = ¢ and M = ¢ — 9 then also M |= ) and
satisfiability (if M,z IF ¢ and M,z IF ¢ — 1 then also M,z IF ). Thus,
modus ponens is also a correct rule for reasoning about models, both globally
and locally.

Uniform substitution mirrors the fact that validity has nothing to do with
particular assignments: if a formula is valid, this does not depend on the
particular values its propositional symbols have, thus we should be free to
uniformly replace any propositional symbol with an arbitrary formula. Uni-
form substitution preserves validity (why?), but neither global truth nor
satisfiability. For example ¢ is obtainable from p by uniform substitution but
just because p is globally true in some model it does not follow that the same
is true for q.

The K axiom lets us transform a boxed formula (¢ — ) into an implication
Oy — O, It is sometimes called the distribution axiom. And as we have
already seen, K is valid on all frames.

The reason for having the Dual axiom is that we did not define { using box.
We saw earlier that it is a valid formula scheme.

The rule of necessitation might look somewhat odd, since clearly ¢ — U is
not valid. However, the rule of necessitation preserves validity; if ¢ is valid,
then also Oy is valid. Similarly, it preserves global truth; if M = ¢ then
M E= Op (why?).

Exercise 8. Show that all the rules above preserve validity. Which of the

16



rules preserves global and/or local truth?

K is the minimal modal Hilbert system in the following sense: All its axioms
are valid and all the rules of inference preserve validity, hence all K-provable
formulas are valid. That is K is sound with respect to the class of all frames.
Moreover, the converse is also true: if a formula of basic modal logic is valid,

then it is K-provable. The proof of this fact is way beyond the scope of the
present presentation.

Example 10. The formula (Op A Og) — O(p A ¢) is valid on any frame, so
it should be K-provable, and indeed it is. Consider the following sequence
of formulas

Tautology
LEp—=(¢—(Nq)
Generalization: 1

2. F0@—(¢— (pNa))

K axiom
3. F0(p —q) — (Hp — Hq)
Uniform Substitution: 3
4. FOp—(a—= @A) — ([Bp—Dlg—(pAq))
Modus Ponens: 2,4
5. F0p—0g— (pAg))
Uniform Substitution: 3
6. F0(g — (pAqg) — (Hg— DpAg))

Propositional Logic: 5,6

17



7. F0p— (Og—O(pAg)
Propositional Logic: 7

8. F(OpAOqg) —O(pAq)

As a matter of fact we have cheated a bit here; some of the steps are missing.
So this is not a K-proof in the strict sense, although we see that it is possible
to fill in the gaps (from 6 to 8) in order to get a complete proof.

Suppose now that we are interested in validity only on transitive frames.
Then we know the formula Up — e is valid on this class of frames,
and hence we would like to be able to derive it. But the system K is to
weak for this, since it only derives valid formulas (that is, formulas valid
on all frames) and Oy — OOy is not valid. However, we can simply add
e — OOe to K as an axiom, we then obtain the Hilbert system K4. It
is then possible to show that K4 is sound and complete with respect to the
class of all transitive frames. That is, K4 generates precisely the formulas
valid on transitive frames. More generally we may add any set of modal
formulas I' as axioms to K and obtain an axiom system KI'.

We will now introduce the concept of a normal modal logic.

Definition 11. A normal modal logic L is a set of formulas of basic modal
logic, with the following properties:

(1) L contains all tautologies
(2) L contains all instances of the formula scheme K:
By =) — (Op — L)
(3) L contains all instances of the formula scheme Dual:
Op <~y

(4) L is closed under uniform substitution and modus ponens.
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(5) L is closed under the rule of necessitation.

We call the smallest normal modal logic K, and it just contains propositional
logic and all instances of axiom K, together with all formulas that you get
by applying conditions (3)-(5) above.

Now, to "build” a modal logic, first choose the formula schemes that you
would like to have in it, these will be the axioms of the logic. Then close it
under the conditions of the definition.

In the case Oy is read 'It is necessarily true that ¢’ we may (as we discussed
earlier) want (g — Q¢ and ¢ — Oy to be in our logic L. Then we can see,
by frame correspondence, that every model of L will have a serial accessibility
relation R. Moreover, R must be reflexive since ¢ — Qp = Up — . A
possible name for L could then be KTD.

