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Abstract. It has become common practice to use heavy-tailed distributions
in order to describe the variations in time and space of network traffic work-
loads. The asymptotic behavior of these workloads is complex; different limit
processes emerge depending on the specifics of the work arrival structure and
the nature of the asymptotic scaling. We focus on two variants of the infinite
source Poisson model and provide a coherent and unified presentation of the
scaling theory by using integral representations. This allows us to understand
physically why the various limit processes arise.
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1. Introduction

Our understanding of the random variation in packet networks computer traffic has
improved considerably in the last decade. Mathematical models were developed,
which capture patterns observed in traffic data such as self-similarity. An essential
element of these models is the use of heavy-tailed distributions at the microscopic
scale. Because the mathematics can be involved, it is often difficult to understand
physically why heavy-tailed distributions yield the different stochastic processes
that appear at the macroscopic scale. We shall use integral representations in order
to clarify this mechanism. We aim to give a coherent and unified presentation of a
large spectrum of approximation results, so that the features and the dependence
structure of the limiting processes are convincingly “explained” by the underlying
model assumptions including heavy tails. This approach will also allow us to solve
some open problems.
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A number of different models have been suggested to capture the essential
characteristics of packet traffic on high-speed links. A popular view of network
traffic is an aggregate of packet streams, each generated by a source that is ei-
ther in an active on-state transmitting data or an inactive off-state. In reality
separate flows of packets interact because of the influence of transport protocols
or other mechanisms, but in modeling work it is a standard approach to assume
statistical independence between flows. This leads naturally to considering the cu-
mulative workload as the result of adding independent on-off processes that are
integrated over time. The superposition of independent renewal-reward processes
have a similar interpretation, where the sources are not necessarily switching be-
tween on and off but rather change transmission rates randomly at random times.
A third category of models is based on Poisson arrivals of independent sessions,
where the sessions are typically long-lived and carry workload continuously or in
discrete packets. Such models of Poisson shot noise type, called infinite source Pois-
son processes, have been specifically proposed for modeling noncongested Internet
backbone links at the flow level, Barakat et al. 2003.

The preceding models have heavy-tailed versions, obtained by assuming that
the on/off periods, the interrenewal times, or the session durations are given by
heavy-tailed distributions and one can define stationary versions of these traffic
models. Through detailed studies, the asympotic behavior of the workload fluc-
tuations around its mean has been investigated and a pattern has emerged with
certain generic characteristics. Taqqu (2002) and Willinger et al. (2003) provide
summaries including details on the relevant networking concepts and observed
characteristics of measured traffic. Stegeman (2002), Pipiras et al. (2004) and
Mikosch et al. (2002) give a variety of results while investigating the range of pos-
sible asymptotic growth conditions. Briefly, whenever the number of multiplexing
flows grows at a fast rate relative to time, fractional Brownian motion appears as
a canonical limit process. If the rewards, i.e., the transmission rates, have heavy
tails, then a more general stable process with dependent increments, called the
Telecom process, appears instead of fractional Brownian motion, see Levy and
Taqqu (2000) and Pipiras and Taqqu (2000). Whenever the degree of aggregation
is slow compared to time, the natural limit process is a stable Lévy process with in-
dependent increments. In an intermediate scaling regime another type of Telecom
process appears, which is neither Gaussian nor stable, Gaigalas and Kaj (2003).

Some further papers dealing with fractional Brownian limit processes under
fast growth are Rosenkrantz and Horowitz (2002) and Çağlar (2004). Results on
approximation by the stable Lévy motion under slow growth conditions are derived
in Jedidi et al. (2004), and the intermediate scaling regime is further investigated
in Kaj and Martin-Löf (2005). The many results in the literature use a variety
of mathematical techniques, often complicated and specialized for the particular
model studied, offering limited intuition as to the origin of the limit processes and
their physical explanation in terms of first principles of the underlying models.

The purpose of this paper is to consider a physical model which shows clearly
why these various limiting scaling processes arise. For this purpose we use integral
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representations and focus on two variants of the infinite source Poisson model.
Because integral representations are interpretable physically, they shed light on the
structure of the resulting limit processes. By using this approach, we can derive
all the above asymptotics in a unified manner. We are also able to provide the
solution to an open problem: finding the intermediate process when the rewards
have infinite variance. Some of the approximation techniques we use have been
unified in Pipiras and Taqqu (2006). In addition, our approach for the case of
fixed rewards has been successfully extended in a spatial setting of Poisson germ-
grain models and recast in a more abstract formulation involving random fields in
Kaj et al. (2007), further developed in Biermé et al. (2006, 2007).

The paper is organized as follows. In Section 1 we develop the models and
derive some basic properties. We state the main results in Section 2 and prove them
in Section 3. In Section 4, the convergence in finite-dimensional distributions of
the continuous flow model is extended to weak convergence in function space.

1.1. The infinite source Poisson model

Infinite source Poisson models are arrival processes with M/G/∞ input obtained
by integrating the standard M/G/∞ queueing system size. The resulting class
of Poisson shot noise processes are widely used traffic models which describe the
amount of workload accumulating over time. Such models have been suggested as
realistic workload processes for Internet traffic, where is is natural to assume that
while web sessions are initiated according to a Poisson process, duration lengths
and transmission rates could vary considerably. More exactly, the aggregated traffic
consists of sessions with starting points distributed according to a Poisson process
on the real time line. Each session lasts a random length of time and involves
workload arriving at a random transmission rate. There are two slightly different
sets of assumptions that are natural to make regarding the precise traffic pattern
during a session. The first is that the workload arrives continuously at a randomly
chosen transmission rate, which is fixed throughout the session and independent
of the session length. The second type of model assumes that the workload arrives
in discrete entities, packets, according to a Poisson process throughout the session,
and such that the size of each packet is chosen independently from a given packet
size distribution. The duration and the continuous or discrete rate of traffic in one
session is independent of the traffic in any other session, although in general the
sessions overlap. One novelty in this work is that we point out how these two types
of models differ in their asymptotic behavior and that we explain the origin of the
qualitative differences.

We are going to introduce the workload models using directly an integral
representation with respect to Poisson measures, as in Kurtz (1996) and Çağlar
(2004), rather than working with a more traditional Poisson shot noise represen-
tation, as in Kaj (2005). This approach is designed to help in understanding the
scaling limit behavior of the models, and leads to useful representations of the limit
processes. In formalizing the traffic pattern, the starting points of sessions will be
called arrival times and the session lengths their durations. The traffic rate will
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be described in terms of a reward distribution, either continuous flow rewards or
compound Poisson rewards. With each session in the continuous flow rate model
we associate an arrival time S, a duration U and a reward R. A session in the
case of compound Poisson packet arrivals is characterized by an arrival time S, a
duration U , and a compound Poisson process Ξ(t) constructed from copies of the
reward R.

The basic notation and assumptions are as follows:

Arrivals: Workload sessions start according to a Poisson process on the real line
with intensity λ > 0. The arrival times are denoted . . . , Sj , Sj+1, . . . .

Durations: The session length distribution is represented by the random variable
U > 0 with distribution function FU (u) = P (U ≤ u) and expected value

ν = E(U) < ∞.

We have either
E(U2) < ∞

or
P (U > u) ∼ LU (u)u−γ/γ

as u → ∞, where 1 < γ < 2. We extend the parameter range to 1 < γ ≤ 2, by
letting γ = 2 represent the case E(U2) < ∞.

Rewards: (1) Continuous flow rewards. The transmission rate valid during a session
is given by a random variable R > 0 with FR(r) = P (R ≤ r) and

E(R) < ∞.

We suppose either
E(R2) < ∞

or
P (R > r) ∼ LR(r)r−δ/δ

as r → ∞, where 1 < δ < 2. Again the parameter range extends to 1 < δ ≤ 2 by
letting δ = 2 be the case E(R2) < ∞. Observe that the aggregated workload in a
session is the product UR.

(2) Compound Poisson rewards. The packet stream in a session is a compound
Poisson process

Ξ(t) =
M(t)∑

i=1

Ri,

where the packet sizes (Ri) are independent and identically distributed with dis-
tribution FR(dr) having the same properties as above for continuous flow rewards,
and {M(t), t ≥ 0} is a standard Poisson process of intensity one. In this case, the
aggregated workload in a session is

∑M(U)
i=1 Ri.
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Remark 1. We use γ, δ as basic parameters for renewals and rewards for a number
of reasons: (1) there will be no confusion with other works that used α, β. (2)
It maintains the order used in other works: γ ↔ α, δ ↔ β. (3) Since the limit
processes can be γ-stable or δ-stable, it is preferable to use indices such as γ and
δ which do not have the intrinsic meaning that α and β have in relation to stable
distributions. We suggest in fact that, in the future, γ and δ be used instead of α
and β.

Remark 2. To simplify the presentation of our work and the statements of our
results we will set LU = LR = 1. In the proofs section, however, we deal with the
the modifications that one has to do when LU and LR are general slowly varying
functions.

We are now prepared to define the infinite Poisson source workload process
using integrals with respect to a Poisson measure. The aim is to define an infinite
source Poisson process, W ∗

λ , such that for t ≥ 0,

W ∗
λ (t) = the aggregated workload in the time interval [0, t].

1.1.1. The continuous flow reward model. Let N(ds, du, dr) denote a Poisson point
measure on R × R+ × R+ with intensity measure

n(ds, du, dr) = λds FU (du)FR(dr). (1)

We use S, U, R as generic notation for the random quantities and s, u, r for a
particular session outcome so that a Poisson event in (s, u, r) represents a session
arriving at time s of duration u and with reward size r. With the choice of (1),
we obtain a fluid model for network traffic where sessions begin successively on
the (physical) time line labeled s at Poisson rate λ. A session is active during the
time interval [s, s+u] and transmits traffic at rate r throughout the session, where
(u, r) is an outcome of independent random variables (U, R). For example,
∫ t

−∞

∫ ∞

0

∫ ∞

0

1{s<t<s+u} N(ds, du, dr) = the number of active sessions at time t.

To express similarly W ∗
λ in terms of the point measure N , we fix t > 0 and

partition the total traffic streams into traffic originating from sessions that began
in the infinite past, s ≤ 0, and traffic from sessions starting at a time s with
0 < s < t. In the former case, sessions do not count if s + u ≤ 0, the contribution
to W ∗

λ (t) is (u − |s|)r = (s + u)r if 0 < s + u ≤ t, and it is tr if s + u > t. In the
latter case, the amount of traffic workload that counts for W ∗

λ (t) is ur if u < t− s
and (t − s)r otherwise. Hence

W ∗
λ (t) =

∫ 0

−∞

∫ ∞

0

∫ ∞

0

(t ∧ (s + u)+)r N(ds, du, dr)

+
∫ t

0

∫ ∞

0

∫ ∞

0

((t − s) ∧ u)r N(ds, du, dr). (2)
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Recall (Campbell Theorem, Kingman (1993), Section 3.2) that an integral
of the form I(f) =

∫
S

f(x)N(dx), where N is a Poisson random measure on a
space S, exists with probability 1 if and only if

∫
S min(|f(x)|, 1)n(dx) < ∞ where

n(dx) = EN(dx). Moreover, if
∫

S |f(x)|n(dx) < ∞ then the expected value of the
integral equals EI(f) =

∫
S

f(x)n(dx). Thus,

EW ∗
λ (t)

= E(R)
(∫ 0

−∞

∫ ∞

0

t ∧ (s + u)+ λds FU (du) +
∫ t

0

∫ ∞

0

(t − s) ∧ u λds FU (du)
)

= λE(R)
(∫ t

0

∫ ∞

s

P (U > u) duds +
∫ t

0

∫ s

0

P (U > u) duds

)

= λνE(R)t, (3)

by performing in each of the two terms an integration by parts in the variable u.
For example,

∫ ∞

0

(t − s) ∧ u FU (du) =
∫ t−s

0

u FU (du) + (t − s)P (U > t − s)

=
∫ t−s

0

P (U > u) du.

