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Abstract. We study several optimal stopping problems in which the
gains process is a Brownian bridge or a functional of a Brownian bridge.
Our examples constitute natural finite horizon optimal stopping prob-
lems with explicit solutions.

1. Introduction

In this paper we consider when to stop a Brownian bridge, or a functional
of a Brownian bridge, if performance is measured in the expected value
sense. To describe a problem of this type, let X be a Brownian bridge with
X0 = X1 = 0, and define the value

V = sup
0≤τ≤1

EXτ . (1)

Here the supremum is taken over all random times that are stopping times
with respect to the filtration generated by X. A solution to the optimal
stopping problem (1) consists of finding the value V as well as determining
an optimal stopping time τ∗ for which the supremum is attained.

The optimal stopping problem (1) is a continuous version of the following
classical urn problem. Suppose that an urn contains n red and n black balls
which are drawn without replacement. Moreover, every red ball pays you a
dollar and every black one fines you a dollar. If you may stop the game at
any time, what is your maximal expected profit and what strategy should
you use?1

One potential application of problem (1) is in financial theory. Indeed, it
has recently been reported that stock prices tend to end up at the strikes of
heavily traded options written on the stocks when they mature, see Avel-
laneda and Lipkin [1] and the references therein. A possible explanation
for this pinning phenomenon is that hedgers with a long position in vanilla
options are advised by standard Black-Scholes theory to buy stocks if the
price falls, and to sell stocks if the price rises. Moreover, this trading is more
significant at a strike and close to maturity since the option delta changes
rapidly there. By supply and demand arguments, the stock price therefore
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pins at the strike. Problem (1) serves as a first approximation of the problem
when to sell a stock in the presence of stock pinning.

As is well-known, most optimal stopping problems with a finite horizon
lack explicit solutions. Nevertheless, using a representation of the Brownian
bridge as a time changed Brownian motion, Shepp [5] transformed (1) into
the problem

sup
τ≥0

EWτ/(1 + τ)

for a Brownian motion W , which he solved explicitly. In the current article
we solve (1), and several related problems, using, in our opinion, a more
direct approach. The method consists of the following three classical steps
in optimal stopping theory, compare for example the recent monograph [4].

(i) Allow for an arbitrary starting point, thereby embedding the prob-
lem in a Markovian framework.

(ii) Formulate a free boundary problem for the value function and the
optimal stopping boundary. Solve this free boundary problem to
produce a candidate solution to the problem in (i).

(iii) Verify that this candidate solution indeed is the correct solution.

It seems to us that the above scheme (i)-(iii) is not only more direct, but
also easier to extend than the method used in [5] in that it does not rely on
the explicit representation of a Brownian bridge as a time changed Brownian
motion. For example, the same method also naturally applies to variants of
problem (1) involving other underlying processes, such as Bessel bridges and
diffusions of the type dXs = −aXs/(1 − s) ds + dWs, as well as to optimal
stopping problems with gain functions involving certain functionals, such as
absolute values, powers, and integrals, of such processes.

In Section 2 we reproduce Shepp’s solution to problem (1) following the
scheme (i)-(iii) above. In Section 3 we study related problems where the
gain functions are certain functionals of the Brownian bridge. Some of these
problems could be solved by first writing the Brownian bridge as a time
changed Brownian motion as in [5], and then appealing to explicit solutions
to the transformed problems given in [3]. Rather than performing these
transformations, we again show that the more direct approach (i)-(iii) is
applicable.

2. Optimal Stopping of a Brownian Bridge

Let W = {Wt}t≥0 denote a standard Brownian motion.

Definition 2.1. A continuous process {Xs}t≤s≤1 satisfying

{

dXs = − Xs

1−s ds + dWs, t ≤ s < 1

Xt = x

is called a Brownian bridge starting from x at time t ≥ 0 and ending at 0.
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Remark It is well-known that the exploding drift term forces a Brownian
bridge to satisfy X1 = 0 almost surely. In fact, the Brownian bridge can
alternatively be defined as a standard Brownian motion conditioned upon
being 0 at time 1.

In this section we solve the optimal stopping problem (1) by following
the steps (i)-(iii) described in the introduction. Thus, we first embed it in a
more general setting where the Brownian bridge is first observed at a time
t ∈ [0, 1) at a point x ∈ R. Define

V (t, x) = sup
t≤τ≤1

Et,xXτ . (2)

Heuristic considerations make it plausible that there exists a boundary x =
b(t) such that stopping is optimal above and continuation is optimal below
this boundary. Indeed, the larger the current value Xt, the more the drift
term will push the process down. From general optimal stopping theory,
see for example [4], one expects the value function and the optimal stopping
boundary to solve the free boundary problem















Vt(t, x) − x
1−tVx(t, x) + 1

2Vxx(t, x) = 0 if x < b(t)

V (t, x) = x if x = b(t)
Vx(t, x) = 1 if x = b(t)
V (t, x) = 0 if x = −∞

(3)

for t < 1, and V (1, 0) = 0. Here the third equation is the so called smooth fit
condition, and the fourth equation is to be interpreted as limx→−∞ V (t, x) =
0. Moreover, the first passage time

τ∗ = inf{s ≥ t : Xs ≥ b(s)}
of X over the boundary b should be an optimal stopping time in (2).