If we instead look at the case when Uy is read 'It will always be true that
©’. In this case we may, as we discussed earlier, want to add the formula T
Moreover we may want the present to be part of the future and therefore
add Oy — ¢. Then we get a logic, whose models are reflexive and satisfy for
every x € W there is y € W such that xRy. We may of course want further
refinements depending on the situation we want to model.

The last case we will look at in some more detail.

Example 11 (The modal Logic KT45). Here Oy is read "Agent A knows ¢’.
A logic commonly used in this situation is KT45, which means that we add
to K the formula schemes 7" : Oy — ¢, 4 : Op — OOp and 5 : G — OO,
and close under the conditions of the definition. The axioms 7', 4 and 5 tell
us that

T. Truth: the agent A knows only true things.

4. Positive introspection: if the agent A knows something, then he/she/it
knows that he/she/it knows it.

5. Negative introspection: if the agent A doesn’t know something, then
he/she/it knows that he/she/it doesn’t know it.
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The K axiom tells us that the agents knowledge is closed under logical con-
sequence. These properties represent idealizations of knowledge, and KT45
might not be appropriate in some, or even many, situations.

What we do know, is that the semantics for KT45 must consider only frames
where the accessibility relation is reflexive (T, transitive (4) and Euclidean
(5). In fact one can prove that such a relation must be an equivalence relation,
i.e. reflexive, transitive and symmetric. Hence we know that B : ¢ — OOy
is true in every model of KT45.

Ezercise 9. Show that in a frame, F = (W, R), for KT45 the accessibility
relation R must be an equivalence relation.

4 Neighborhood Semantics: A remark on nor-
mal modal logics

When we introduced the Hilbert system K, the motivation for having the
formula

(K): O(p — ) — (Op — Ov),

as an axiom was simply its validity with respect to the class of all frames.

Removing (K) from the set of axioms would also yield a type of modal logic.
However, then the Kripke style semantics would no longer be the right se-
mantics (simply because of the validity of (K) in this semantics).

One possible semantics, in which (K) is no longer valid, is called neighborhood
semantics.

Definition 12. A neighborhood frame is a pair (W, N), where W is a set
and N is a map
N:W — P(P(W)).

N is called a neighborhood function and assigns to each w € W a set N(w)
of neighborhoods of w.
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A model is as before a frame together with a labelling of the states with
atoms.

Definition 13. A neighborhood model is a neighborhood frame (W, N) to-
gether with a labelling function

L:W — P(Atoms).

Now, the truth of boxed formulas [y at a state w will be interpreted as ¢
being true in a neighborhood of w.

Definition 14. We define that a formula ¢ of BM L is true at a state w in
a model M = (W, N, L) by induction on ¢, and denote this as M, w IF ¢ (or
rather w IF ¢ when the model M is understood),

o zIFT

xlf L

zl-piff pe L(x)

- iff zlf ¢

rlFeAYiff xlFpand x -y

rlFeVyiff xl-por x -

x - — ¢ iff x |- whenever z IF ¢

rlFp—=yifzlFp s zl-yY

z - Oy iff oM € N(x)

o 2k Qpiff W\ oM ¢ N(x)

Here o™ := {y € W | M,y IF ¢} and is called the truth set of ¢.

Example 12. Consider the neighborhood model M = (W, N, L) with W =
{wy, wo, w3}, N(wy) = {{we, w3}, {wi}}, N(w;) =0 for i = 2,3 and L(w;) =
{p}, L(w2) = {q}, L(ws) = 0.
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Hwa, wa}, {w1}} 0

Then (p — ¢)M ={w | w IF p — q} = {ws, w3} € N(w;) and hence we have
wy IF O(p — q). We also have w; I+ Op, since p™ = {w,} € N(w;). But
wy Iff Og since g™ = {wy} & N(w;), and we have

wy I O(p — q) — (Op — Og).
So (K) is not satisfied in M.

Ezercise 10. Show that to every Kripke model K = (M, R, L) there corre-
sponds an equivalent neighborhood model N' = (W, N, L) where N : W —
P(P(W)) given by

N(w) = {¢" | K,w IF Op}.

(By equivalent we mean that for all w € W: K, w I ¢ iff N, w IF ).

Is the converse true? That is, given a neighborhood model N can we find an
equivalent Kripke model K7

Thus, neighborhood semantics generalizes the possible worlds semantics.
As before we may speak of frame correspondence.

Definition 15. We say that a BML formula ¢ defines a property P of a
neighborhood frame F = (W, N) if F |= ¢ if and only if N has the property
P.

