Solutions For Exercise Sheet 7 - Applied Logic: Modal Logic October 21, 2008

This note presents solutions to some of the exercises on Exercise Sheet 7.

Exercise 3

Show that the following formulas are valid in the class of all relational frames

- 1. $\Diamond \phi \leftrightarrow \neg \Box \neg \phi$,
- 2. $\Box(\phi \land \psi) \leftrightarrow \Box \phi \land \Box \psi$,
- 3. $(\phi \lor \psi) \leftrightarrow \Diamond \phi \lor \Diamond \psi$.

Solution. We solve 1.

Let $\mathcal{M} = (W, R, L)$ be any Kripke model. If $w \in W$ satisfies $w \Vdash \Diamond \varphi$, there is $v \in W$ with wRv and $v \Vdash \varphi$. Hence $v \not\models \neg \varphi$ and so we cannot have $w \Vdash \Box \neg \varphi$, i.e. $w \not\models \Box \neg \varphi$. But this is just $w \Vdash \neg \Box \neg \varphi$.

If $w \Vdash \neg \Box \neg \varphi$ then $w \not\vDash \Box \neg \varphi$ and so there must be some $v \in W$ with wRv and $v \not\vDash \neg \varphi$, i.e. $v \Vdash \varphi$. But this is just $v \Vdash \Diamond \varphi$. \Box

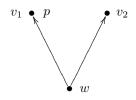
Exercise 5

Show that the following formulas are non-valid by constructing a counterexample in each case:

1. $\Box \bot$, 2. $\Diamond p \to \Box p$, 3. $p \to \Box \Diamond p$, 4. $\Diamond \Box p \to \Box \Diamond p$, 5. $\Box p \to p$.

Solution. We solve 2 and 4.

For 2, consider the following model \mathcal{M}_1 :



Then $\mathcal{M}_1, w \Vdash \Diamond p$ since $v_1 \Vdash p$, but $w \nvDash \Box p$ since $v_2 \nvDash p$. Hence, $\mathcal{M}_1 \nvDash \Diamond p \to \Box p$.

For 4, consider the following model \mathcal{M}_2 :

Then $w \Vdash \Diamond \Box p$ since $v \Box p$ (trivially, since v has no R-successors). But $w \nvDash \Box \Diamond p$ since v has no R-successor.

Exercise 6

Show the following

1. Frame-validity of B: $\phi \to \Box \Diamond \phi$ corresponds to symmetry of R.

2. Frame-validity of D: $\Box \phi \rightarrow \Diamond \phi$ corresponds to R being serial.

Solution. We solve 2.

Suppose $\mathcal{F} = (W, R)$, $\mathcal{F} \models \Box \varphi \rightarrow \Diamond \varphi$ and let $w \in W$. We define a model $\mathcal{M} = (W, R, L)$, based on \mathcal{F} , by defining the labelling function L by setting $L(x) = \{p\}$ for all $x \in W$. Then clearly $\mathcal{M}, w \Vdash \Box p$, and since $\mathcal{F} \models \Box p \rightarrow \Diamond p$ we have $w \Vdash \Diamond p$. That is, there is $v \in W$ with wRv (and $v \Vdash p$). This shows that R must be serial.

Conversely, suppose $\mathcal{F} = (W, R)$ with R serial. Let \mathcal{M} be any model based on \mathcal{F} and suppose $w \in W$ with $\mathcal{M}, w \Vdash \Box \varphi$, then since R is serial there is $v \in W$ with wRv and hence we must have $v \Vdash \varphi$. That is, $w \Vdash \Diamond \varphi$. Hence we see that $\mathcal{F} \models \Box \varphi \to \Diamond \varphi$.

Exercise 10

Consider a modal language with two boxes [1] and [2]. Show that $p \to [2]\langle 1 \rangle p$ is valid on precisely those frames for the language that satisfy the condition

$$\forall xy(xR_2y \to yR_1x).$$

What sort of frames does $p \to [1]\langle 1 \rangle p$ define?

Solution. Suppose $\mathcal{F} = (W, R_1, R_2)$ satisfies $(\forall x, y \in W)(xR_2y \to yR_1x)$ and let \mathcal{M} be any model based on \mathcal{F} . Suppose $x \in W$ with $\mathcal{M}, x \Vdash p$ and suppose xR_2y , then yR_1x and hence $y \Vdash \langle 1 \rangle p$. But then $x \Vdash [2]\langle 1 \rangle p$ since y was arbitrary with xR_2y . Hence $x \Vdash p \to [2]\langle 1 \rangle p$ and we have $\mathcal{F} \models p \to [2]\langle 1 \rangle p$.