The two integral terms in (2) may be combined into a single integral, by writing

W ∗
λ (t) =

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

((t − s)+ ∧ u − (−s)+ ∧ u)r N(ds, du, dr). (4)

The kernel
Kt(s, u) = (t − s)+ ∧ u − (−s)+ ∧ u (5)

is such that

0 ≤ Kt(s, u) =






0 if s + u ≤ 0 or s ≥ t
s + u if s ≤ 0 ≤ s + u ≤ t

t if s ≤ 0, t ≤ s + u
u if 0 ≤ s, s + u ≤ t

t − s if 0 ≤ s ≤ t ≤ s + u.

Hence Kt(s, u) is a function of the starting time s and the duration u of a session
that measures the length of the time interval contained in [0, t] during which the
session is active. Figure 1 indicates the shape of Kt(s, u) defined on the (s, u)-plane
when we have fixed a value of t. Write

Ñ(ds, du, dr) = N(ds, du, dr) − n(ds, du, dr) (6)

for the compensated Poisson measure with intensity measure n(ds, du, dr). By (4)
and (3),

W ∗
λ (t) =

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r N(ds, du, dr) (7)
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Figure 1. The kernel function Kt(s, u), t = 4, −6 ≤ s ≤ 6, 0 ≤ u ≤ 6

with ∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r n(ds, du, dr) < ∞,

and

W ∗
λ (t) = λνE(R)t +

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r Ñ(ds, du, dr), (8)

which represents the workload in the form of a linear drift and random Poisson
fluctuations.

Note that the case of fixed unit rewards, R ≡ 1, is contained as a special case
of the above by setting FR equal to the Dirac measure

FR(dr) = δ1(dr),

which then gives

W ∗
λ (t) =

∫ ∞

−∞

∫ ∞

0

Kt(s, u)N(ds, du)

with ∫ ∞

−∞

∫ ∞

0

Kt(s, u)λds FU (du) = λνt < ∞.
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Here N(ds, du) is the marginal of the Poisson measure N(ds, du, dr) restricted to
its first two coordinates.

1.1.2. The compound Poisson arrival workload model. This model results from
nesting two Poisson measures as follows. During each session, we allow packets to
be generated at discrete Poisson time points. More precisely, consider the com-
pound Poisson process

Ξ(t) =
M(t)∑

i=1

Ri, t ≥ 0, (9)

where (Ri)i≥1 is an i.i.d. sequence from the distribution FR and M(t) is a unit
rate Poisson process on R+. The paths of Ξ are elements in the space D of right-
continuous functions with left limits, t 	→ ξ(t), t ≥ 0, and we let µ denote the
distribution of Ξ defined on D. Let N�(ds, du, dξ) be a Poisson measure on R ×
R+ × D with intensity measure

n�(ds, du, dξ) = λds FU (du)µ(dξ). (10)

A Poisson event of N� at (s, u, ξ) represents a session that starts at s, has duration
u, and generates packets according to ξ. The length of time in [0, t] during which
the session is active is given by Kt(s, u) defined in (5), and the resulting workload
is therefore given by ξ(Kt(s, u)). Thus, the accumulated workload W ∗

λ (t) under
compound Poisson packet generation is

W ∗
�,λ(t) =

∫ ∞

−∞

∫ ∞

0

∫

D

ξ(Kt(s, u))N�(ds, du, dξ). (11)

Since
EΞ(t) = EM(t)E(R) = tE(R), (12)

the expected value of W ∗
�,λ(t) equals

EW ∗
�,λ(t) =

∫ ∞

−∞

∫ ∞

0

∫

D

ξ(Kt(s, u))λds FU (du)µ(dξ)

=
∫ ∞

−∞

∫ ∞

0

Kt(s, u)λds FU (du)E(R)

= λνE(R)t,

just as in the continuous flow model. By analogy with (8) we have the representa-
tion

W ∗
�,λ(t) = λνE(R)t +

∫ ∞

−∞

∫ ∞

0

∫

D

ξ(Kt(s, u)) Ñ�(ds, du, dξ) (13)

in terms of the compensated Poisson measure

Ñ�(ds, du, dξ) = N�(ds, du, dξ) − n�(ds, du, dξ). (14)

Kurtz (1996) introduced general workload input models of this form, Çağlar (2004)
considers the above model with a specific choice of duration distribution FU . Pois-
sonized integral representations are discussed in Cohen and Taqqu (2003) and
Wolpert and Taqqu (2004).
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1.2. Preliminary observations

We now represent the continuous flow model as an integral of an instantaneous
arrival rate process, show that the workload models have stationary increments,
and provide alternative representations which do not involve the presence of an
infinite stretch of past arrivals.

1.2.1. Instantaneous arrival rate for continuous flow workload. The integration
kernel Kt in (5) has several useful alternative representations. The relation

(t − s)+ ∧ u − (−s)+ ∧ u =
∫ t−s

−s

1{0<y<u} dy

yields

Kt(s, u) =
∫ t

0

1{s<y<s+u} dy (15)

and the geometric interpretation

Kt(s, u) = |(0, t) ∩ (s, s + u)|.
The resulting bounds

0 ≤ Kt(s, u) ≤ t ∧ u (16)

are used repeatedly in the proofs below. A further equivalent representation of the
kernel function Kt(s, u) is given by

Kt(s, u) =
∫ u

0

1{0<y+s<t} dy. (17)

As a consequence of relation (15) applied to (7), one can represent the accumulated
workload of the continuous flow model as

W ∗
λ (t) =

∫ t

0

Wλ(y) dy, Wλ(y) =
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

1{s<y<s+u} r N(ds, du, dr).

(18)
Here the integrand Wλ(y), −∞ < y < ∞, is itself a well-defined random instan-
taneous workload arrival rate process and W ∗

λ (t) is the corresponding cumulative
workload. The expressions (18) provide a physical interpretation of Wλ and W ∗

λ .
The instantaneous rate Wλ(y) is the Poisson aggregation of rewards of all sessions
that are active at time y, and the cumulative workload W ∗

λ builds up accordingly
during the time integration over [0, t].

1.2.2. Stationarity of the increments of the workloads.

Lemma 1. In the continuous flow workload model, the instantaneous arrival rate
process {Wλ(y),−∞ < y < ∞} is stationary and the cumulative workload process
{W ∗

λ (t), t ≥ 0} has stationary increments.
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Proof. Because of the time-homogeneity of n(ds, du, dr) in the variable s the
shifted process

Wλ(y + τ) =
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

1{s<y+τ<s+u} r N(ds, du, dr)

has the same finite-dimensional distributions as∫ ∞

−∞

∫ ∞

0

∫ ∞

0

1{s<y<s+u} r N(ds, du, dr) = Wλ(y). �

Remark 3. Consider a link of maximal traffic capacity C > 0. The process

Cλ(t) =
∫ t

0

(Wλ(y) − C)+ dy, t ≥ 0,

represents the cumulative workload loss up to time t on the congested link where
any traffic of instantaneous rate in excess of C is lost.

Remark 4. In the case R ≡ 1, the stationary process Wλ measures the system
size of the standard M/G/∞ service model running on the real line with service
distribution G = FU . For each fixed y, Wλ(y) is Poisson distributed with expected
value λν because for R ≡ 1,

Wλ(y) =
∫ ∫

1{s<t<s+u} N(ds, du) = N(A), A = {(s, u) : s < t < s + u},
with

EN(A) =
∫ ∫

A

λds FU (du) = λ

∫ t

−∞
P (U > t − s) ds = λ

∫ ∞

0

P (U > s) ds = λν.

For the discrete packet generation workload model we apply a similar but
slightly different argument.

Lemma 2. The compound Poisson arrival workload model {W ∗
�,λ, t ≥ 0} has sta-

tionary increments.

Proof. By (17),

Kt+τ (s, u) − Kt(s, u) =
∫ u

0

1{t<y+s<t+τ} dy = Kτ (s − t, u),

and hence by (9),

Ξ(Kt+τ (s, u)) − Ξ(Kt(s, u)) d= Ξ(Kτ (s − t, u)).

Since n�(ds, du, dξ) is time-homogeneous in the variable s, it now follows from (11)
that

W ∗
�,λ(t + τ) − W ∗

�,λ(t) d=
∫ ∞

−∞

∫ ∞

0

∫

D

ξ(Kτ (s − t, u))N�(ds, du, dξ)

d=
∫ ∞

−∞

∫ ∞

0

∫

D

ξ(Kτ (s, u))N�(ds, du, dξ)

d= W ∗
�,λ(τ) �
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Here and elsewhere, the notation d= denotes equality in the sense of the finite-
dimensional distributions.

At this point, having established the property of stationary increments for
W ∗

λ (t) and W ∗
�,λ(t), we comment on the special case E(R2) < ∞ when the reward

distribution FR has a finite second moment. Then, for s < t,

Cov(W ∗
λ (s), W ∗

λ (t)) =
1
2

(Var(W ∗
λ (s)) + Var(W ∗

λ (t)) − Var(W ∗
λ (t − s)))

where

Var(W ∗
λ (t)) = E(R2)

∫ ∞

−∞

∫ ∞

0

Kt(s, u)2 ds FU (du).

Also,

Var(W ∗
�,λ(t)) = λνE(R2) t + (ER)2

∫ ∞

−∞
Kt(s, u)2 λds FU (du).

The crucial property of regular variation which determines the large time behavior
of these processes in the finite variance case (δ = 2) is the asymptotic power law

Var(W ∗
λ (t)) ∼ Var(W ∗

�,λ(t)) ∼ const t2H , t → ∞,

where we apply the convention of using a Hurst index H , which in our case is
related to the tail parameter γ as

H =
3 − γ

2
∈ (1/2, 1).

Our limit results will show that the parameter H appears as a self-similarity in-
dex in those cases where the limit process is Gaussian. However, our results cover
several other cases as well and hence we will keep γ and δ as basic parameters.
A line of research of current interest is that of estimation of such key parameters
based on observations of the process. For example, Fay, Roueff and Soulier (2007),
study a wavelet-based estimator of the Hurst index for the continuous rate flow
model based on the infinite source Poisson process and of the corresponding in-
stantaneous arrival rate process described above. They show consistency of the
estimator and study the rate of convergence. Some of the results allow for spe-
cific dependencies between durations and rewards. Simulation technique for these
processes is a related and relevant direction of research. Here, we restrict to men-
tioning the references Bardet et al. (2003a, 2003b) which survey estimation and
simulation techniques for long-range dependent random processes.

