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Abstract. We study properties of certain limiting random systems that arise
by aggregation of spherical grains which are uniformly scattered according
to a Poisson point process in d-dimensional space. The grains have random
radius, independent and identically distributed, with a distribution which
is assumed to have a power law behavior either in zero or at infinity. The
resulting configurations of mass suitably centered and normalized are known
to have a limit distribution under scaling, which is conveniently described in a
random fields setting. The model with a singular radius distribution in zero
and hence predominantly small grains yields a negatively dependent limiting
field, whereas heavy-tailed grain size distribution generate positive dependence
in the limit. The limit fields admit various similarity properties.

1 Introduction and Model Setting

We start with a family of grains Xj +B(0, Rj) in Rd generated by a Poisson point process
(Xj, Rj)j in Rd × R+. Equivalently one can start with a Poisson random measure N on
Rd×R+ and associate with each random point (x, r) ∈ Rd×R+ the random ball of center
x and radius r. We assume that the intensity measure of N is given by dxF (dr) where F
is a σ-finite non-negative measure on R+ such that all grains have finite expected volume,
that is

∫
R+ rdF (dr) < +∞. In addition, we impose on F the following assumption of

asymptotic power law behavior, near 0 or at infinity. For β > 0 with β 6= d,

H(β) : F (dr) = f(r)dr with f(r) ∼ Cβ r−β−1 , as r → 0d−β,

where by convention 0α = 0 if α > 0 and 0α = +∞ if α < 0.
Our investigations are concerned with the asymptotic behavior of F around 0 for β < d

and at infinity for β > d. The case β < d is studied in [1], the case β > d in [4]. In [2]
we have proposed first steps towards a unified frame including and extending both the
situations of [1] and [4]. In a sense the asymptotics for the two cases are complementary
to each other and yield limit models which we consider to be generic examples of random
fields with strong negative and positive dependence.

We consider random fields defined on a space of measures. Let M1 denote the space
of signed measures µ on Rd with finite total variation ||µ||1. Since for all µ ∈M1,∫

Rd×R+

|µ(B(x, r))| dxF (dr) ≤ |B(0, 1)| ||µ||1
∫

R+

rdF (dr) < +∞,

one can introduce the generalized random field X defined on M1 as

µ 7→ 〈X, µ〉 =

∫
Rd×R+

µ(B(x, r)) N(dx, dr).
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Let us multiply the intensity measure by λ > 0 and the radii by ρ > 0. We denote
by Fρ(dr) the image measure of F (dr) by the change of scale r 7→ ρr, and consider
the associated Poisson random measure Nλ,ρ(dx, dr) with intensity measure λdxFρ(dr).
Considering λ = λ(ρ) as a function of ρ, we define on M1 the random field

Xρ(µ) =

∫
Rd×R+

µ(B(x, r)) Nλ(ρ),ρ(dx, dr).

2 Scaling Limit Results

To study the limiting behavior of the centered and normalized field (Xρ(.)−E(Xρ(.)))/n(ρ)
of this scaled random balls model when ρ → 0 or ρ → +∞. we need to impose some
assumptions on the measure µ ∈ M1. For α > 0 with α 6= d let us define the space of
measures

Mα =


{
µ ∈M1 :

∫
Rd

∫
Rd |z − z′|−(α−d)|µ|(dz)|µ|(dz′) < +∞

}
if α > d{

µ ∈M1 :
∫

Rd |z|−(α−d)|µ|(dz) < +∞ and
∫

Rd µ(dz) = 0
}

if α < d
,

where |µ| is the total variation measure of µ. Let us consider the kernel on Rd × Rd,

Kα(z, z′) =


|z − z′|−(α−d), for z 6= z′ if α > d

1
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(
|z|−(α−d) + |z′|−(α−d) − |z − z′|−(α−d)

)
if α < d

.

Then, for α ∈ (d− 1, 2d) with α 6= d, for any µ ∈ Mα, the kernel Kα is defined and non
negative |µ| × |µ| everywhere, with∫

Rd

∫
Rd

Kα(z, z′)|µ|(dz)|µ|(dz′) < +∞.

For β ∈ (d− 1, 2d) with β 6= d, we finally define the enlarged spaces

Mβ =
⋃

α∈(β,2d)

Mα if β > d, Mβ =
⋃

α∈(d−1,β)

Mα if β < d

Theorem 2.1. [1, 2, 4] Let F be a non-negative measure on R+ satisfying H(β) for
β ∈ (d− 1, 2d) with β 6= d. For all µ ∈ Mβ the following limit results holds in the sense
of convergence of finite dimensional distributions of the random functionals:

1) For all positive functions λ such that n(ρ) :=
√

λ(ρ)ρβ −→
ρ→0β−d

+∞,

Xρ(µ)− E(Xρ(µ))

n(ρ)

fdd−→
ρ→0β−d

cβ Wβ(µ)

where cβ is a positive constant and Wβ is the centered Gaussian random linear functional
on Mβ with

E (Wβ(µ)Wβ(ν)) =

∫
Rd

∫
Rd

Kβ(z, z′)µ(dz)ν(dz′).

2) When λ(ρ)ρβ → σd−β
0 as ρ → 0β−d,

Xρ(µ)− E(Xρ(µ))
fdd−→

ρ→0β−d
Jβ(µσ0),
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where µσ0 is defined by µσ0(A) = µ(σ−1
0 A) and Jβ is the centered random linear functional

Jβ(µ) =

∫
Rd

∫
R+

µ (B(x, r)) Ñβ(dx, dr), µ ∈Mβ,

where Ñβ is a compensated Poisson random measure with intensity Cβ dx r−β−1dr.

3 Similarity properties

The Gaussian limit field Wβ is self-similar in the sense that 〈Wβ, µs〉
fdd
= s(d−β)/2〈Wβ, µ〉

for all s > 0. In the terminology of “ponctual random fields” used in [2] such a field
has self-similarity index d−β

2
< 0 for β ∈ (d, 2d) and d−β

2
∈ (0, 1/2) for β ∈ (d − 1, d).

An alternative convention is applied in [4] which renders Wβ H-self-similar with index
H = (3d − β)/2d ∈ (1/2, 1) for d < β < 2d. The limit field Jβ(µ) is not self-similar.
A similarity property which applies more generally to long-range dependent processes is
discussed in [3]. The following is a version for spatial models.

Definition 3.1. A centered random field is aggregate-similar with rigidity-index ρ, if for
each m ≥ 1, letting (X(i))i≥1 be i.i.d. copies of X, we have the distributional identity

m∑
i=1

X(i)(µ)
f.d.d.
= X(µm−ρ/d)

It is straightforward to check using the characteristic functionals that Wβ and Jβ are
both aggregate-similar with rigidity index ρ = d/(β − d).

This property provides an interpretation of the scaling parameter σ0 in the second half
of the theorem. Choose σ0 so that the number σ

β/d−1
0 is an integer m. Then the limit

field has the representation

Jβ(µσ0)
f.d.d.
=

m∑
i=1

J i
γ(µ).

The guiding asymptotic quantity λρβ may be interpreted as the expected number of very
large (β > d) or very small (β < d) balls which cover a point asymptotically. Thus, the
more such extreme grains are allowed asymptotically, the larger number of i.i.d. copies of
the basic field Jβ appears in the limit.
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