Conversely, suppose $\mathcal{F} \models p \rightarrow [2]\langle 1 \rangle p$ and let $x \in W$. Define a model $\mathcal{M} = (W, R, L)$ by setting $L(w) = \{p\}$ if w = x and $L(w) = \emptyset$ if $w \neq x$. Hence $w \Vdash p$ if and only if w = x. Now, if xR_2y , then $y \Vdash \langle 1 \rangle p$ and hence there is $z \in W$ with yR_1z and $z \Vdash p$, i.e. z = x and we have yR_1x . Hence \mathcal{F} must satisfy $\forall xy(xR_2y \rightarrow yR_1x)$.

Exercise 12^*

Consider a language with two boxes [1] and [2]. Prove that the class of frames in which $R_1 = R_2^*$, where R_2^* is the reflexive transitive closure of R_2 , is defined by the formulas

- 1. $\langle 1 \rangle p \to (p \lor \langle 1 \rangle (\neg p \land \langle 2 \rangle p)),$
- 2. $\langle 1 \rangle p \leftrightarrow (p \lor \langle 2 \rangle \langle 1 \rangle p)$.

How is this related to PDL?

Solution. Suppose $R_1 = R_2^*$, then xR_1y if and only if x = y or there are x_0, \ldots, x_n such that $x = x_0, x_iR_2x_{i+1}$ and x_nR_2y . To see that \mathcal{F} satisfies 1, suppose $\mathcal{M}, x \Vdash \langle 1 \rangle p$ (in some model \mathcal{M} based on \mathcal{F}). Then either $x \Vdash p$ or there are $x = x_0, \ldots, x_n, y \in W$ with $x_iR_2x_{i+1}, x_nR_2y$ and $y \Vdash p$. If $x \nvDash p$ then clearly xR_1x_n and we may assume $x_n \nvDash p$ (why?), so that $x \Vdash \langle 1 \rangle (\neg p \land \langle 2 \rangle p)$. We also have $\mathcal{F} \models \langle 1 \rangle p \leftrightarrow (p \lor \langle 2 \rangle \langle 1 \rangle p)$ since for any model \mathcal{M} based on \mathcal{F} we have $\mathcal{M}, x \Vdash \langle 1 \rangle p$ iff $\exists y$ such that x = y or $\exists x_0, \ldots, x_n$ such that $x = x_0R_2x_1R_2\ldots R_2x_nR_2y$ and $y \Vdash p$ iff $x \Vdash p$ or $\exists x_0, \ldots, x_n$ with $n \ge 1$, $x_0 = x, x_iR_2x_{i+1}, xR_2x_1$ and x_1R_1y with $y \Vdash p$ iff $x \Vdash p \lor \langle 2 \rangle \langle 1 \rangle p$.

Conversely, suppose that $\mathcal{F} = (W, R_1, R_2)$ satisfies 1 and 2. Then,

 R_1 is reflexive: Let $x \in w$ and set $L(w) = \{p\}$ iff w = x and $L(w) = \emptyset$ iff $w \neq x$. Hence $x \Vdash p \lor \langle 2 \rangle \langle 1 \rangle p$, and by 2 we then have $x \Vdash \langle 1 \rangle p$, i.e. xR_1x .

 $R_2 \subseteq R_1$: Suppose xR_2y , and set $L(y) = \{p\}$ and $L(w) = \emptyset$ if $w \neq y$. Then $x \Vdash \langle 2 \rangle \langle 1 \rangle p$ since R_1 is reflexive. Hence $x \Vdash p \lor \langle 2 \rangle \langle 1 \rangle p$ and by 2 we have $x \Vdash \langle 1 \rangle p$, i.e. xR_1y .

If xR_2y and yR_2z then xR_1z : Set $L(z) = \{p\}$ and $L(w) = \emptyset$ when $w \neq z$. Then $x \Vdash \langle 2 \rangle \langle 1 \rangle p$, since xR_2yR_2z i.e. xR_2yR_1 since $R_2 \subseteq R_1$. Hence $x \Vdash \langle 1 \rangle p$ by 2, i.e. xR_1z .

Now, the three clauses above show that if x = y or there are $x_0, \ldots, x_n \in W$ such that $x = x_0 R_2 \ldots R_2 x_n = y$ then $x R_1 y$.

We need to show the converse as well, so suppose for a contradiction that there is no finite sequence $x_0, \ldots, x_n \in W$ such that $x = x_0R_2 \ldots R_2x_n = y, x \neq y$ but xR_1y . We define $L(w) = \{p\}$ iff there is a finite sequence x_0, \ldots, x_n such that $w = x_0R_2 \ldots R_2x_n = y$. Then $y \Vdash p$ so $x \Vdash \langle 1 \rangle p$ and by 1 we have that there is $z \in W$ with $xR_1z, z \not\models p$ and there is $z' \in W$ with zR_2z' and $z' \Vdash p$, i.e. there is a finite sequence x_0, \ldots, x_n such that $z' = x_0R_2 \ldots R_2x_n = y$ and zR_2z' but $z \not\models p$. This is clearly a contradiction and hence we must conclude that there are $x_0, \ldots, x_n \in W$ with $x = x_0R_2 \ldots R_2x_n = y$, i.e. $R_1 = R_2^*$.