1.2.3. Representations based on an equilibrium distribution. The workload pro-
cesses W ∗

λ (t) and W ∗
�,λ, as defined in (2) and (11), involve sessions arriving at

any time s in the infinite past. We now provide an alternative representation of
the workload, such that for each t the underlying random mechanism generat-
ing W ∗

λ (t) or W ∗
�,λ(t) consists of sessions with arrival times restricted to the time

interval [0, t]. To do this, recall the two terms leading to (2). One term
∫ t

0

∫ ∞

0

∫ ∞

0

((t − s) ∧ u)r N(ds, du, dr)
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represents a nonstationary workload process only governed by session arrivals in
(0, t]. We focus here on the other term, which represents arrivals in the past, is a
Poisson integral with expected value

∫ 0

−∞

∫ ∞

0

∫ ∞

0

(t ∧ (s + u)+)r n(ds, du, dr) = λE(R)
∫ t

0

∫ ∞

u

P (U > v) dvdu.

To express this as an integral of sessions starting at s = 0 and with respect
to a different Poisson measure, we introduce the notation Ũ for the equilibrium
distribution associated to U having distribution function FŨ (u) = P (Ũ ≤ u) such
that

1 − FŨ (u) =
1
ν

∫ ∞

u

P (U > v) dv ∼ 1
νγ(γ − 1)uγ−1

, u → ∞. (19)

Let M(dv, du, dr) be a Poisson measure on [0, 1]×R+×R+ with intensity measure

m(dv, du, dr) = λνdv FŨ (du)FR(dr)

and independent of N(ds, du, dr). The measure M(dv, du, dr) produces a Poisson
distributed number of independent sessions each with duration taken from Ũ and
reward R. One has
∫ 0

−∞

∫ ∞

0

∫ ∞

0

(t ∧ (s + u)+)r N(ds, du, dr) d=
∫ 1

0

∫ ∞

0

∫ ∞

0

(t ∧ u)r M(dv, du, dr)

(20)
To see this, use the fact that the characteristic function of a Poisson integral
satisfies

ln E exp
{

iθ

∫
f(x)N(dx)

}
=

∫
(ei f(x) − 1)n(dx)

and observe that

log E exp
{ n∑

j=1

θj

∫ 0

−∞

∫ ∞

0

∫ ∞

0

(tj ∧ (s + u)+)r N(ds, du, dr)
}

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

(ei
∑ n

j=1 θj(tj∧(u−s)+)r − 1)λds FU (du)FR(dr)

= λ

∫ ∞

0

FU (du)
∫ u

0

ds

∫ ∞

0

FR(dr)(ei
∑ n

j=1 θj(tj∧s)r − 1)

= λ

∫ ∞

0

ds

∫ ∞

s

FU (du)
∫ ∞

0

FR(dr)(ei
∑ n

j=1 θj(tj∧s)r − 1)

= λν

∫ ∞

0

FŨ (ds)
∫ ∞

0

FR(dr)(ei
∑ n

j=1 θj(tj∧s)r − 1)

= log E exp
{ n∑

j=1

θj

∫ 1

0

∫ ∞

0

∫ ∞

0

(tj ∧ s)r M(dv, ds, dr)
}

,
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where M has intensity measure m(dv, ds, dr). Therefore we can express W ∗
λ (t) as

W ∗
λ (t) d=

∫ 1

0

∫ ∞

0

∫ ∞

0

(t ∧ u)r M(dv, du, dr)

+
∫ t

0

∫ ∞

0

∫ ∞

0

((t − s) ∧ u)r N(ds, du, dr).

The expected number of sessions contributing to the first term in this alternative
representation is λν and we have the following interpretation. A random number
of sessions, Poisson distributed with mean λν, arrive at time s = 0. They last
independently over time durations Ũ and transmit independently at rate R, hence
a Poisson event at (v, u, r) contributes the workload (t∧u)r to W ∗

λ (t). The number
v ∈ [0, 1] assigned to each session is an auxiliary part of the construction for
generating the correct number of initial sessions at time s = 0, and has no physical
meaning in itself.

With M̃(dv, du, dr) = M(dv, du, dr) − m(dv, du, dr), this can also be ex-
pressed as

W ∗
λ (t) − λνE(R)t d=

∫ 1

0

∫ ∞

0

∫ ∞

0

(t ∧ u)r M̃(dv, du, dr)

+
∫ ∞

0

∫ ∞

0

∫ ∞

0

((t − s)+ ∧ u)r Ñ(ds, du, dr). (21)

Similarly, the compound Poisson arrival workload process (11) has the rep-
resentation

W ∗
�,λ(t) d= λνE(R)t +

∫ 1

0

∫ ∞

0

∫

D

ξ(t ∧ u) M̃�(dv, du, dξ)

+
∫ t

0

∫ ∞

0

∫

D

ξ((t − s) ∧ u) Ñ�(ds, du, dξ), (22)

where M̃�(dv, du, dξ) = M�(dv, du, dξ) − λνdv FŨ (du)µ(dξ).

2. Scaling behavior of the workload process

We are interested in the various limit processes that arise when the speed of
time increases in proportion to the intensity of traffic sessions. Heuristically, these
approximation results describe the random variation in traffic patterns that cor-
respond to larger and larger volumes of Internet traffic being transmitted over
networks of higher and higher capacity.

The traffic fluctuations in an infinite source Poisson system are expressed
by the workload process centered around its average value, W ∗

λ (t) − λνE(R)t. To
balance the increasing session intensity λ, we will speed up time by a factor a and
simultaneously normalize the size using a factor b. It follows from (8) and (18)
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that the scaled continuous flow workload process has the form

1
b
(W ∗

λ (at) − λνE(R)at) =
1
b

∫ at

0

(Wλ(y) − λνE(R)) dy (23)

=
1
b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kat(s, u)r Ñ(ds, du, dr), t ≥ 0.

Similarly, the scaled compound Poisson workload process is given by

1
b
(W ∗

�,λ(at) − λatνE(R)) =
1
b

∫ ∞

−∞

∫ ∞

0

∫

D

ξ(Kat(s, u))Ñ�(ds, du, dξ). (24)

We are going to study both as λ tends to infinity with a and b appropriately chosen
functions of λ, which also tend to infinity. Observe that there are several ways to
change variables in the integrals. We will use

1
b
(W ∗

λ (at) − λatνE(R))

d=
1
b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kat(as, u)r (N(ads, du, dr) − λads FU (du)FR(dr)) (25)

d=
a

b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r (N(ads, adu, dr) − λads FU (adu)FR(dr)) (26)

d=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r
(
N(ads, adu,

b

a
dr) − λads FU (adu)FR(

b

a
dr)

)
, (27)

and other variations. We used here the scaling property

Kat(as, au) = aKt(s, u). (28)

Thus, turning to the compound Poisson arrival model (24) we obtain, e.g.,

1
b
(W ∗

�,λ(at) − λatνE(R)) d=
1
b

∫ ∞

−∞

∫ ∞

0

∫

D

ξ(aKt(s, u))Ñ�(ads, adu, dξ)

instead of (26). An interesting feature of our approximation results is that the
choice of either continuous flow rate or compound Poisson packet generation dur-
ing sessions does affect the limit process. In fact, we will see that for the compound
Poisson model there is an additional averaging effect that takes place during ses-
sions, which changes the asymptotic behavior relative to that of the continuous
flow model. This means that the influence of heavy-tailed distributions acting over
long time scales alone does not dictate limit results. Rather, the local workload
structure over short time scales has an impact on the asymptotics.

Remark 5. To simplify the notation the following useful convention will be used
in the sequel: the presence of the term N(dx) − n(dx) will imply, in particular,
that N(dx) is a Poisson random measure with intensity measure n(dx).
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2.1. Gaussian and stable random measures and processes

We will be using Gaussian and α-stable random measures M(dx) with control
measure m(dx) defined for x ∈ Rd. The measure M has the following properties. If
A1, . . . , An are disjoint Borel sets in Rd, then M(A1), . . . , M(An) are independent
random variables. If α = 2 (Gaussian case), then for any Borel set A in Rd, the
random variable M(A) is normal with mean 0 and variance m(A). If α < 2, then

σαM(A) d=
∫

A

∫ ∞

0

r
(
N(dv, dr) − m(dv) r−(1+α)dr

)
(29)

where

σα =
(

2Γ(2 − α)
α(α − 1)

(− cosπα/2)
)1/α

, (30)

and thus M(A) has an α-stable distribution which is totally skewed to the right
(this is because r > 0).

The characteristic function of M(A) is given by

ln E(eiθM(A)) = −m(A)|θ|αkα(θ), (31)

where
kα(θ) = 1 − i(sign θ) tan πα/2 (32)

(For more details, see Samorodnitsky and Taqqu (1994), pages 156, 119 and 5.)
We will write M2 to denote a Gaussian random measure and Mα to denote an
α-stable random measure with α < 2. The index α will be either γ or δ.

We will also consider a Lévy-stable process Λα(t) with index 1 < α < 2
totally skewed to the right (here again α will be either γ or δ). This is a process
with independent increments which can be represented as

Λα(t) = σα

∫ t

0

Mα(ds) d=
∫ t

0

∫ ∞

0

r(N(ds, dr) − ds r−(1+α)dr), (33)

where σα is given by (30) and M(ds) is an α-stable random measure with control
measure ds and N(ds, dr) is a Poisson random measure with intensity measure
ds r−1−αdr (see Samorodnitsky and Taqqu, Theorem 3.12.2).

We will also use (standard) fractional Brownian motion BH(t), which is a
Gaussian, mean 0 process, with stationary increments and covariance

EBH(t1)BH(t2) =
1
2

{|t1|2H + |t2|2H − |t1 − t2|2H
}

,

where 0 < H < 1. Fractional Brownian motion is H-self-similar, that is, for any
a > 0, the processes BH(at), t ≥ 0 and aHBH(t), t ≥ 0 have identical finite-
dimensional distributions. Fractional Brownian motion reduces to Brownian mo-
tion when H = 1

2 .

2.2. Results on fast, intermediate, and slow connection rates

When we let the session intensity λ increase to infinity and simultaneously scale
time, letting a tend to infinity, and scale size, letting b tend to infinity, it is possible
to obtain several different limit processes in (23) and (24). A crucial feature of these
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limiting schemes is the relative speed at which λ and a increase. Namely, in most
cases it is the asymptotic behavior of the ratio

λ/aγ−1

which determines the proper normalizing sequence b and the limit process. More
precisely, we will see that this is the case for the continuous flow model in the
situation 1 < γ < δ ≤ 2, when the durations length has a heavier tail than that
of the rewards, and for the compound Poisson model for any set of parameters
1 < γ, δ ≤ 2 except γ = δ = 2. To understand why the ratio λ/aγ−1 enters in
the picture, consider the representations (21) and (22) of the workload using the
equilibrium session lengths Ũ . At time zero, or at any fixed time point, there is a
Poisson number of independent sessions of mean λν. The remaining length of each
session has the distribution Ũ . Hence, letting M be a Poisson random measure
with mean λν, we have

#(λ, a) = number of initial sessions still active at time a
d=

M∑

i=1

1{Ũi>a}.

For a given choice of sequences λ and a, #(λ, a) measures the degree to which
very long sessions are present and contribute to the total workload. The expected
value of the random variable #(λ, a) is

E(#(λ, a)) = λνP (Ũ > a) ∼ 1
γ(γ − 1)

λ

aγ−1
, (34)

in view of (19). This makes it natural to distinguish three limit regimes based on
whether E(#(λ, a)) tends to a finite and positive constant, tends to infinity, or
vanishes to zero as λ and a goes to infinity. We will introduce a parameter c to
quantify the relative speed in the scaling of time and size, and refer to the three
cases as:

intermediate connection rate: λ/aγ−1 → cγ−1, 0 < c < ∞,

fast connection rate: λ/aγ−1 → ∞,

slow connection rate: λ/aγ−1 → 0.