Recall that on Kripke frames the two formulas ¢ T and Uy — Q¢ define the
same property: seriality. For neighborhood frames this is no longer the case.
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Lemma 1. Let F = (W, N) be a neighborhood frame. Then

(i) FEOT if and only if 0 & N(w) for allw € W.
(171) F E Op — O¢ if and only if N(w) is proper (i.e. If U € N(w)
implies U & N(w)).
Proof. (i) follows directly from the definition of truth for formulas (.

(ii) Suppose N(w) is proper for every w € W and let L be an arbitrary
labelling function on F. Let w € W such that w IF Oy, then o™ € N(w).
Hence W \ oM = (¢M)¢ & N(w) and we have w I+ Op. Hence F = Op —
Op.

Conversely, suppose F = Op — Op and that for some w € W there is
U € N(w) such that also U° € N(w). Define a labelling function L by
setting p € L(z) if and only if x € U. Then pM = U and we have w |- Op.
But since W \ pM = U® € N(w) we have w If Op. This contradicts the
assumption that F = Op — Op. We conclude that N(w) is proper for all
weW. O

FExercise 11. Find properties that are defined by the following formulas:
(1) Do — o,
(2) Op — OO,
(3) OL,
(4) e — O-Oe,

(5) O — O

5 Intuitionistic Propositional Calculus

We will in this section see how modal logic provides a semantics for intu-
itionistic propositional logic (IPC).

23



Recall that IPC is a propositional logic without the rule of reductio ad ab-
surdum, i.e. ——@ — @ is not derivable. We will actually prove this in a
moment, but first we need to define the syntax and a proof system for IPC.

Definition 16. Formulas ¢ of IPC are given by the following rule
pu=LlpleneleVelp—op

Where p is an arbitrary propositional symbol in Atoms - the set of proposi-
tional symbols. Negation —¢ is defined as p — L.

A system of natural deduction IPC is given by:

(A) (pla"‘?(pTL'_QOi

'L

(L) —
I'kFop

(D) 'y T'Hy (AE) F'FpAy THeAY
'FoAy 'k 'y

1) I'Fop 'Fvy (VE) 'Fpvy TiekEx Yk y
'Fevy TrFEeVY 'k y
ok 'k 'k

D kY - B) © o —
F'p—a '

Where I' = ¢ means that ¢ is derivable under assumptions I' = 1, ..., ¢p,.
When ' is empty we simply write - ¢.

Example 13. We show F ¢ — (—¢ — 2):

o, P, e —p
o,k L

—_—
1

, T
, = N

pF—p—19
Fo— (mp — )

—T
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FEzercise 12. Give a derivation for - (¢ — ¢) — (=) — —p).

Even though IPC does not have any modal operators, we can give meaning to
the logical constants with a Kripke style semantics. As in the case of modal
logics, a model for IPC will consist of a frame (W, R) and a labelling function
L : W — P(Atoms). We will think of the elements of W as ’information
states’ or 'bundles of data’, that can be incomplete in the sense that the
collected data at some state is possibly not enough to decide the truth value
of every statement that can be expressed in the language. Compare this to
the classical situation where every statement is either true or false at any
state.

The accessibility relation R is going to be a reflexive partial order and we
will read 1 Rj as

"Information state j can still be reached once the information of state ¢ is
already acquired”

We want to think of states ¢Rj as j being a state where we have acquired
more (or at least the same) knowledge than in 7. For this to hold formally
we need a forcing relation IF satisfying

iR = (ilF o= jIF @).

We can only enforce this for atoms in our definition, but we will see that the
property carries over to arbitrary formulas of IPC.

Definition 17. A model for IPC is a Kripke model (W, R, L) such that

(1) R is a reflexive partial order and,

(i1) L satisfies: If iRj then L(i) C L(j).

Truth at a state in a model for IPC is defined as usual by an induction on
formulas:

o il L,
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o ilFpAYiftilkpandilk,
o ilFpVvuyiffilkporil-ay,

o il — o iff for all j € W such that iRj we have j | ¢ or j IF .

Exercise 13. Show that i IF = if and only if j If ¢ for all j such that iRj.
Remember that ~p = — L.

We note that i I ¢ only means that no verification of ¢ have been found yet
as opposed to i IF ¢ meaning that we will never be able to find one.

