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This note presents solutions to some of the exercises on Exercise Sheet 7.

Exercise 3

Show that the following formulas are valid in the class of all relational frames

1. Q¢ « -0,
2. D(¢ A1) — O A Oy,
3. 0o V) < Qo V Q.

Solution. We solve 1.

Let M = (W, R, L) be any Kripke model. If w € W satisfies w IF Q¢, there is
v € W with wRv and v I ¢. Hence v If =¢ and so we cannot have w I O—p,
i.e. wlf O=p. But this is just w IF =O-.

If w IF =0-¢ then w If O—¢ and so there must be some v € W with wRv and
vl =, i.e. vl . But this is just v IF Q. O

Exercise 5

Show that the following formulas are non-valid by constructing a counterexam-
ple in each case:

1. O,
2. Op— Up,
3. p— UOp,
4. OUp — DOp,

5. Op — p.

Solution. We solve 2 and 4.

For 2, consider the following model M:



V1 e D

/

Then My, w IF Op since vy IF p, but w Iff Op since v If p. Hence, M; (= Op —
Op.

For 4, consider the following model Mo:

v e D

Then w I+ O0p since v{p (trivially, since v has no R-successors). But w ¥ O0p
since v has no R-successor. ]

Exercise 6
Show the following

1. Frame-validity of B: ¢ — [0¢ corresponds to symmetry of R.

2. Frame-validity of D: ¢ — Q¢ corresponds to R being serial.

Solution. We solve 2.

Suppose F = (W,R), F = 0O¢p — Op and let w € W. We define a model
M = (W,R,L), based on F, by defining the labelling function L by setting
L(z) = {p} for all z € W. Then clearly M, w I Op, and since F = Op — Op
we have w |- Op. That is, there is v € W with wRv (and v I p). This shows
that R must be serial.

Conversely, suppose F = (W, R) with R serial. Let M be any model based on
F and suppose w € W with M, w IF O, then since R is serial there is v € W
with wRv and hence we must have v |- ¢. That is, w IF {p. Hence we see that
F EOQp — Op. O



Exercise 10

Consider a modal language with two boxes [1] and [2]. Show that p — [2](1)p
is valid on precisely those frames for the language that satisfy the condition

Vay(xRoy — yR1x).

What sort of frames does p — [1](1)p define?

Solution. Suppose F = (W, Ry, Ry) satisfies (Vz,y € W)(zRay — yR1z) and
let M be any model based on F. Suppose x € W with M,z IF p and suppose
xRay, then yRyx and hence y I- (1)p. But then z |- [2](1)p since y was arbitrary
with Ray. Hence z IF p — [2](1)p and we have F = p — [2](1)p.

Conversely, suppose F = p — [2](1)p and let x € W. Define a model M =
(W, R, L) by setting L(w) = {p} if w=z and L(w) = 0 if w # x. Hence w - p
if and only if w = z. Now, if zRay, then y I (1)p and hence there is z € W
with yR1z and z IF p, i.e. 2z = x and we have yRix. Hence F must satisfy
Vay(xRoy — yRix). O

Exercise 12*

Consider a language with two boxes [1] and [2]. Prove that the class of frames
in which R; = R3, where R} is the reflexive transitive closure of Ry, is defined
by the formulas

L (Dp— (pV(1)(=pA(2)p)),
2. (I)p <= (pV (2)(1)p).

How is this related to PDL?

Solution. Suppose R; = R3, then xRy if and only if x = y or there are
xg,...,Ty such that x = xg, x;Rex;y1 and z,Rey. To see that F satisfies
1, suppose M,z I (1)p (in some model M based on F). Then either z IF p or
there are z = xg, ..., xn,y € W with x; Rax; 11, T, Roy and y I- p. If z If p then
clearly xRyx, and we may assume z,, I p (why?), so that  IF (1)(-p A (2)p).
We also have F | (1)p < (p V (2)(1)p) since for any model M based on
F we have M,z IF (1)p iff Jy such that x = y or Jxy,...,x, such that
z = xgRax1 Ry ... Roxp Roy and y IF p iff x - p or Jxg,...,x, with n > 1,
xo =, x;Roxi11, xRoxy and x1 Ry with y I-p iff x I p Vv (2)(1)p.

Conversely, suppose that F = (W, Ry, Rs) satisfies 1 and 2. Then,



Ry is reflexive: Let € w and set L(w) = {p} iff w = x and L(w) = 0 iff w # x.
Hence z IF p Vv (2)(1)p, and by 2 we then have z IF (1)p, i.e. zR;yz.