2.2.1. Intermediate connection rate (ICR). We consider the asymptotics

E(#(λ, a)) ∼ const, λ, a → ∞,

in which case the number of very long sessions stays bounded. In this situation
two kinds of summation schemes influence the workload. First, the aggregation of
traffic corresponding to a large value of λ consists of many overlapping sessions,
all active at the same fixed time. Secondly, for large a the accumulated traffic
in the interval [0, at] involves many sessions that were active during some period
in the past. To clarify this structure using heuristic arguments before stating the
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precise results, let us consider the case E(R2) < ∞, take c = 1, and recall the
representation (18) of W ∗

λ (t). We have

1
a
(W ∗

λ (at) − λνE(R)at) =
1
a

∫ at

0

(Wλ(y) − λνE(R)) dy

∼ 1
a(3−γ)/2

∫ at

0

Wλ(y) − λνE(R)√
λ

dy,

since λa3−γ ∼ a2. For each y, Wλ(y) has a compound Poisson distribution with
finite variance and hence for large λ the distribution of the integrand (Wλ(y) −
λνE(R))/

√
λ is approximately Gaussian. The subsequent integration over y affects

the covariance structure but preserves the Gaussian distribution. On the other
hand, the following argument indicates that we should expect a stable distribution
in the limit. Suppose for convenience that λ is an integer and decompose Wλ =∑λ

i=1 W i
1 as a sum of i.i.d. components W i

1 , 1 ≤ i ≤ λ. Then

1
a
(W ∗

λ (at) − λνE(R)at) =
1
a

∫ at

0

λ∑

i=1

(W i
1(y) − νE(R)) dy

∼ 1
λ1/γ

λ∑

i=1

1
a1/γ

( ∫ at

0

W i
1(y) dy − νE(R)at

)
,

where we use λa ∼ aγ . The integral process
∫ t

0 W i
1(y) dy, t ≥ 0, that appears in

the last expression is increasing with expected value νt, but since the integrand
W i

1(y) typically stays constant for intervals of length U and the distribution of U
has infinite variance, there is no Gaussian central limit law for the corresponding
centered process. Instead, we note that

∫ t

0
W i

1(y) dy, after centering and scaling
by a as above, should behave as a renewal process having interrenewal times with
the heavy-tailed distribution FU of index γ. For such processes it is known that
the limit distribution as a → ∞ is stable with stable index γ. The additional
summation over i preserves the stable distribution. For a more detailed discussion
in a similar case (of inverse Lévy processes), see Kaj and Martin-Löf (2004).

Turning now to the statement of our first result, it turns out that the limit
processes under ICR scaling are neither Gaussian nor stable. In fact new limit
processes arise. A further interesting consequence is that the limits are different
for the continuous flow rate model and for the compound Poisson model.

Theorem 1. Consider a pair of parameters 1 < γ < 2 and 1 < δ ≤ 2, fix an
arbitrary constant c, 0 < c < ∞, and assume

λ → ∞, a → ∞,
λ

aγ−1
→ cγ−1.

Take b = a as size factor.
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(i) If 1 < γ < δ ≤ 2, the continuous flow rate model, scaled and normalized as
in (23), has the limit

1
a
(W ∗

λ (at) − λνE(R)at) ⇒ c Yγ,R(t/c),

where

Yγ,R(t) =
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r
(
N(ds, du, dr) − ds u−(1+γ)du FR(dr)

)

=
∫ ∞

−∞

∫ ∞

0

Kt(s, u)
( ∫ ∞

0

r N(ds, du, dr) − E(R) ds u−(1+γ)du
)
. (35)

In the special case of fixed rewards, R ≡ 1, the limit process is

Yγ(t) =
∫ ∞

−∞

∫ ∞

0

Kt(s, u)
(
N(ds, du) − ds u−(1+γ)du

)
. (36)

(ii) The compound Poisson workload model in (24) has the limit process
1
a
(W ∗

�,λ(at) − λνE(R)at) ⇒ E(R) c Yγ(t/c),

where Yγ is defined in (36).

Convention. The convergence is in the sense of the finite-dimensional distributions
in this theorem and in the following one. Weak convergence in function space will
be established in Section 4.

Remark 6. The limit process Yγ,R is not self-similar, because N does not have the
scaling properties that a Gaussian or a stable process has. However, if we assume
that the reward distribution FR(dr) has finite variance then

Var(Yγ,R(t)) = E(R2)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)2 ds u−(1+γ)du

= E(R2)σ2 t2H , H =
3 − γ

2
,

where σ2 is given in (38). Thus, in this case Yγ,R is second order self-similar with
Hurst index H .

Benassi et al. (1997) introduced local asymptotic self-similarity as another
means of generalizing the class of self-similar processes. It is shown in Gaigalas
and Kaj (2003) and with a proof more adapted to the present setting in Gaigalas
(2006), that the process Yγ is locally asymptotically self-similar with index H and
with fractional Brownian motion as tangent process, in the sense that

{
Yγ(t + λu) − Yγ(t)

λH
, u ∈ R

}
⇒ {BH(u), u ∈ R}, as λ → 0.

Benassi et al. (2002) defined a stochastic process X(t) to be asymptotically self-
similar at infinity with index H if there exists a process R(t) such that

λ−HX(λt) → R(t), as λ → ∞.
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The intermediate limit process Yγ(t) is asymptotically self-similar at infinity with
index H = 1/γ and asymptotic process R(t) given by an γ-stable Lévy process,
totally skewed to the the right, see Gaigalas (2006).

Remark 7. The difference between the representation of W ∗
λ (t) − EW ∗

λ (t) in (8)
and that of Yγ,R(t) in (35) is that the control measure FU (du) is now replaced by
u−(1+γ) which is not a probability measure anymore.

Remark 8. The process Yγ,R will be called the Intermediate Telecom process. We
are thus able to identify the limit process in the case of general reward distribu-
tions, which has been an open problem in Pipiras et al. (2004). The special case
of fixed rewards R ≡ 1, has been solved earlier. It can be obtained by combining
results in Gaigalas (2006), Kaj (2005) and Gaigalas and Kaj (2003).

Remark 9. The limit for the compound Poisson workload model is a scaled version
of Yγ defined in (36) and, as noted in the theorem, Yγ is Yγ,R in (35) in the special
case of fixed rewards R ≡ 1.

2.2.2. Fast connection rate (FCR). In this case, a large number of very long ses-
sions contribute in the asymptotic limit of aggregating the traffic workload. Es-
sentially, we will have a summation scheme for processes as in the ordinary central
limit theorem, but with strong dependencies building up over time. For the con-
tinuous flow model the limit is Gaussian in the case of finite variance rewards and
the limit is stable if the reward distribution does not possess finite variance. For
the compound Poisson packet generation model, the limit is Gaussian whether the
rewards have finite variance or not.

Theorem 2. Let 1 < γ < 2, 1 < δ ≤ 2, and assume

λ → ∞, a → ∞,
λ

aγ−1
→ ∞. (37)

Set
b = λ1/δ a(δ+1−γ)/δ so that b/a = (λ/aγ−1)1/δ → ∞.

(i) In the case of finite variance rewards,

1 < γ < δ = 2,

so b = λ1/2a(3−γ)/2, then the limit process for (23) is the fractional Brownian
motion √

E(R2)σ BH(t)

with index

H =
3 − γ

2
∈ (1/2, 1),

where

σ2 =
∫ ∞

−∞

∫ ∞

0

K1(s, u)2 ds u−(γ+1)du =
2

γ(γ − 1)(2 − γ)(3 − γ)
. (38)
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Alternatively, the limit process can be represented as

E(R2)1/2

∫ ∞

−∞

∫ ∞

0

Kt(s, u)M2(ds, du), (39)

where Kt(s, u) is the kernel defined in (5) and M2(ds, du) is a Gaussian
random measure with control measure

ds u−(1+γ)du.

(ii) If the reward distribution has infinite variance with a lighter tail than that of
the durations,

1 < γ < δ < 2,

then the limit of (23) is the Telecom process

Zγ,δ(t)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r
(
N(ds, du, dr) − ds u−(1+γ)du r−(1+δ)dr

)
(40)

= σδ

∫ ∞

−∞

∫ ∞

0

Kt(s, u)Mδ(ds, du), (41)

where the random measure Mδ(ds, du) is δ-stable and has the control measure

ds u−(γ+1)du.

The process Zγ,δ(t) is a δ-stable process, which is H-self-similar with

H =
δ + 1 − γ

δ
∈ (1/δ, 1).

The factor σδ is given in (30) (with α = δ).

(iii) If we replace W ∗
λ by W ∗

�,λ, then for arbitrary parameters

1 < γ < 2, 1 < δ ≤ 2,

the limit process of (24) is the fractional Brownian motion
(
E(R)σ

)
BH(t), t ≥ 0.

Remark 10. The symmetric δ-stable version of the Telecom process appeared in
Pipiras and Taqqu (2002). The Telecom process reduces to CBH(t) when δ = 2.
The easiest way to see this is to note that the random measure Mδ is Gaussian
when δ = 2 and hence the process Zγ,2 is Gaussian, has stationary increments and
is H-self-similar with H = (3 − γ)/2.

Remark 11. The kernel Kt(s, u) appears both in the representations (40) of the
Telecom process and in the representation (35) of the intermediate Telecom pro-
cess. In (40), the control measure involving r in the stable density r−(1+δ)dr and
thus the Telecom process is a δ-stable process. For the intermediate Telecom pro-
cess (35), however, the part of the control measure involving r is FR(dr) which
has finite variance in the case δ = 2 and while it has infinite variance in the case
δ < 2, the process is not necessarily stable.
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2.2.3. Slow connection rate (SCR). The remaining case SCR leads to stable Lévy
processes in the asymptotic limit. The interpretation of the scaling condition
E(#(λ, a)) → 0, λ, a → ∞, in (34) is that there are essentially no sessions that
survive the scaling whose remaining durations are so long that they could cause
long-range dependence in the limit process. Rather, the additive terms that con-
tribute to the cumulative workload are asymptotically independent and belong to
a stable domain of attraction.

The multiplicative constants appearing in the limit depend on the local traffic
structure during sessions. Again the limit process for the compound Poisson model
depends only on the expected reward E(R), which shows that this is a general
property valid for all choices of scaling.

Theorem 3. Consider the scaling regime

a → ∞,
λ

aγ−1
→ 0

or, if λ is bounded away from zero, just

λ

aγ−1
→ 0,

and take
b = (λa)1/γ so that a/b = (aγ−1/λ)1/γ → ∞.

(i) If
1 < γ < δ ≤ 2,

or, more generally, if

E(Rγ) < ∞, 1 < γ < 2

(including γ = δ with slowly varying functions such that E(Rγ) is finite),
then the limit for the continuous flow rate model (23) is

[E(Rγ)]1/γ Λγ(t),

where Λγ is a Lévy-stable process with stable index γ. The limit process can
be represented as

E(Rγ)1/γ Λγ(t)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

1{0<s<t}ur
(
N(ds, du, dr) − ds u−(1+γ)du FR(dr)

)

d= σγ

∫ ∞

−∞

∫ ∞

0

1{0<s<t}rMγ(ds, dr)

where σγ is defined in (30) (with α = γ) and Mγ(ds, dr) is γ-stable with
control measure ds FR(dr), as defined in (33).
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(ii) For any choice of parameters

1 < γ < 2, 1 < δ ≤ 2,

the compound Poisson workload model (24) has the limit

E(R) Λγ(t).