Exercise 13*

Suppose $\mathcal{T} = (T, <)$ is a bidirectional frame (where we write y < x instead of $x \leq y$) such that < is transitive, irreflexive and satisfies $\forall xy(x < y \lor x = y \lor y < x)$. Show that

$$\mathcal{T} \models \{ G(Gp \to p) \to Gp, H(Hp \to p) \to Hp \}$$

implies that \mathcal{T} is finite.

Solution. Suppose $\mathcal{T} = (T, <)$ satisfies $\mathcal{T} \models \Gamma$, where $\Gamma := \{G(Gp \rightarrow p) \rightarrow Gp, H(Hp \rightarrow p) \rightarrow Hp\}$. Define a labelling L of T by setting

$$L(t) = \{p\} \iff_{def} t \uparrow, t \downarrow \text{ are finite.}$$

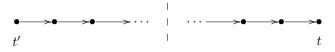
Here, $t\uparrow := \{s \in T \mid t < s\}$ and $t\downarrow := \{s \in T \mid s < t\}$. Since $\mathcal{T} \models \Gamma$ we have for every $t \in T$ that either $t \Vdash Gp$ or $t \nvDash G(Gp \to p)$. If $t \Vdash Gp$ then either $t\uparrow = \emptyset$ or there is t' > t with $t' \Vdash p$, i.e. $t'\uparrow$ and $t'\downarrow$ are finite and so T is finite. If $t \nvDash G(Gp \to p)$ then there is t' > t such that $t' \Vdash Gp$ but $t' \nvDash p$ and then we must have $t'\uparrow = \emptyset$. Suppose now we have $t \in T$ with $t\uparrow = \emptyset$. Since $\mathcal{T} \models \Gamma$ we have $t \Vdash Hp$ or $t \nvDash H(Hp \to p)$. Similarly as above we then have either $t\downarrow = \emptyset$ in which case T is finite, or there is t' < t with $t'\downarrow = \emptyset$. So suppose that we have $t, t' \in T$ with t' < t and $t \uparrow = t' \downarrow = \emptyset$. Define a new labelling L of T by

$$L(s) = \{p\} \iff_{def} s = t'.$$

Suppose that for every $s \in T$ such that t' < s < t there is $s' \in T$ with t' < s' < s. Then $t \Vdash H(Hp \to p)$, since if s < t we have either s = t' in which case $s \Vdash Hp \to p$ or we have t' < s < t and then there is s' with t' < s' < s so that $s \not\vDash Hp$, i.e. $s \Vdash Hp \to p$. But then $t \Vdash Hp$, i.e. s < t implies s = t'. So either T is finite or t' has an immediate successor t'', i.e. t' < t'' and if t' < s then t'' = s or t'' < s. We denote this relation by $t \prec t''$.

Similarly we can show that every element $s \in T$ such that s < t has an immediate successor, and analogously that every element $s \in T$ with t' < s has an immediate predecessor s', i.e. $s' \prec s$.

We can now draw the following picture of \mathcal{T} :



where each arrow denotes the immediate successor relation \prec .

Now, finally we define a last labelling L of T by

$$L(s) = \{p\} \iff_{def} \exists x_0, \dots, x_n \in T : x = x_0 \prec \dots \prec x_n = t.$$

Then $t' \Vdash G(Gp \to p)$ since if t' < s, s = t (in which case $s \Vdash p$ and so $s \Vdash Gp \to p$) or t' < s < t. In the latter case s has an immediate successor s'. If $s \Vdash Gp$ we have $s' \Vdash p$ and so there are x_0, \ldots, x_n with $s' = x_0 \prec \ldots \prec x_n = t$. But then we have $y_0 = s$, $y_1 = x_0, \ldots, y_{n+1} = x_n = t$ and $s = y_0 \prec \ldots \prec y_{n+1} = t$ so $s \Vdash p$. Hence $s \Vdash Gp \to p$. But then $t' \Vdash Gp$, and since t' has an immediate successor t'', we then have $t'' \Vdash p$, i.e. there is a finite chain $t' \prec t'' \prec \ldots \prec t$. Hence T must be finite.

Many of the exercises are taken from the book *Modal Logic* by Patrick Blackburn, Maarten de Rijke and Yde Venema, which is an excellent book if you want to learn more about Modal Logic.