We will now prove that knowledge or truth is preserved by the relation R.
Lemma 2. Letv,j € W and ¢ be a formula of IPC. Then i IF ¢ and iRj
implies j IF .

Proof. By induction on the complexity of .

The base case, i.e. ¢ = p atomic, follows by the definition of a model of
IPC. The cases p = L and ¢ = 1 A @9 are straightforward and so we jump
directly to the interesting case: ¢ = @1 — (o.

Suppose i IF ¢1 — g, then k ¥ 1 or k IF s for all k such that iRk. But
then k Iff o1 or k IF ¢o for all k£ such that jRE since iRj and R is transitive.
But this just means that j I ¢; — @9. O]

Exercise 14. Fill in the gaps in the above proof.

As usual we would like our deduction system to be sound, i.e. it should only
be able to derive true formulas (with respect to the semantics just given). If
['=¢1,...,¢n, then we mean by M =T — ¢, that M = (p1A- - -Apy) — @.

Theorem 5.1 (Soundness). The semantics given above is sound. That is, if
M = (W, R, L) is a model for IPC, then

Fr'Fp=MET — ¢

Proof. We use induction on the length of the derivation of I' - (.

The base case ¢ € I is trivial, and the cases involving A and V are straight-
forward so we will only address the case of implication introduction (— I)
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and leave the rest as an exercise. Suppose therefore we have M =T, ¢ — .
Let ¢ in M be arbitrary such that ¢ IF T', i.e. ¢ 1F o1 A--+ A w,. Then let 5
be such that iRj and j IF ¢. By lemma (2) we have that also j I I" and so
j IF %, But this just means that i l- ¢ — ¢, i.e. MET — (p — ). O

Ezercise 15. Fill in the gaps in the above proof.

The soundness theorem can be used to show that certain formulas of IPC
are not derivable by the construction of models not satisfying them. This is
just the contrapositive statement of the theorem:

MBETD - p =TV
Example 14. F p V —p is not derivable in IPC. Consider the Kripke model
M:

1 ep

0

That is OR1, 1 IF p and 0 Iff p. Then 0 I pV —p if and only if O I+ p or o IF =p.
But 0 If p and 0 IF =p would imply 1 If p. Hence we must have 0 I p V —p.
Therefore M [~ p V —p.

Similarly we can show that I/ =—p — p. Consider again the model M above.
We have 0 I —=—=p, i.e. OlF =p — L, since 0 I —p and 1 I —p. But 0 Iff p, so
0 If =—p — p. Therefore M £~ ——p — p.

FEzercise 16. Show that t/ (p — ¢q) V (¢ — p) in IPC.

Remark 5.2. One can prove that IPC is complete with respects to the Kripke
semantics given above, and moreover that it is complete with respect to the
class of all finite Kripke models, i.e. IPC has the finite model property: If
I/ ¢ then there is a finite model M such that M F o.

We will now describe the connection to the framework of basic modal logic.
This is done via a translation (-)* : TPC' — BML, defined by

e p* =Up, for all p € Atoms,

27



o | =1

(o ANY)* = " N7,
(p V)" =" Vo,

o (p =) =0p" —¢).

Note here that in the last bullet the implication used on the left hand side
is the implication of IPC while the implication on the right hand side is the
one of BML.

The frames, (W, R), for IPC has a reflexive and transitive accessibility re-
lation R, so we could guess that the right semantics for IPC* is something
like the one for the normal modal logic KT4, i.e. the normal modal logic K
with the formula (T), corresponding to reflexivity, and the formula (4), cor-
responding to transitivity, added as axioms. That is, we guess that the class
of models appropriate for KT4 is also appropriate for IPC*. As a matter of
fact we have.

Proposition 5.3. F;pc ¢ if and only if Fxra ™.

Proof. We will only sketch a proof of the right to left direction. The other
direction is left, since a proof would take us beyond the scope of these notes.

(<): Suppose F/rpc ¢, then there is a finite model (W, R, L) such that for
some iy € W ig Iff ¢. Now, (W, R, L) can be considered a model of BML,
where we have a forcing relation I-* for the BML language (i.e. i IF* v, for
BML formulas v, is defined as in section 2.2).

We claim that i IF* ¢* if and only if ¢ I ¢ for all IPC formulas 1. Then
1o Iff @ implies ig IF* ¢*, and we have /xrq ©*.