2.3. Remaining choices for the parameters γ and δ

For the continuous model we supposed earlier that 1 < γ < δ ≤ 2. We will now
consider the remaining cases

γ = δ = 2, and 1 < δ < γ ≤ 2

The first of these, γ = δ = 2, remains also for the compound Poisson model. The
second, 1 < γ < δ ≤ 2 will be applied to the continuous flow model, together
with 1 < γ = δ < 2, given that proper moments exist. The generic choice of
normalization is b = (λa)1/δ in each of the remaining cases. As λ → ∞ and a → ∞,
and with this b, the convergence results hold regardless of the limit behavior of
λ/aγ−1. Hence the distinctions FCR, ICR, SCR are now irrelevant.

Theorem 4. Set
b = (λa)1/δ (42)

and assume

λ → ∞, a → ∞ or a → ∞, b → ∞ in any arbitrary way.

(i) Assume
γ = δ = 2.

Here E(U2) < ∞, E(R2) < ∞. The continuous flow model in (23) has the
limit √

E(U2)E(R2) B(t) t ≥ 0,

and the compound Poisson model in (24) has the limit
√

E(U2)E(R)B(t) t ≥ 0,

where B(t), t ≥ 0, denotes standard Brownian motion.

(ii) Assume
1 < δ < 2,

and that either γ satisfies
δ < γ ≤ 2

or, more generally, that U satisfies

E(U δ) < ∞
(thus including γ = δ with slowly varying functions making U δ have finite
mean). The limit process for the continuous flow model is

[E(U δ)]1/δ Λδ(t), t ≥ 0,

where Λδ(t) is a Lévy stable process with index δ.
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Remark 12. For the case of fixed rewards, R = 1, higher-dimensional versions of
Theorems 1–3 have been obtained in Kaj et al. (2007). Spatial versions of the
continuous flow reward model are obtained by replacing the collection of sessions
on the real line by a family of sets {xj +ujC}j on Rd, where C is a fixed bounded
set of volume |C| = 1 and vanishing boundary |∂C| = 0. The location and size
of the sets are given by a Poisson measure N(dx, du) on Rd × R+ with intensity
λdxF (du) such that the size distribution F (du) is heavy-tailed at infinity. The
analog of the workload functional W ∗

λ is taken to be a stochastic integral

X(µ) =
∫

Rd

∫

R+
µ(x + uC)N(dx, du), µ ∈ M,

where M is a suitable subset of signed measures on Rd. Here, X(µ) represents the
configuration of mass on Rd of a Poisson germ-grain model with germs uniformly
located in space and heavy-tailed grain size. The choice d = 1, C = [0, 1] and
µt(dy) = 1{0<y<t} dy yields

µt(s + uC) =
∫

[s,s+u]

1{0<y<t} dy = Kt(s, u)

in view of (15), which shows for this example X(µt) = W ∗
λ (t).

By choosing properly the spatial scale, or equivalently, the size of the grains,
in relation to the Poisson intensity and taking a limit the fluctuations of X(µ)
again exhibit three different scaling regimes. The limiting operations are carried
out with the use of generalized random fields based on a careful choice of the space
of measures M. The results in Kaj et al. (2007) generalize the Gaussian, stable and
intermediate limits obtained here to a spatial setting and are in complete analogy
to those of Theorems 1, 2 and 3, for the case of fixed rewards.

Biermé et al. (2006, 2007), extend the Gaussian and the intermediate scaling
limit results further for an analogous model where the intensity of the size of grains
has a specified power law behavior close to zero. It turns out that for such models
one can obtain in the scaling limit, for example, the family of fractional Brownian
fields {BH(x), x ∈ Rd} with Hurst index H , 0 < H < 1. Here, BH(x), x ∈ Rd,
are zero mean Gaussian random variables such that

Cov(BH(x), BH(y)) =
1
2

(|x|2H + |y|2H − |x − y|2H
)
.

3. Proof of the theorems

The proofs in our setting provide an intuitive feeling for why the various limits
appear. We will focus on the characteristic functions of the scaled and normalized
workload process. By performing the appropriate limit operation for each choice
of limiting scheme and deriving the limiting characteristic functions, we are able
to identify the limit processes. We begin by stating characteristic functions for
the processes W ∗

λ (t) and W ∗
�,λ(t) centered at their expected values. We will then
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consider each case separately. This includes the intermediate, fast, and slow con-
nection rates when the tails of the durations are heavier than the tails of the
rewards. Further cases arise when the reward tails are heavier. We will have to
consider separately the continuous flow model and the compound Poisson model.

3.1. Characteristic functions

The formulas given in the next two lemmas, which will be used repeatedly in the
sequel, are consequences of a general property of Poisson integrals

∫
f(x)(N(dx)−

n(dx)), namely that

ln E exp
{
i

∫
f(x)(N(dx) − n(dx))

}
=

∫
(ei f(x) − 1 − if(x))n(dx),

which is well defined if
∫

(f(x)2 ∧ |f(x)|)n(dx) < ∞,

and in particular, if either
∫

f2(x)n(dx) < ∞ or
∫ |f(x)|n(dx) < ∞.

Lemma 3. The characteristic function for the finite-dimensional distributions of
the centered continuous flow workload process W ∗

λ (t) − λνE(R)t, t ≥ 0, is given
for arbitrary n ≥ 1, 0 ≤ t1 ≤ · · · ≤ tn, and real θ1, . . . , θn, by the relation

ln E exp
{
i

n∑

j=1

θj(W ∗
λ (tj) − λνE(R)tj)

}
=

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r)n(ds, du, dr),

where

h(s, u, r) = exp
{

i

n∑

j=1

θjKtj(s, u)r
}
− 1 − i

n∑

j=1

θjKtj (s, u)r (43)

and n(ds, du, dr) = λds FU (du)FR(dr) is the intensity measure defined in (1).

Lemma 4. The characteristic function for the finite-dimensional distributions of
the centered compound Poisson workload process W ∗

�,λ(t)−λνE(R)t, t ≥ 0, is given
for arbitrary n ≥ 1, 0 ≤ t1 ≤ · · · ≤ tn, and real θ1, . . . , θn, by

ln E exp
{
i

n∑

j=1

θj(W ∗
�,λ(tj) − λνE(R)tj)

}
=

∫ ∞

−∞

∫ ∞

0

g(s, u)n(ds, du),

where

n(ds, du) = λds FU (du)
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and

g(s, u) = E
(

exp
{
i

n∑

i=1

θjΞ(Ktj (s, u))
}
− 1 − i

n∑

i=1

θjΞ(Ktj (s, u))
)

= exp
{∫ ∞

0

∫ ∞

0

(
exp

{
i

n∑

j=1

θj1{w≤Ktj
(s,u)}r

}
− 1

)
dw FR(dr)

}

−1 − i

n∑

j=1

θjKtj (s, u)E(R).

Observe that the expressions for the logarithmic characteristic functions
stated in Lemmas 3 and 4 above are well defined, because the inequality

∣∣eiu − 1 − iu
∣∣ ≤ 2|u|, u ∈ R, (44)

and the relation ∫ ∞

−∞
Kt(s, u) ds = ut, (45)

which is readily derived from (15), imply
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

|h(s, u, r)|n(ds, du, dr)

≤ 2
n∑

i=1

|θj |
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r n(ds, du, dr) = 2
n∑

i=1

|θj |λνE(R)t

and ∫ ∞

−∞

∫ ∞

0

|g(s, u)|n(ds, du)

≤ 2
n∑

i=1

|θj |E(R)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)n(ds, du) = 2
n∑

i=1

|θj |λνE(R)t.

More refined estimates will be needed to carry out the various scaling limit oper-
ations.

3.2. Proof of Theorem 1 (ICR)

We can lump together the finite and infinite variance cases but we will need to
distinguish between the continuous flow model and the compound Poisson model.

3.2.1. The continuous flow model. Applying (26) with b = a and Lemma 3, we
have

ln E exp
{
i

n∑

j=1

θj(W ∗
λ (atj) − λνE(R)atj)/a

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r)EN(ads, adu, dr), (46)
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where h is defined in (43). Under the ICR assumption λ, a → ∞ with λ/aγ−1 →
cγ−1, the scaled intensity measure has the asymptotic form

EN(ads, adu, dr) = λads FU (adu)FR(dr) ∼ cγ−1 dsu−(1+γ)du FR(dr).

The logarithmic characteristic function of the process Yγ,R defined by the Poisson
integral expression (35) is given by

ln E exp
{

i

n∑

j=1

θj Yγ,R(tj)
}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r) dsu−(1+γ)du FR(dr),

in complete analogy to the result of Lemma 3. Thus,

ln E exp
{

i

n∑

j=1

θj cYγ,R(tj/c)
}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(cs, cu, r) dsu−(1+γ)du FR(dr) (47)

= cγ−1

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r) dsu−(1+γ)du FR(dr), (48)

where (47) follows from (28) expressed as cKt/c(s, u) = Kt(cu, cs). Hence to prove
Theorem 1 i), it is enough to verify that (46) converges to (48) under the ICR
scaling.

Integration by parts in the variable u shows that the right-hand side of (46)
equals ∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∂

∂u
h(s, u, r) ds λaP (U > au)du FR(dr), (49)

where U , which has the distribution FU (du), satisfies by assumption

λaP (U > au) → cγ−1u−γ/γ.

If we are allowed to take this limit inside the integral in (49), then another in-
tegration by parts will revert the resulting integral into the form (48) and hence
conclude the proof. To justify the last steps it remains to demonstrate that the
integrand in (49) is appropriately dominated. The proofs of the required estimates
simplify somewhat if we first make the change of variable s → s + u. Hence we
agree to consider instead of (49) the integral

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∂

∂u
h(s − u, u, r) ds λaP (U > au)du FR(dr). (50)

(Note that the function in the integrand is the derivative of h with respect to its
second argument u, evaluated in the point (s − u, u, r).) We will use the Potter
bounds, see Bingham et al. (1987). Since the function P (U > u) is regularly
varying at u → ∞ with tail behavior u−γ , the Potter bound yields for any ε > 0
a number a0 > 0 such that

P (U > au)
P (U > a)

≤ 2 u−γ max(u−ε, uε)
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for a ≥ a0 and au ≥ a0. Moreover, since λaP (U > a) → cγ−1/γ, using possibly a
larger a0 we have

λaP (U > au) ≤ 2(cγ−1/γ + ε)u−γ max(u−ε, uε), a ≥ a0, au ≥ a0. (51)

Since ∂
∂uKt(s, u) = 1{0<s+u<t} by (17),

∂

∂u
h(s − u, u, r) = i

(
exp

{
i

n∑

j=1

θjKtj (s − u, u)r
}
− 1

) n∑

k=1

θk1{0<s<tk}r.

For any 0 ≤ κ ≤ 1, we have |eix − 1| ≤ 21−κ|x|κ and (
∑n

i=1 |xi|)κ ≤ ∑n
i=1 |xi|κ.