Now, the Ansatz b(t) = B
√

1 − t and

V (t, x) =
√

1 − tf(x/
√

1 − t) (4)

transforms the free boundary problem (3) into














f ′′(y) − yf ′(y) − f(y) = 0 y < B
f(y) = y y = B
f ′(y) = 1 y = B
f(y) = 0 y = −∞,

(5)

where y = x/
√

1 − t. The general solution to the ODE in (5) is given by

f(y) = CΦ(y)ey2/2 + Dey2/2,

where

Φ(y) =
1√
2π

∫ y

−∞
e−z2/2 dz

is the distribution function of a standard normal random variable. The last
boundary condition in (5) implies that D = 0. It is therefore straightforward
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to check that the unique solution to (5) is given by (f,B), where

f(y) =

{ √
2π(1 − B2)ey2/2Φ(y) y < B

y y = B

and B is the unique solution to
√

2π(1 − B2)eB2/2Φ(B) = B. (6)

Remark To see that (6) admits a unique solution, note that the function

h(x) =
√

2π(1 − x2)ex2/2Φ(x) − x

is strictly decreasing for x ≥ 0, and satisfies

h(x) > 0 for x ≤ 0 and lim
x→∞

h(x) = −∞.

Via (4) we arrive at a candidate value function V ∗ : [0, 1)×R∪{(1, 0)} → R

given by

V ∗(t, x) =

{

√

2π(1 − t)(1 − B2)ex2/2(1−t)Φ( x√
1−t

) if x < b(t)

x if x ≥ b(t)
(7)

for t < 1, and V (1, 0) = 0, where

b(t) = B
√

1 − t.

It remains to show that this candidate value function V ∗ indeed is the correct
solution to problem (2). We do this below using a standard verification
argument. As mentioned in the introduction, the following result was also
obtained in [5].

Theorem 2.2. The value function V (t, x) defined in (2) coincides with the

function V ∗(t, x) given by (7). Moreover, the stopping time

τ∗ = inf{s ≥ t : Xs ≥ B
√

1 − s},
where B is the unique solution to (6), is optimal.

Proof. First note that V ∗ satisfies

V ∗
t − x

1 − t
V ∗

x +
1

2
V ∗

xx = 0

for x < b(t). Moreover, V ∗
t and V ∗

x are continuous over {(t, x) : x = b(t)}.
Define the process Ys = V ∗(s,Xs), where X is a Brownian bridge starting
from x at time t. An application of Itô’s formula yields

dYs =

(

V ∗
t (s,Xs) −

Xs

1 − s
V ∗

x (s,Xs) +
1

2
V ∗

xx(s,Xs)

)

I(Xs 6= b(s)) ds

+V ∗
x (s,Xs)I(Xs 6= b(s)) dWs

= − Xs

1 − s
I(Xs > b(s)) ds + V ∗

x (s,Xs)I(Xs 6= b(s)) dWs

= dΛs + dMs,
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Xs

sτ∗

B

1

Figure 1. A realization of a Brownian bridge together with the
optimal stopping boundary. Numerical calculations show that B ≈
0.8399 and V (0, 0) =

√

π/2(1 − B2) ≈ 0.3691.

where

Λs = −
∫ s

t

Xu

1 − u
I(Xu > b(u)) du

is a decreasing process and

Ms =

∫ s

t
V ∗

x (u,Xu)I(Xu 6= b(u)) dWu

is a local martingale. In fact, since V ∗
x is bounded, the process M is a

martingale. Let τ be a stopping time satisfying t ≤ τ ≤ 1. Since V ∗(t, x) ≥ x
we have

Et,xXτ ≤ Et,xV ∗(τ,Xτ ) = V ∗(t, x) + Et,x[Λτ + Mτ ] ≤ V ∗(t, x), (8)

where the last inequality follows from the Optional Sampling Theorem. Con-
sequently,

V (t, x) ≤ V ∗(t, x).

