Exercise Sheet 7 - Applied Logic: Modal Logic October 15, 2008

Exercise 1

Using $\Box \phi$ to mean 'Agent A knows ϕ ', represent the following statements with modal formulas:

- 1. If ϕ is true, then it is consistent with what A knows, that A knows it.
- 2. If it is consistent with what A knows that ϕ , and it is consistent with what A knows that ψ , then it is consistent with what A knows that $\phi \wedge \psi$.
- 3. If A knows ϕ , then it is consistent with what A knows that ϕ .
- 4. If it is consistent with what A knows that it is consistent with what A knows that ϕ , then it is consistent with what A knows that ϕ .

Which of these statements seems plausible principles concerning knowledge and consistency.

Exercise 2

Suppose $\Diamond \phi$ is interpreted as ' ϕ is permissible'. How should we interpret $\Box \phi$? Give some examples of formulas that seem plausible under this interpretation. Should $\Box(\Box p \rightarrow p) \rightarrow \Box p$ be one such example?

Exercise 3

Show that the following formulas are valid in the class of all relational frames

- 1. $\Diamond \phi \leftrightarrow \neg \Box \neg \phi$,
- 2. $\Box(\phi \land \psi) \leftrightarrow \Box \phi \land \Box \psi$,
- 3. $\Diamond(\phi \lor \psi) \leftrightarrow \Diamond \phi \lor \Diamond \psi$.

Exercise 4

Consider the basic temporal language and frames $(\mathbb{Z}, <)$, $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$, where <, in each case, is the usual less-than relation. Which of the following formulas are valid on these frames?

1. $GGp \to p$, 2. $(p \land Hp) \to FHp$.

Exercise 5

Show that the following formulas are non-valid by constructing a counterexample in each case:

- $1. \ \Box \bot,$
- $2. \ \Diamond p \to \Box p,$
- 3. $p \to \Box \Diamond p$,
- 4. $\Diamond \Box p \rightarrow \Box \Diamond p$,
- 5. $\Box p \rightarrow p$.

Exercise 6

Show the following

- 1. Frame-validity of B: $\phi \to \Box \Diamond \phi$ corresponds to symmetry of R.
- 2. Frame-validity of D: $\Box \phi \rightarrow \Diamond \phi$ corresponds to R being serial.

Exercise 7

Show that the rules of proof of the system \mathbf{K} , as explained in the lecture notes, preserve validity. Furthermore, discuss for each rule whether it preserves global and/or local truth.

Exercise 8

Give **K**-proofs of the formulas $(\Box p \land \Diamond q) \rightarrow \Diamond (p \land q)$ and $\Diamond (p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q)$.

Exercise 9

Let **F** be a class of frames. Show that $\Lambda_{\mathbf{F}} = \{ \varphi \mid \mathcal{F} \models \varphi \text{ for all } \mathcal{F} \in \mathbf{F} \}$ is a normal modal logic.

Exercise 10

Consider a modal language with two boxes [1] and [2]. Show that $p \to [2]\langle 1 \rangle p$ is valid on precisely those frames for the language that satisfy the condition

$$\forall xy(xR_2y \to yR_1x).$$

What sort of frames does $p \to [1]\langle 1 \rangle p$ define?

Exercise 11

Consider a language with three boxes [1], [2] and [3]. Show that the modal formula $\langle 3 \rangle p \leftrightarrow \langle 1 \rangle \langle 2 \rangle p$ is valid on a frame for this language if and only if the frame satisfies the condition

$$\forall xy(xR_3y \leftrightarrow \exists z(xR_1z \land zR_2y)).$$

Exercise 12*

Consider a language with two boxes [1] and [2]. Prove that the class of frames in which $R_1 = R_2^*$, where R_2^* is the reflexive transitive closure of R_2 , is defined by the formulas

1.
$$\langle 1 \rangle p \to (p \lor \langle 1 \rangle (\neg p \land \langle 2 \rangle p)),$$

2. $\langle 1 \rangle p \leftrightarrow (p \lor \langle 2 \rangle \langle 1 \rangle p).$

How is this related to PDL?

Exercise 13*

Suppose $\mathcal{T} = (T, <)$ is a bidirectional frame (where we write y < x instead of $x \leq y$) such that < is transitive, irreflexive and satisfies $\forall xy(x < y \lor x = y \lor y < x)$. Show that

$$\mathcal{T} \models \{G(Gp \to p) \to Gp, H(Hp \to p) \to Hp\}$$

implies that \mathcal{T} is finite.

Exercise 14**

Show that Grzegorczyk's formula

$$\Box(\Box(p\to\Box p)\to p)\to p$$

characterizes the class of frames $\mathcal{F} = (W, R)$ satisfying

- (i) R is reflexive,
- (ii) R is transitive,
- (*iii*) there are no infinite paths $x_0 R x_1 R x_2 R \dots$ such that for all $i, x_i \neq x_{i+1}$.

Many of the exercises are taken from the book *Modal Logic* by Patrick Blackburn, Maarten de Rijke and Yde Venema, which is an excellent book if you want to learn more about Modal Logic.