The claim is proved using induction on the complexity of ¥, and as always
we only prove one case and leave the rest as exercise. Suppose ¥ = ¥, — 1y
and ¢ IF ¢, then for all j such that iRj we have that j I ¢, implies j IF 5.
But this is just j IF* 7 — ¢} for all j with iRy, that is ¢ IF O(¢f — ¥*),
where (¢ — ¢*) = 9*. The converse direction is similar. O
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Now, since KT4 is complete with respect to the class of all reflexive and
transitive frames (chapter 4.3 in [1]) the same is true for IPC*.

6 Generalizing the basic framework

So far our three examples have been quite simple. For example, in the case
of temporal logic we only had the possibility to talk about truth in the future
while it is natural to also want to be able to talk about truth in the past. In
the case where we read [y as ’agent A knows ¢’, we could only handle one
agent, whereas in a practical situation we would like to be able to model a
situation with more than one agent. So let us generalize the basic framework
we have developed so far. First, there seems to be no good reason to restrict
ourselves to languages with only one ’box’. Second, there seems no good
reason to restrict ourselves to unary modalities.

Definition 18. A modal similarity type is a pair 7 = (O, p) where O is a
non-empty set, and p is a function O — N. The elements of O are called
modal operators; and are denoted Vg, V1,.... The function p assigns to each
operator V € O a finite arity, indicating the number of arguments V can be
applied to. We keep the word box for unary operators and denote them [J;
or [ 4] for i in some index set.

Definition 19. A modal language is now given by a modal similarity type
T = (O,p) and a set Atoms of propositional letters. A formula in this
language is given by the rule:

pr=plLll-elerely—=o|Vip....¥)
where the number of arguments that Vv takes is p(V) and p € Atoms.

The dual A of V is defined as A(p1,...,¢,) = 2V(=@1...,7¢,), when
p(V) = n. The dual of a box is called a diamond, and is denoted ¢; or (i)

Models will now have to encompass an accessibility relation for each modal
operator.
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Definition 20. Let 7 be a modal similarity type. A 7-frame is a tuple F
consisting of

(i) A set W of worlds

(ii) for each n > 0, and each n-ary modal operator V in the similarity type
7 an (n + 1)-ary relation Ry.

A 7-model M is simply a 7-frame F together with a labelling function L,
that is M = (F, L).

The notion of a formula ¢ being satisfied in a world x in a model M =
(W, {Ry | V € 7}, L), denoted M,z IF ¢ is defined inductively. The only
case different from basic modal logic being the modal case:

M,z l-V(p1,...,@,) iff forevery yi,...,y, € W with (x,y1,...,y2) € Ry
we have for each i that M, y; IF ¢;.

Example 15. If we have a modal language with two unary modalities [y
and [y, a model will have two corresponding binary relations R, and R and
could look as follows:

So the underlying frame is a labeled transition system

Example 16 (The Basic Temporal Language). The basic temporal language
(BTL) is built using a set of unary operators O = {[G],[H]} where the
intended interpretation of a formula [G]y is "¢ will always be true in the
future’ and the intended interpretation of a formula [H|p is ‘¢ has always
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been true in the past’. Their dual are denoted (F) and (P) respectively.
With this language we can express many more things than with our previous
temporal language. For example: (P)y — [G](P)¢ says that 'whatever has
happened will always have happened’. We will often write just the boxed
letter to denote the modality, e.g. G instead of [G].

Since we now have two unary operators, a model for the language will have
to be based on a frame with two binary relations, R and Ry. But since we
are interested in modeling time we don’t want them to be any two binary
relations, rather we want them to be converse. That is, x Rgy if and only if
yRyx. Let us denote the converse of a relation R by R. We will call a model
of the form (W, R, R, L) a bidirectional model, and similarly the underlying
frame is called a bidirectional frame. In this case we usually write F = (W, R)

Ezercise 17. Try to give a formula characterizing bidirectional frames.

Example 17. Consider again the the basic temporal language, and suppose
we want to consider dense (bidirectional) frames F = (W, R). That is, R
satisfies

(Vx,y € W)(zRy — (3z € W)(zRz A zRy)).

Can we characterize this property by a formula in BTL?

We may think as follows: If the formula F'¢ holds at time ¢, then there is a
time t; such that ¢ty Rt; and where ¢ holds. If the frame is dense, we should
be able to find t5 such that tqRts and t, Rt;, and hence also F'F'¢ should hold
at t().

tolF Fo ~

Qé.

tl H_QD

So let us try with the formula

Fp — FFo.
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Suppose F is dense and suppose t |- Fp under some arbitrary labelling
function L. Then there is a state ¢’ € W such that tRt' and ¢’ IF p. But as
F is dense there is s € W such that tRs and sRt'. So sk Fp and t I+ F Fp.