To establish the reverse inequality, note that, since V ∗(τ∗,Xτ∗) = Xτ∗ and
Λτ∗ = 0, both inequalities in (8) reduce to equalities for τ = τ∗. Thus

V (t, x) ≥ Et,xXτ∗ = V ∗(t, x),

which finishes the proof. �

Remark The pinning time 1 and the pinning level 0 can of course be easily
generalised. If the process X is defined by

dXs = −Xs − a

T − s
ds + dWs,

then X pins at a at time T . The value function

V (t, x) = sup
t≤τ≤T

EXτ
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is then given by

V (t, x) =

{

a +
√

2π(T − t)(1 − B2)e(x−a)2/2(T−t)Φ( x−a√
T−t

) if x < b(t)

x if x ≥ b(t),

where b(t) = a + B
√

T − t and B is as in Theorem 2.2. Moreover,

τ∗ = inf{s ≥ t : Xs ≥ a + B
√

T − s}
is an optimal stopping time.

3. Optimal Stopping of a Functional of a Brownian Bridge

In this section we consider different variants of problem (1), all of which
admit explicit solutions. We refrain from performing the rigorous verifica-
tion arguments, since they all follow along the same lines as in the proof of
Theorem 2.2. Instead, we rather give the intuition behind finding a candi-
date solution.

3.1. Odd powers of a Brownian bridge. Let X be a Brownian bridge
and consider the optimal stopping problem

V (t, x) = sup
t≤τ≤1

Et,xX2n+1
τ , (9)

where n ≥ 1 is an integer. The value function and the optimal stopping
boundary should solve the free boundary problem















Vt(t, x) − x
1−tVx(t, x) + 1

2Vxx(t, x) = 0 if x < b(t)

V (t, x) = x2n+1 if x = b(t)
Vx(t, x) = (2n + 1)x2n if x = b(t)
V (t, x) = 0 if x = −∞

(10)

for t < 1, and V (1, 0) = 0. The Ansatz b(t) = B
√

1 − t and

V (t, x) = (1 − t)n+1/2f(x/
√

1 − t) (11)

transforms the free boundary problem (10) into














f ′′(y) − yf ′(y) − (2n + 1)f(y) = 0 if y < B
f(y) = y2n+1 if y = B
f ′(y) = (2n + 1)y2n if y = B
f(y) = 0 if y = −∞.

(12)

The general solution to the ODE is given by

f(y) = CG2n+1(y) + DF2n+1(y),

where

Gν(y) =

∫ ∞

0
uν−1e−yu−u2/2du and Fν(y) = Gν(−y). (13)
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Using the boundary conditions we find that C = 0 and the unique solution
to (12) is given by (f,B), where

f(y) = B2n+1 F2n+1(y)

F2n+1(B)
y < B,

and B satisfies

BF ′
2n+1(B) = (2n + 1)F2n+1(B). (14)

Via (11) we obtain the following result.

Theorem 3.1. The value function V defined in (9) is given by

V (t, x) =

{

(1 − t)n+1/2B2n+1
F2n+1( x√

1−t
)

F2n+1(B) x < B
√

1 − t

x2n+1 x ≥ B
√

1 − t,

where B is the unique solution to (14). Moreover, the stopping time

τ∗ = inf{s ≥ t : Xs ≥ B
√

1 − s}
is optimal.

We again emphasize that the above derivation is merely heuristic, and that
a formal proof requires a verification argument similar to the one performed
in the previous section.

Remark In order to verify that (14) indeed has a unique solution, we note
that the function

h(x) = (2n + 1)F2n+1(x) − xF ′
2n+1(x)

satisfies h(x) > 0 for x ≤ 0, and h(
√

2n + 1) ≤ 0. It thus suffices to show
that the quotient

g(x) =
xF ′

2n+1(x)

F2n+1(x)

is strictly monotone for x > 0. Differentiating g we find that g′(x) > 0
provided that EU2 > (EU)2, where U is a random variable with density

fU (u) =
u2nexu−u2/2

∫ ∞
0 u2nexu−u2/2du

, for u > 0.

The claimed uniqueness thus follows from (a strict version of) Jensen’s in-
equality.

3.2. Reflected Brownian bridge. Let X be a Brownian bridge, and con-
sider the optimal stopping problem

V (t, x) = sup
t≤τ≤1

Et,x|Xτ |q, (15)

where q > 0.
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Theorem 3.2. The value function V in (15) satisfies

V (t, x) =

{

(1 − t)q/2Bq
Gq( x√

1−t
)+Fq( x√

1−t
)

Gq(B)+Fq(B) |x| < B
√

1 − t

|x|q |x| ≥ B
√

1 − t,

where the functions G and F are given by (13) above, and B is the unique

positive solution to

B(G′
q(B) + F ′

q(B)) = q(Gq(B) + Fq(B)). (16)

Moreover, the stopping time

τ∗ = inf{s ≥ t : |Xs| ≥ B
√

1 − s}
is optimal in (15).