Since (16) implies 0 ≤ Kt(s, u) ≤ u,
∣∣∣ exp

{
i

n∑

j=1

θjKtj (s, u)r
}
− 1

∣∣∣ ≤
(
21−κ

n∑

j=1

|θj |κuκ rκ
)
∧ 2 (52)

and so
∣∣∣

∂

∂u
h(s − u, u, r)

∣∣∣ ≤ 2 min
( n∑

j=1

|θj |κuκrκ, 1
) n∑

k=1

|θk|1{0<s<tk} r. (53)

We may assume that t1 > 0 and for convenience that a ≥ a0 is so large that
a0/a ≤ t1. Relations (51) and (53) now imply that the integrand in (49) is bounded
on {u ≥ a0/a},

∣∣∣
∂

∂u
h(s, u, r)

∣∣∣λaP (U > au) 1{u≥a0/a} ≤ B1(s, u, r),

where

B1(s, u, r) = Cε,κu−γ max(u−ε, uε)min
( n∑

j=1

|θj |κuκrκ, 1
) n∑

k=1

|θk|1{0<s<tk} r

and
Cε,κ = 4(cγ−1/γ + ε).

Now
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

B1(s, u, r) dsduFR(dr)

≤ Cε,κ

n∑

k=1

|θk|tk
(
E(R1+κ)

∫ t1

0

n∑

j=1

|θj |κuκ−γ max(u−ε, uε) du

+E(R)
∫ ∞

t1

u−γ max(u−ε, uε) du
)

Since 1 < γ < δ ≤ 2 we may choose ε and κ such that

1 + ε < γ, γ + ε < 1 + κ < δ.

Then E(R1+κ) < ∞ and the du-integrals are finite.
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Next we must find a dominating function which applies to 0 < u ≤ a0/a ≤ 1.
By (53),

∣∣∣
∂

∂u
h(s − u, u, r)

∣∣∣ ≤ 2
n∑

j=1

|θj |κ
n∑

k=1

|θk|1{0<s<tk} uκr1+κ.

Fix ε > 0. Using

uκ ≤ (a0/a)γ−1+εu1+κ−γ−ε, u ≤ a0/a,

it follows from Markov’s inequality,

λaP (U > au) ≤ λu−1E(U),

that
uκλaP (U > au) ≤ aγ−1+ε

0 ν uκ−γ−ελ/aγ−1+ε.

Recall that the general scaling assumption for ICR is λLU (a)/aγ−1 → cγ−1, where
LU is a slowly varying function related to the asymptotic form of the duration U .
By a general property of slowly varying functions, a−ε ≤ L(a) for a sufficiently
large. Hence we end up with

∣∣∣
∂

∂u
h(s − u, u, r)

∣∣∣λaP (U > au) 1{u≤a0/a} ≤ B2(s, u, r),

where

B2(s, u, r) = Cε,κ

n∑

k=1

|θk|1{0<s<tk} uκ−γ−εr1+κ1{0<u≤1}

and

Cε,κ = 2aγ−1+ε
0 ν(cγ−1 + ε)

n∑

j=1

|θj |κ.

The bound B2 is integrable with respect to ds du FR(dr) for γ + ε < 1 + κ < δ.
Since ε is arbitrary, this allows us to apply the dominated convergence theorem
and complete the proof of part i) of Theorem 1.

3.2.2. The compound Poisson workload model. We turn to part ii) of Theorem 1.
By Lemma 4,

ln E exp
{
i

n∑

j=1

θj(W ∗
�,λ(atj) − λνE(R)atj)/a

}
=

∫ ∞

−∞

∫ ∞

0

ga(s, u)n(ads, adu),

where

ga(s, u) = exp
{∫ ∞

0

∫ ∞

0

a
(

exp
{
i

n∑

j=1

θj1{w≤Ktj
(s,u)}r/a

}
− 1

)
dwFR(dr)

}

−1 − i

n∑

j=1

θjKtj(s, u)E(R)
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after making the change of variables w → aw, s → as, u → au and using (28).
Since

ga(s, u) ∼ exp
{
i

n∑

j=1

θjKtj (s, u)E(R)
}
− 1 − i

n∑

j=1

θjKtj (s, u)E(R), a → ∞,

we can complete the proof in much the same way as in the previous part i), noticing
that this case is in fact simpler in the sense that only the expected reward E(R)
and not the full distribution FR(dr) enters the limiting characteristic function.
Since, as a → ∞,

n(ads, adu) = λads FU (adu) ∼ cγ−1 ds u−(γ+1)du,

the result in this case is∫ ∞

−∞

∫ ∞

0

ga(s, u)n(ads, adu)

→ cγ−1

∫ ∞

−∞

∫ ∞

0

(
exp

{
i

n∑

j=1

θjKtj (s, u)E(R)
}

−1 − i

n∑

j=1

θjKtj (s, u)E(R)
)

ds u−(γ+1)du

=
∫ ∞

−∞

∫ ∞

0

(
exp

{
i

n∑

j=1

θjcKtj/c(s, u)E(R)
}

−1 − i
n∑

j=1

θjcKtj/c(s, u)E(R)
)

ds u−(γ+1)du

= ln E exp
{

i

n∑

j=1

θj cYγ(tj/c)E(R)
}
,

where we used (28) and where the process Yγ is defined in (36).

3.3. Proof of Theorem 2 (FCR)

In the asymptotic regime of fast connection rate and for the continuous flow model
it is necessary to study the cases δ = 2 and δ < 2 separately.

3.3.1. The continuous flow model, finite variance rewards. We start with the case
δ = 2 of finite second moment rewards and we use representation (26) of the
workload process, to avoid scaling in the variable r. Observe first that

EN(ads, adu, dr) = λads FU (adu)FR(dr)
∼ λaa−γds u−γ−1du FR(dr)

=
(

b

a

)2

ds u−γ−1du FR(dr).



412 I. Kaj and M.S. Taqqu

Hence, setting ζ = b/a, by (26) and Lemma 3,

ln E exp
{
i

n∑

j=1

θj(W ∗
λ (atj) − λνE(R)atj)/b

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, ζ−1r)EN(ads, adu, dr)

∼
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, ζ−1r) ζ2 ds u−(γ+1)du FR(dr).

To justify taking the limit inside of the integral a similar argument applies as in
the proof of Theorem 1. The task is to dominate the integrand in

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∂

∂u
h(s − u, u, ζ−1r)λaP (U > au) ds du FR(dr), (54)

just as we did earlier for ICR in (50). Because of the finite variance condition
E(R2) < ∞, this case is simpler and we can use (53) with κ = 1. Potter’s theorem
and the Markov inequality apply again to obtain bounds for the tail probability
P (U > au). The resulting estimates together justify using the dominated conver-
gence theorem. Hence the Taylor expansion

h(s, u, ζ−1r) = −ζ−2 1
2

( n∑

j=1

θjKtj(s, u)r
)2

+ o(ζ−2), ζ → ∞,

shows that

ln E exp
{
i

n∑

j=1

θj(W ∗
λ (atj) − λνE(R)atj)/b

}

→ −1
2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

( n∑

j=1

θjKtj (s, u)r
)2

ds u−(γ+1)du FR(dr)

= −1
2
E(R2)

n∑

i=1

n∑

j=1

θiθj

∫ ∞

−∞

∫ ∞

0

Kti(s, u)Ktj (s, u) ds u−γ−1du.

One has
∫ ∞

−∞

∫ ∞

0

Kti(s, u)Ktj (s, u) ds u−γ−1du =
σ2

2
(t2H

i + t2H
j − |ti − tj |2H),

where H = (3− γ)/2 and σ is given by (38), and therefore the limit process is the
fractional Brownian motion

E(R2)1/2 σ BH(t).

An alternative way to see that the limit is fractional Brownian motion is to observe
that the process (39) is Gaussian, H-self-similar and has stationary increments.
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3.3.2. Continuous flow model, infinite variance rewards (δ < 2). In the case 1 <
γ < δ < 2 of infinite variance rewards, we have FR(dr) ∼ r−δ−1 dr as r → ∞.
Lemma 3 and the scaling representation (27) yield

ln E exp
{
i

n∑

j=1

θj(W ∗
λ (atj) − λνE(R)atj)/b

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r)EN(ads, adu, (b/a)dr)

where h is defined in (43). Because of the choice of the normalization factor b,

EN(ads, adu, (b/a)dr) = λads FU (adu)FR((b/a)dr)

∼ ds u−γ−1du r−δ−1dr,
b

a
→ ∞.

We need to verify that the limiting log-characteristic function is given by
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r) ds u−γ−1du r−δ−1dr,

which is the logarithm of the characteristic function of the Telecom process as
defined in (40). In view of (29) this also yields the representation (41). The cor-
responding δ-stable form of the characteristic function is obtained by integrating
over r (Samorodnitsky and Taqqu (1994), Exercise 3.24):

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r) ds u−γ−1du r−δ−1dr

= −1
2
(σδ)δ

∫ ∞

−∞

∫ ∞

0

∣∣∣
n∑

j=1

θjKtj (s, u)
∣∣∣
δ

kδ

( n∑

j=1

θjKtj (s, u)
)

ds u−γ−1du,

where σδ is given by (30) and kδ(θ) by (32), with α = δ.
To establish the limit result we fix ε > 0 and split the integral in three parts,

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r)(λads FU (adu)FR((b/a)dr)

−ds u−γ−1du r−δ−1dr) = I1
ε + I2

ε + I3
ε ,

corresponding to the three domains of integration A1
ε = {u > ε, r > ε}, A2

ε = {u <
ε < r} and A3

ε = {r < ε}, not involving the integration over s.
Writing

µλ(du, dr) = λa uFU (adu) rFR((b/a)dr),

µ(du, dr) = u−γdu r−δdr,

and

H(u, r) =
1
ur

∫ ∞

−∞
h(s, u, r) ds,
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we have

I1
ε =

∫ ∞

ε

∫ ∞

ε

H(u, r)(µλ(du, dr) − µ(du, dr)).

Here, |H(u, r)| ≤ 2
∑n

j=1 θjtj < ∞ in view of (44) and (45). It follows similarly
that H(u, r) is jointly continuous in A1

ε . Since
∫ ∫

A1
ε

µλ(du, dr) < ∞,

∫ ∫

A1
ε

µ(du, dr) < ∞,

and the measure µλ converges weakly to µ, we obtain I1
ε → 0 by weak convergence.

We now consider I2
ε . Using the more general inequality |eix − 1 − ix| ≤

cκ |x|1+κ where cκ is a constant and κ ∈ [0, 1], we obtain
∣∣∣
∫ ∞

−∞

∫ ε

0

∫ ∞

ε

h(s, u, r) ds u−γ−1du r−δ−1dr
∣∣∣

≤ cκ2κ
n∑

j=1

|θj |1+κ

∫ ∞

ε

rκ−δ dr

∫ ∞

−∞

∫ ε

0

Ktj (s, u)1+κds u−γ−1du. (55)

Using (16) in the form 0 ≤ Kt(s, u) ≤ u together with (45) we may continue with
∫ ∞

−∞
Ktj (s, u)1+κ ds ≤ uκ

∫ ∞

−∞
Ktj (s, u) ds = u1+κtj ,

and then compute the remaining integrals on the right-hand side of (55). Under
the assumption γ < 1 + κ < δ, this yields a constant c′κ such that

∣∣∣
∫ ∞

−∞

∫ ε

0

∫ ∞

ε

h(s, u, r) ds u−γ−1du r−δ−1dr
∣∣∣ ≤ c′κε2(1+κ)−γ−δ.