Conversely, suppose that F is a frame such that F | Fp — FFp, and
suppose t € W has an R-successor t'. Let L be the minimal labelling function

defined by
L(t") = {p}-

Then we have M, t I+ Fp, where M = F,L = (W, R, L). Since F | Fp —
FFp we must have t IF FFp. This means there is a state s € W such that
tRs and s I Fp. But as ¢’ is the only state where p holds, we must have
sRt', and hence s is the intermediate state we were looking for.

Example 18. Suppose we want to model a multi-agent situation, where we
have a finite set S = {1,...,n} of agents. We let O = {{Jy,...,0,}. O;p
will now be interpreted as "Agent i knows ¢’. And so we can have formulas
00,(8; p AOkgq) saying ’Agent ¢ knows that Agent j knows p and that Agent
k knows q’.

A model for this language is of the form M = (W,{Ri,...,R,}, L) where
R; is the accessibility relation corresponding to [J;. This means that the
underlying frame is a labeled transition system.

The following example is a good example of how general the new framework
is.

Example 19 (Propositional Dynamic Logic). The language of propositional
dynamic logic (PDL) has an infinite set of boxes. Each of these boxes has
the form [r], where 7 denotes a (non-deterministic) program. The intended
meaning of [r]p is 'every execution of 7 from the present state leads to a
state bearing the information ¢’. The dual assertion ()¢ states that ’some
terminating execution of 7 from the present state leads to a state bearing
the information ¢’. Now, a very simple idea is going to ensure that PDL
is highly expressive: we will make the inductive structure of the programs
explicit in PDL’s syntax.

Suppose we have fixed some set of basic programs a, b, ¢, . . ., so that we have
the basic modalities [a], [0],[c], ... at our disposal. Then we can build more
complex programs 7 over this basis, using the following rules
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(choice) if m and my are programs, then also m; U my is a program. The
program non-deterministically executes m; or ms.

(composition) if m; and 7y are programs, then also 7y;my is. This program
first executes m; and then 7.

(iteration) if 7 is a program, then so is 7*. This program executes 7 a finite
(possibly zero) number of times.

What this means for the collection of modal operators is that if [m| and
[75] are boxes, then so are [m U g, [m1;me] and [7f]. Now, formulas in this
language can be used to express properties of program execution. A fairly
straightforward example is the formula (7*)p < ¢ V (m;7*)p. It says that
a state bearing the information ¢ can be reached by executing 7 a finite
number of times if and only if either we already have the information ¢ in
the current state, or we can execute m once and then find a state bearing the
information ¢ after finitely many more iterations of 7. A more complicated
formula is
¢ = ([T = [7]e) = [7"]p).
This is called Segerberg’s axiom or the induction axiom.

Of course nothing stops us from adding more construction rules for programs.
Two other such rules are:

(intersection) if m and my are programs, then so is m; N my. This program
executes both m; and 7y in parallel.

(test) if o is a formula, then 7 is a program. This program tests whether ¢
holds, and if so continues; if not, it fails.

A model for PDL has the form M = (W,{R, | 7 is a program}, L), that
is a model is a labeled transition system together with a labelling function.
Given the intended meanings of the program constructors we have introduced
it is clear that the relations we are interested in are the ones given by the
following inductive clauses:

Rﬂ'lLJﬂ'Q == Rﬂ'l U Rﬂ'g

Rm;m = Rp oR, (: {(:L‘,y) | Elz(meZ A ZRWQ:U)})

Rﬂ'* = (Rﬂ')*

where (R)* denotes the reflexive and transitive closure of R.
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Example 20. PDL can be interpreted on any transition system (W, R;)rer.
Such a system is called a reqular frame if the relations satisfy the conditions of
example 19. One can show that a frame F is regular if and only if 7 = AUT
where

A= {p = ([m)(p — [7lp) = [mx]p), {mx)p = (pV (m)(m*)p) | w € I},

and

[ = {{m;m)p < (m) (m2)p, (M Uma)p < (m)p V (m2)p | m; € 1T}

FExercise 18. Show that regular frames are characterized by the formulas in
A and I', given in example 20
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