The intuition is as follows. One expects the continuation region to be of
the form

{(t, x) : −b(t) < x < b(t)}
for some function b, and the value function and the optimal stopping bound-
ary should solve the free boundary problem







Vt(t, x) − x
1−tVx(t, x) + 1

2Vxx(t, x) = 0 if |x| < b(t)

V (t, x) = |x|q if |x| = b(t)
Vx(t, x) = sign(x)q|x|q−1 if |x| = b(t)

for t < 1, and V (1, 0) = 0. Moreover, due to the symmetry in the problem,
the solution should be an even function in x. The Ansatz b(t) = B

√
1 − t

and

V (t, x) = (1 − t)q/2f(x/
√

1 − t) (17)

transforms the free boundary problem into






f ′′(y) − yf ′(y) − qf(y) = 0 if |y| < B
f(y) = |y|q if |y| = B
f ′(y) = sign(y)q|y|q−1 if |y| = B.

(18)

The general solution to the ODE in (18) is given by

f(y) = CGq(y) + DFq(y).

Since f should be even we conclude that C = D and using the boundary
conditions we find that the unique solution to (18) is given by (f,B), where

f(y) = Bq Gq(y) + Fq(y)

Gq(B) + Fq(B)
|y| < B,

and B satisfies (16). Using (17), we arrive at the (candidate) value function
given in Theorem 3.2.

Remark The uniqueness of the solution in (16) can be verified by proceed-
ing as in the case of odd powers of a Brownian bridge.
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Remark For some values of q, the solution admits a more explicit form.
For example, in the case q = 2n + 1 where n is a non-negative integer, we
have

G2n+1(y) + F2n+1(y) = Cn
d2n

dy2n
ey2/2

for some constant Cn. The problem q = 1 was studied in [5], and its solution
is remarkably simple. Indeed, in that case B = 1 and the value function is
given by

V (t, x) =

{ √
1 − tex2/2(1−t)−1/2 |x| <

√
1 − t

|x| |x| ≥
√

1 − t.

3.3. The integral of a Brownian bridge. Consider the optimal stopping
of the integral of a Brownian bridge, i.e.

V (t, x) = sup
t≤τ≤1

Et,x

∫ τ

t
Xu du.

Theorem 3.3. The value function V is given by

V (t, x) =

{

1
2(1 − t)x + (1 − t)3/2 B

2

G3(
x√
1−t

)

G3(−B) x > −B
√

1 − t

0 x ≤ −B
√

1 − t,

where B is the unique solution to

BG′
3(−B) + G3(−B) = 0. (19)

Moreover, the stopping time

τ∗ = inf{s ≥ t : Xs ≤ −B
√

1 − s}
is optimal.

Again we provide the heuristics behind the proof, but omit the formal ver-
ification. Note that one expects the value function and the optimal stopping
boundary to solve the free boundary problem







Vt(t, x) − x
1−tVx(t, x) + 1

2Vxx(t, x) = −x if x > b(t)

V (t, x) = 0 if x = b(t)
Vx(t, x) = 0 if x = b(t)

for t < 1, and V (1, 0) = 0. With b(t) = −B
√

1 − t and

V (t, x) = (1 − t)3/2f(x/
√

1 − t), (20)

the free boundary problem transforms into






f ′′(y) − yf ′(y) − 3f(y) = −2y if y > −B
f(y) = 0 if y = −B
f ′(y) = 0 if y = −B.

(21)

The general solution to this ODE is given by

f(y) = CG3(y) + DF3(y) +
y

2
.
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The solution should be of linear growth as y tends to infinity, so therefore
D = 0. It is then straightforward to check that the unique solution to (21)
of linear growth is given by (f,B), where

f(y) =

{

B
2

G3(y)
G3(−B) + y

2 if y > −B

0 if y = −B.

and B satisfies (19). From (20) we obtain the candidate value function
specified in Theorem 3.3.

Remark To see that (19) admits a unique solution, note that the function

h(x) = xG′
3(−x) + G3(−x)

is decreasing for x ≥ 0 and satisfies h(1) < 0. Moreover h(x) > 0 for x ≤ 0.

Remark The more general problem

V (t, x) = sup
t≤τ≤1

Et,x

∫ τ

t
X2n+1

u du,

where n ≥ 0 is an integer, can be treated as above. Indeed, the Ansatz
V (t, x) = (1− t)n+3/2f(x/

√
1 − t) transforms the corresponding free bound-

ary problem into a time-independent one. We leave the details for this
problem.
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[5] Shepp, L.A. (1969). Explicit solutions to some problems of optimal stopping.

Ann. Math. Statist. 40, 993–1010.

Department of Mathematics, Uppsala University, Box 480, SE-751 06 Upp-

sala, SWEDEN