Similarly,
∣∣∣
∫ ∞

−∞

∫ ε

0

∫ ∞

ε

h(s, u, r)λads FU (adu)FR((b/a)dr)
∣∣∣

≤ dκλa

∫ ∞

ε

r1+κ FR((b/a)dr)
∫ ε

0

u1+κ FU (adu)

for a suitable constant dκ. By the properties of regularly varying functions, we
have

(b/a)δ

∫ ∞

ε

r1+κ FR((b/a)dr) →
∫ ∞

ε

rκ−δ dr, b/a → ∞
if 1 + κ < δ, and

aγ

∫ ε

0

u1+κ FU (adu) →
∫ ε

0

uκ−γ du, a → ∞

if γ < 1 + κ. Hence we can find d′κ such that
∣∣∣
∫ ∞

−∞

∫ ε

0

∫ ∞

ε

h(s, u, r)λads FU (adu)FR((b/a)dr)
∣∣∣

≤ d′κε2(1+κ)−γ−δ, γ < 1 + κ < δ.
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By taking in addition κ such that (γ + δ)/2 < 1 + κ < δ this shows

I2
ε ≤ (c′κ + d′κ) ε2(1+κ)−γ−δ → 0 ε → 0.

Finally,
∣∣∣
∫ ∞

−∞

∫ ∞

0

∫ ε

0

h(s, u, r) ds u−γ−1du r−δ−1dr
∣∣∣

≤ c2

n∑

i,j=1

θiθj

∫ ∞

−∞

∫ ∞

0

Kti(s, u)Ktj (s, u) ds u−γ−1du

∫ ε

0

r1−δ dr.

Since the dsdu-integral is the finite covariance function Cov(BH(ti), BH(tj)) of
fractional Brownian motion with H = (3 − γ)/2, the right-hand side takes the
form const ε2−δ → 0, ε → 0. Similarly, for λ and a sufficiently large, we obtain

∣∣∣
∫ ∞

−∞

∫ ∞

0

∫ ε

0

h(s, u, r)λads FU (adu)FR((b/a)dr)
∣∣∣ ≤ const ε2−δ.

Thus I3
ε → 0 as ε → 0, which concludes the proof of the desired convergence of

characteristic functions for this case.

3.3.3. The compound Poisson model. For the compound Poisson model the limit
process is the same for all parameters in the range 1 < γ < 2, 1 < δ ≤ 2. By
Lemma 4 and (28),

ln E exp
{
i
1
b

n∑

j=1

θj(W ∗
�,λ(atj) − λνE(R)atj)

}
=

∫ ∞

−∞

∫ ∞

0

ga,b(s, u)λads FU (adu),

where

ga,b(s, u) = exp
{ ∫ ∞

0

∫ ∞

0

(
exp

{
i

n∑

j=1

θj1{w≤aKtj
(s,u)}r/b

}
− 1

)
dw FR(dr)

}

−1 − i

n∑

j=1

θjaKtj(s, u)E(R)/b

∼ exp
{∫ ∞

0

∫ ∞

0

i
n∑

j=1

θj1{w≤Ktj
(s,u)} r(a/b) dw FR(dr)

}

−1 − i
n∑

j=1

θjaKtj(s, u)E(R)/b

= exp
{
i

n∑

j=1

θjKtj (s, u)E(R)(a/b)
}
− 1 − i

n∑

j=1

θjKtj(s, u)E(R)(a/b).
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Hence, by Taylor expansion as a/b → 0, the log-characteristic function converges
to

−1
2

∫ ∞

−∞

∫ ∞

0

( n∑

j=1

θjKtj (s, u)E(R)
)2

ds u−γ−1du

= −1
2
E(R)2

n∑

i=1

n∑

j=1

θiθj

∫ ∞

−∞

∫ ∞

0

Kti(s, u)Ktj (s, u) ds u−γ−1du.

The limit is therefore the fractional Brownian motion E(R)σ BH(t), t ≥ 0.

3.4. Proof of Theorem 3 (SCR)

The proofs in the regime of slow connection rate are similar to the previous ones.
To see which limit to expect we shall scale directly the integral representations
instead of the characteristic functions.

3.4.1. The continuous flow model. The relevant scaling for any choice of parame-
ters 1 < γ < δ ≤ 2, is

1
b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kat(s, u)r Ñ(ds, du, dr)
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

K(a/b)t(s/b, u/b)r Ñ(ds, du, dr)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

K(a/b)t((a/b)s, u)r Ñ(a ds, b du, dr),

where Ñ is defined by (6). Here, the compensator n scales as

n(a ds, b du, dr) = λads FU (b du)FR(dr)
∼ ds u−1−γdu FR(dr),

since b = (λa)1/γ → ∞. Moreover, if we write z = a/b then z → ∞ and, using
(17),

Kzt(zs, u) =
∫ u

0

1{0<y+zs<zt} dy

→
∫ u

0

1{0<s<t} dy = u1{0<s<t}, z → ∞. (56)

This suggests that the limit process is given by
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

u1{0<s<t} r
(
N(ds, du, dr) − ds u−1−γ du FR(dr)

)

d= σγ

∫ t

0

∫ ∞

0

r Mγ(ds, dr) d= E(Rγ)1/γσγ

∫ t

0

Mγ(ds) (57)

d= E(Rγ)1/γ Λγ(t), (58)
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where σγ is defined in (30) and Mγ(ds, dr) and Mγ(ds) are γ-stable random mea-
sures with control measures ds FR(dr) and ds respectively and where Λγ(t) is a
Lévy-stable process with index γ. The limit process is well defined for any distri-
bution FR with E(Rγ) < ∞, in particular if we keep our assumption on R being
regularly varying with a tail of index δ, such that γ < δ ≤ 2.

In order to establish the convergence, we begin as in (50), with the represen-
tation

ln E exp
{
i

n∑

j=1

θj(W ∗
λ (tj) − λνE(R)tj)

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∂

∂u
h(s − u, u, r)λds P (U > u)du F (dr).

Applying the scaling parameters a and b it follows that

ln E exp
{

i

n∑

j=1

θj(W ∗
λ (atj) − λνE(R)atj)/b

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

i
(

exp
{
i

n∑

j=1

θjKatj (s − u, u)r/b
}
− 1

)

×1
b

n∑

k=1

θk1{0<s<atk}r λds P (U > u)du F (dr)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

i
(

exp
{
i

n∑

j=1

θjKztj (zs − u, u)r
}
− 1

)

×
n∑

k=1

θk1{0<s<tk}r ds bγP (U > bu)du F (dr),

where z = a/b → ∞ and we have used the normalization bγ = λa valid under
SCR. Now

Kzt(zs − u, u) → u1{0<s<t}, z → ∞
and

bγP (U > bu) → 1
γuγ

, b → ∞.

This shows that the above integrand with respect to ds du FR(dr),

fλ(s, u, r) = i
(

exp
{
i

n∑

j=1

θjKztj (zs− u, u)r
}
− 1

) n∑

k=1

θk1{0<s<tk}r bγP (U > bu),

has the pointwise limit

f(s, u, r) = i
(

exp
{
i

n∑

j=1

θj1{0<s<tj} ur
}
− 1

) n∑

k=1

θk1{0<s<tk}r γ−1u−γ
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as λ and hence z and b tend to infinity. Since the logarithmic characteristic function
of the limit process in Theorem 3 i) is given by

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

f(s, u, r) ds du FR(dr),

by Lemma 3, it remains to show that |fλ(s, u, r)| is dominated by an integrable
function.

Since bγP (U > b) → 1/γ, b → ∞, it follows from the Potter bound as in (51)
that for any ε > 0 there is a number b0, such that

bγP (U > ub) ≤ 2(1/γ + ε)u−γ max(u−ε, uε) b ≥ b0, ub ≥ b0.

There is no restriction to assume t1 > 0 and that λ and thus b are so large that
b0/b ≤ t1. The task of estimating |fλ(s, u, r)| will be split accordingly in the three
cases 0 < u < b0/b, b0/b ≤ u < t1 and t1 ≤ u < ∞, where Potter’s bound is
applicable in the two latter but not in the first interval.

As in (52), for any 0 < κ < 1,

∣∣∣ exp
{

i

n∑

j=1

θjKztj (zs − u, u)r
}
− 1

∣∣∣ ≤ 2 min
( n∑

j=1

|θj |κuκrκ, 1
)
.

This shows

|fλ(s, u, r)| 1{b0/b≤u} ≤ f1(s, u, r)

where

f1(s, u, r) = 4(1/γ + ε)
n∑

k=1

|θk|1{0<s<tk} r min
( n∑

j=1

|θj |κuκrκ, 1
)
u−γ max(u−ε, uε).

This upper bound is integrable, since
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

f1(s, u, r) ds du FR(dr)

≤ 4(1/γ + ε)
n∑

k=1

|θk|tk
(
ER1+κ

∫ t1

0

u−γ+κ max(u−ε, uε) du

+E(R)
∫ ∞

t1

u−γ max(u−ε, uε) du
)

< ∞,

if we choose γ + ε < 1 + κ < δ and 1 + ε < γ.
It remains to find a dominating function for small u, that is 0 < u < b0/b.

Again by (52), for 0 < κ < 1,

|fλ(s, u, r)| ≤
n∑

j=1

|θj |κ
n∑

k=1

θk1{0<s<tk}r
1+κ uκ bγP (U > bu).
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Moreover, by Markov’s inequality

uκ bγP (U > bu) ≤ u1+κ−γ(b0/b)γ−1bγ 1
bu

E(U)

= νbγ−1
0 uκ−γ .

With the choice γ < 1 + κ < δ we obtain the integrable upper bound

|fλ(s, u, r)|1{0<u<b0/b} ≤ νb1−κ
0

n∑

j=1

|θj |κ
n∑

k=1

θk1{0<s<tk}r
1+κ uκ−γ 1{0<u≤t1}.

3.4.2. The compound Poisson workload model. For the compound Poisson model
(11) one has

1
b

∫ ∞

−∞

∫ ∞

0

∫

D

ξ(Kat(s, u)) Ñ�(ds, du, dξ)

=
∫ ∞

−∞

∫ ∞

0

∫

D

1
b
ξ(bK(a/b)t((a/b)s, u)) Ñ�(a ds, b du, dξ),

where Ñ� is defined in (14). Its compensator n� in (10) is like the compensator n
in (1) but with FR(dr) replaced by µ(dξ). Hence as a, b → ∞, we have as in (56)

n�(a ds, b du, dξ) ∼ ds u−1−γdu µ(dξ)

and, again observing that z = a/b → ∞,
∫

D

1
b
ξ(bK(a/b)t((a/b)s, u))µ(dξ)

= E(R)Kzt(zs, u)
∼ E(R)u 1{0<s<t},

by (12) and (56). The limit process is therefore

E(R)
∫ ∞

−∞

∫ ∞

0

u1{0<s<t} (N(ds, du) − ds u−(1+γ) du) d= E(R)σγ

∫ t

0

Mγ(ds)

d= E(R) Λγ(t),

the formal verification of which rests again on studying the scaled characteristic
function, this time using Lemma 4. The processes Mγ and Λγ are as in (57)
and (58).