Ry C Ry: Suppose xRy, and set L(y) = {p} and L(w) = @ if w # y. Then
x Ik (2)(1)p since R is reflexive. Hence x IF p V (2)(1)p and by 2 we have
z Ik (D)p, i.e. zRyy.

If zRoy and yRyz then xR;y2: Set L(z) = {p} and L(w) = () when w # 2. Then
x I (2)(1)p, since xRoyRoz i.e. xRoyRy since Ry C Ry. Hence x I (1)p by 2,
i.e. TRy z.

Now, the three clauses above show that if x = y or there are zg,...,z, € W
such that x = zgRs ... Rox, = y then zR1y.

We need to show the converse as well, so suppose for a contradiction that there
is no finite sequence xq,...,x, € W such that * = zgRs ... Rox,, =y, x £ y
but zRyy. We define L(w) = {p} iff there is a finite sequence o, ..., z, such
that w = zgRy ... Rex, = y. Then y |- p so x IF (1)p and by 1 we have that
there is z € W with xR;z, z If p and there is 2/ € W with zRs2’ and 2’ IF p,
i.e. there is a finite sequence xg,...,x, such that 2z’ = zgRs ... Rox, = y and
zRo2' but z If p. This is clearly a contradiction and hence we must conclude
that there are xg,...,z, € W with x = zoR2 ... Rax, =y, i.e. Ry = R5.

O

Exercise 13*

Suppose T = (T, <) is a bidirectional frame (where we write y < z instead of
x<y) such that < is transitive, irreflexive and satisfies Vay(z < yVo = yVy < x).
Show that

T = {G(Gp — p) — Gp, H(Hp — p) — Hp}

implies that 7 is finite.

Solution. Suppose T = (T, <) satisfies T | T', where I' := {G(Gp — p) —
Gp, H(Hp — p) — Hp}. Define a labelling L of T by setting

L(t) = {p} <gey t1,t| are finite.

Here, t1:={seT |t <s}and t] :={s €T |s <t} Since T =T we have
for every t € T that either ¢t IF Gp or t If G(Gp — p). If t |- Gp then either
t1 = 0 or there is t’ > t with ¢ IF p, i.e. #'7 and t'| are finite and so T is finite.
If t I G(Gp — p) then there is t' > ¢ such that ¢’ - Gp but ¢’ I p and then we
must have t'1 = (). Suppose now we have ¢t € T with t7 = ). Since 7 =T we
have ¢t I+ Hp or t | H(Hp — p). Similarly as above we then have either ¢ = ()
in which case T is finite, or there is ¢’ < ¢t with ¢/| = 0.



So suppose that we have t,t' € T with ¢ < ¢t and ¢] = ¢'| = (. Define a new
labelling L of T by
L(s) = {p} <ges s =1

Suppose that for every s € T such that t’ < s < t thereis s’ € T witht' < s’ < s.
Then ¢ IF H(Hp — p), since if s < ¢ we have either s = ¢’ in which case
sl- Hp — p or we have t' < s < t and then there is s’ with ¢’ < s’ < s so that
sl Hp, i.e. sl- Hp — p. But then t IF Hp, i.e. s <t implies s = t'. So either
T is finite or ¥ has an immediate successor t”, i.e. ' < t” and if ' < s then
t” = s or t” < s. We denote this relation by ¢ < ¢”.

Similarly we can show that every element s € T such that s < ¢ has an imme-
diate successor, and analogously that every element s € T with ¢’ < s has an
immediate predecessor s, i.e. s’ < s.

We can now draw the following picture of 7:

o~ >e >0 >... | .. > e >e
t/ ! t
where each arrow denotes the immediate successor relation <.
Now, finally we define a last labelling L of T by
L(s) ={p} =vdes 3x0,.. .;an €T =20 < ... <y =t

Then ¢’ IF G(Gp — p) since if t’ < s, s = ¢ (in which case s IF p and so s IF Gp —
p) or t' < s < t. In the latter case s has an immediate successor s'. If s IF Gp
we have s’ IF p and so there are zg,...,z, with s’ =29 < ... < z, = t. But
then we have yg = s, y1 = %o,.. ., Ynt1 =Tp =tand s =yp < ... < Ypt1 =1
so s |- p. Hence s IF Gp — p. But then ' I Gp, and since ¢’ has an immediate
successor t”, we then have t” IF p, i.e. there is a finite chain ¢/ <t < ... < t.
Hence T must be finite.

O
Many of the exercises are taken from the book Modal Logic by Patrick Black-

burn, Maarten de Rijke and Yde Venema, which is an excellent book if you want
to learn more about Modal Logic.