3.5. Proof of Theorem 4
3.5.1. Finite variance durations and rewards, γ = δ = 2. Here, E(U2) < ∞ and
E(R2) < ∞. To avoid scaling U and R, we use representation (25), i.e.,

1
b
(W ∗

λ (at) − λatνE(R)) =
1
b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kat(as, u)rÑ (a ds, du, dr)
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where

EN(ads, du, dr) = λads FU (du)FR(dr)
= b2 ds FU (du)FR(dr).

By (17),

Kat(as, u) =
∫ u

0

1{0<y+as<at} dy → u1{0<s<t} as a → ∞.

Hence by Lemma 3, as b → ∞,

ln E exp
{

i

n∑

j=1

θj(W ∗
λ (atj) − λνE(R)atj)/b

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(as, u, r/b)EN(ads, du, dr)

∼ −1
2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(
b−1

n∑

j=1

θjKatj (as, u)r
)2

b2 ds FU (du)FR(dr)

∼ −1
2

∫ ∞

−∞

∫ ∞

0

FU (du)
( n∑

j=1

θj1{0<s<tj}u
)2

ds

∫ ∞

0

r2FR(dr)

= −1
2

∫ ∞

−∞

( n∑

j=1

θj1{0<s<tj}
)2

ds E(U2)E(R2),

so the limit is
E(U2)1/2 E(R2)1/2 B(t)

where B(t) is Brownian motion.
When we consider instead W�,λ and apply Lemma 4, then the resulting ex-

pression is slightly different:

ln E exp
{
i

n∑

j=1

θj(W ∗
�,λ(atj) − λνE(R)atj)/b

}

∼ −1
2
(ER)2

∫ ∞

−∞

∫ ∞

0

(
b−1

n∑

j=1

θjKatj (as, u)
)2

b2 ds FU (du)

∼ −1
2

∫ ∞

−∞

( n∑

j=1

θj1{0<s<tj}
)2

ds E(U2) (ER)2,

which corresponds to the limit process E(U2)1/2 E(R)B(t).

3.5.2. Continuous model, rewards have heavier tails than those of durations, 1 <
δ < γ ≤ 2. Take 1 < δ < 2, and assume either δ < γ ≤ 2 or that we have an
arbitrary distribution FU with E(U δ) < ∞. Recall that

b = (λa)1/δ.
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Using (17) and (42),

1
b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kat(s, u)r Ñ(ds, du, dr)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(r/b)
∫ u

0

1{0<y+s<at} dy Ñ(ds, du, dr)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∫ u

0

1{0<y/a+s<t} dy r Ñ(a ds, du, b dr)

∼
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

1{0<s<t} ur(N(ds, du, dr) − ds FU (du) r−1−δ dr)

d= σδ

∫ ∞

−∞

∫ ∞

0

1{0<s<t} uMδ(ds, du)

d= E(U δ)1/δ Λδ(t),

where Mδ(ds, du) is δ-stable with control measure m(ds, du) = ds FU (du) and
Λδ(t) is a Lévy stable process with index γ.

4. Weak convergence

This section is devoted to extending our previous results on convergence of the
finite-dimensional distributions to weak convergence in function space.

Theorem 5. For the continuous flow model, which has continuous trajectories, the
convergence holds in the sense of weak convergence of stochastic processes in the
space of continuous functions.

4.1. Proof of tightness for the continuous flow model

To prove weak convergence in the continuous case, we are going to establish the
following tightness criterion. For some α > 0 (in our case 1 < α ≤ 2) and β > 1,

E
∣∣∣
1
b
(W ∗

λ (at1) − λνE(R)at1) − 1
b
(W ∗

λ (at2) − λνE(R)at2)
∣∣∣
α

≤ const |t2 − t1|β ,

uniformly in λ, a, b. Clearly, because of stationarity of the increments, it suffices
to show for any fixed t > 0 the uniform bound

E
∣∣∣
1
b
(W ∗

λ (at) − λνE(R)at)
∣∣∣
α

≤ const tβ . (59)

Lemma 5. For the continuous flow model (2) and for any 1 < α ≤ 2, we have the
estimate

E|W ∗
λ (t) − λνE(R)t|α ≤ 2E(Rα)

∫ ∞

−∞

∫ ∞

0

Kt(s, u)α λds FU (du).



422 I. Kaj and M.S. Taqqu

Proof. Suppose first that E(R2) < ∞. Then we can take α = 2. It is readily
checked that in this case we have the equality

E(W ∗
λ (t) − λνE(R)t))2 = E(R2)

∫ ∞

−∞

∫ ∞

0

Kt(s, u)2 λds FU (du).

For 1 < α < 2 we will use the estimate

E|X |α ≤ A(α)
∫ ∞

0

(1 − |ΦX(θ)|2)θ−α−1 dθ, (60)

where

A(α) =
(∫ ∞

0

(1 − cos(x))x−α−1 dx
)−1

< ∞ (61)

and ΦX(θ) = E(eiθX) is the characteristic function of the random variable X .
This technique goes back to von Bahr and Esseen (1965), and is used in Gaigalas
(2004) in a similar context as here. With X = W ∗

λ (t) − λνE(R)t we have

ΦX(θ) = exp
{∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(eiθKt(s,u)r − 1 − iθKt(s, u)r)n(ds, du, dr)
}

and

1 − |ΦX(θ)|2 = 1 − exp
{
− 2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(1 − cos(θKt(s, u)r))n(ds, du, dr)
}
(62)

≤ 2
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(1 − cos(θKt(s, u)r))n(ds, du, dr).

Since this last relation implies
∫ ∞

0

(1 − |ΦX(θ)|2)θ−α−1 dθ

≤ 2
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

E(1 − cos(θKt(s, u)R))θ−α−1 dθ λds FU (du)

= 2E(Rα)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)α λds FU (du)/A(α),

we obtain the estimate stated in the lemma by using (60). �

We are now prepared to prove tightness under the scaling of intermediate
connection rates. Because of the assumption γ < δ we can apply Lemma 5 with α
such that γ < α < δ. If δ = 2 we may even take α = 2. In all cases E(Rα) < ∞
and, using (28) and an integration by parts,

E
∣∣∣
W ∗

λ (at) − λνE(R)at

a

∣∣∣
α

≤ 2E(Rα)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)α λads FU (adu)

= 2E(Rα)
∫ ∞

−∞

∫ ∞

0

αKt(s, u)α−11{0<s+u<t} λads P (U > au) du.



Fractional Brownian Motion and the Telecom Process 423

By using (16) and applying the Potter bound and the fact that λ/aγ−1 → cγ−1 ∈
(0,∞), it follows that the last double integral is bounded by

const
∫ ∞

−∞

∫ ∞

0

α(t ∧ u)α−1 1{0<s+u<t} max(u−γ−ε, u−γ+ε) dsdu < ∞,

where the integral is finite since we can take ε > 0 such that α− ε < γ < α. Hence
the dominated convergence theorem applies, and we have

E
∣∣∣
W ∗

λ (at) − λνE(R)at

a

∣∣∣
α

≤ 3 cγ−1 E(Rα)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)α ds u−γ−1du,

say, for sufficiently large λ and a. Using once again (16) and (45),
∫ ∞

−∞

∫ ∞

0

Kt(s, u)α ds u−γ−1du ≤
∫ ∞

0

(u ∧ t)α−1u−γt du

=
α − 1

(α − γ)(γ − 1)
t1+α−γ . (63)

Thus we have found α and β = 1 + α− γ > 1, such that (59) holds uniformly in λ
and a. This completes the proof of weak convergence for the intermediate Telecom
process in Theorem 1 i).

The proof of tightness for the case of fast connection rate scaling and finite
variance rewards, that is Theorem 2 i) where the fractional Brownian motion arises
in the limit, is very similar to that of the preceding case. When we apply (28) and
use the parameters γ < α = δ = 2 and b2 = λa3−γ under the scaling FCR, then
Lemma 5 yields the estimate

E
[(W ∗

λ (at) − λνE(R)at

b

)2]
≤ 2E(R2)

1
a3−γ

∫ ∞

−∞

∫ ∞

0

Kat(s, u)2 ds FU (du)

= 2E(R2)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)2 ds aγFU (adu).

The same arguments as above lead to the uniform bound const t3−γ , which verifies
the tightness criterion (59) with α = 2 and β = 3 − γ > 1.

The final case for the continuous flow model is tight convergence to the Tele-
com process in Theorem 2 ii). In this case we will need the following version of the
previous Lemma 5. This is simply the inequality (60), expressed in terms of (62).

Lemma 6. For the continuous flow model (2) and for any 1 < α < 2, we have the
estimate

E|W ∗
λ (t) − λνE(R)t|α ≤ A(α)

×
∫ ∞

0

(
1 − exp

{
− 2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(1 − cos(θKt(s, u)r))n(ds, du, dr)
})

θ−α−1 dθ,

with A(α) defined in (61).
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For any γ < α < δ, it follows from the lemma that

E
∣∣∣
W ∗

λ (at) − λνE(R)at

b

∣∣∣
α

≤ A(α)
∫ ∞

0

(1 − |Φλ,a,b(θ)|2) θ−α−1 dθ,

where

|Φλ,a,b(θ)|2 = exp
{
− 2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(1 − cos(θKt(s, u)r))n(ads, adu, (b/a)dr)
}

∼ exp
{
− 2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(1 − cos(θKt(s, u)r)) ds u−(1+γ)du r−(1+δ)dr
}

= exp{−2θδ Jt(γ, δ)},
where

Jt(γ, δ) = A(δ)−1

∫ ∞

−∞

∫ ∞

0

Kt(s, u)δ ds u−(1+γ)du.

By the method based on Potter bounds, used repeatedly above, it follows that
we can find a constant Cα,γ,δ (changing each time it occurs below), such that the
inequality

E
∣∣∣
W ∗

λ (at) − λνE(R)at

b

∣∣∣
α

≤ Cα,γ,δ

∫ ∞

0

(1 − exp{−2Jt(γ, δ)θδ}) θ−α−1 dθ

holds uniformly in λ, a and b. Since, for α < δ, the integral
∫ ∞
0

(1−e−2θδ

)θ−1−α dθ

is finite, and since it was shown in (63) that Jt(γ, δ) ≤ const t1+δ−γ , this yields
the final estimate

E
∣∣∣
W ∗

λ (at) − λνE(R)at

b

∣∣∣
α

≤ Cα,γ,δ Jt(γ, δ)α/δ ≤ Cα,γ,δ t(1+δ−γ)α/δ.

Now, 1 < γ < α < δ implies that (1 + δ − γ)α/δ > 1, and hence the growth
criterion (59) is fulfilled. This ends the proof of weak convergence of the scaled
infinite Poisson process towards the Telecom process in Theorem 2 ii).
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[10] M. Çağlar (2004). A long-range dependent workload model for packet data
traffic. Mathematics of Operations Research 29:1, 92–105

[11] S. Cohen and M.S. Taqqu (2003). Small and large scale behavior of the Pois-
sonized Telecom process. Methodology and Computing in Applied Probability
6, 363–379.

[12] G. Fay, F. Roueff and Ph. Soulier (2007). Estimation of the memory parameter
of the infinite-source Poisson process. Bernoulli 13, 473–491.

[13] R. Gaigalas (2006). A Poisson bridge between fractional Brownian motion
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