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Abstract— A wireless multi-hop sensor network, in which node
positions are fixed, may fail to transmit a message over longer
distances. This could occur, for example, due to low node density
or small node transmission range. In mobile systems where
nodes are allowed to move, it is natural to expect a better
reachability, with the condition that messages are not time-
critical and longer propagation delays are permitted. In order
to understand the relation of mobility to node density and node
transmission range, we study a simple network model where
active sensors move according to independent Brownian motions.
In the one-dimensional case, the propagation of a message can
be viewed as a Brownian growth process among Poisson points
on the real line. We investigate the distributional properties of
the mobile nodes and show that the system grows linearly at a
remarkably uniform rate. For the spatial model where planar
Brownian motions transport and transfer the message to those
nodes which eventually come within transmission range of active
messenger nodes, we provide a discussion and some insight based
primarily on simulations.

I. INTRODUCTION

A number of studies have been devoted to the performance
of wireless multi-hop networks such as ad hoc, hybrid, and
sensor networks (see e.g. [5], [1], [4], [3]). A typical modeling
assumption is that the nodes are distributed according to
a spatial Poisson point process and once the locations are
decided they are fix. If each Poisson point is the center of
a closed ball of fix or independent and identically distributed
radius, we have a Poisson Boolean model. These in turn lead to
network models by interpreting the radius of the balls properly
in terms of node transmission range.

A dynamic Boolean model is studied in [10]. Dynamic
sensor networks are considered more recently in [2], where
sensors switch their radio transmitters on and of randomly,
and in [7], where the sensors move according to Brownian
motions in segments with reflecting boundaries.

The often cited catch phrase Mobility Increases the Capacity
of Wireless Networks which originates from [8] suggests that
if some extra delay is permitted then mobility of the network
nodes may improve network capacity and performance. How-
ever, there are few mathematical results available which make
precise what that really means. In this study we present some
preliminary results obtained in the case of one-dimensional
models under Brownian mobility patterns. Possibly, knowing

the rigorous behavior in such restricted cases may help us
understand the role of mobility in general networks. As an
additional part of this contribution, we discuss some topics
for more general network models based on simulations.

The basic set-up in this paper is a Poisson Boolean model
in which sensor nodes are placed according to a spatial
Poisson process and have a fixed range of transmission. We
consider idealistic communication links where a message is
instantly transmitted when two nodes are within transmission
range of each other. This approximates the situation, where
the package to be transmitted is very small and the delays
caused by processing and sending (in MAC and physical layer)
are small compared to other delay sources, like the average
time to get connected. Thus, two nodes communicate if their
locations are at most the radius of transmission apart, i.e.,
in a Poisson Boolean model two balls with radius half the
transmission range overlap. A node which receives a message
immediately starts to broadcast this message, and continue
to do so during the evolution of the system. To model the
mobility, the nodes which carry the message move along
paths of independent Brownian motions. The remaining nodes
are assumed immobile, partly to make the analysis more
transparent. This is in contrast to [10] where all nodes move
simultaneously.

To understand how a message propagates through the net-
work, consider a collection of sensors placed initially at the
points of a Poisson point process in space. Suppose that a
single sensor receives a message, that is, the sensor observes
an event or obtains information which needs to be forwarded.
This activates the sensor which starts performing a Brownian
motion. As soon as one of the neighboring sensors is within
transmission range of the messenger, the message is passed on.
The messenger continues its movement, the newly activated
node becomes mobile and performs a Brownian path indepen-
dent of that of the messenger. The mechanism repeats itself
as the message keeps reaching nodes at farther distances and
the sensors which carry the message are allowed to move as
independent Brownian motions. Hence, we expect the number
of active messenger nodes, the Brownian sensors, to increase
and the message to spread to further nodes successively in
the form of a growing tree of branching Brownian motions.



Since the sensor locations of the original Poisson point process
may be within transmission range of each other, we note
also that several nodes may become activated at the same
time epoch hence generating a tree-structure with a random
offspring distribution.

We will report preliminary analytical results restricted to
the case of zero transmission range in one dimension. In such
non-radio networks transmissions occur at time points where
a Brownian sensor hits a sensor not yet activated. In this case
all message transmission times correspond to binary branching
points. Our analysis refers to the asymptotic growth rate at
which the system is able to transfer messages between nodes.
The results rely on an application of Liggett’s ergodic theorem
for subadditive sequences together with analytic results for
the distribution of the transmission times and the locations of
the mobile nodes at transmission. In particular, we compute
the expected time required for a message to reach a finite
number of nodes. It turns out that the expected time between
any two successive message transmission events is a constant
independent of the number of Brownian sensors. Thus, the
system grows at a highly regular linear rate.

Other topics are studied via simulations. These include
the variance structure of the growth times, the change of
behavior for the corresponding radio network, and the speed of
propagation in the two-dimensional case. The remainder of the
paper is structured in three sections. First we present in some
detail model, exact results and asymptotic results for the one-
dimensional model with zero transmission range. Section three
contains a non-rigorous discussion devoted to radio networks.
In the final section we discuss a model where active sensors
move as independent Brownian motions with drift.

II. NON RADIO NETWORK

This is a version of the model where the functionality of
the nodes is restricted to their mobility. This means that active
nodes must reach the exact location of a neighboring, dormant
node before being able to carry out their task of transmitting
the message further through the system. In particular, since
Brownian sensors in two or more dimensions never visit a
single point, this means that non-radio networks only make
sense in one dimension. In contrast, with positive probability
a Brownian sensor reaches any open ball around a dormant
sensor. This corresponds to radio networks where two sensors
exchange a message at the first time the distance between them
is at most the radius of transmission.

A. Model

Consider sensors distributed on the real line according to
a Poisson process with constant intensity λ > 0. Hence, the
distances between two adjacent sensors are independent and
exponentially distributed with parameter λ (expected value
1/λ). Designate one sensor to carry a message and denote by
V1 and V2 the distances to its nearest neighbors, see Figure
1. At time t = 0 the messenger sensor starts performing
a driftless Brownian motion such that the variance of its
displacement from the initial position at time t is σ2 t. Thus,
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Fig. 1. Realization of the process until the third branching.

σ2 > 0 is a mobility parameter. The dynamics of the non-radio
version of the model is as follows. When the mobile sensor
hits for the first time one of the dormant nearest neighbors,
it forwards the message thereby activating the neighbor node,
which immediately starts to move as an independent copy of
the initial Brownian sensor. Denote by τ1 the random time
of activation of the second sensor. Assuming that the sensor
up (down) from the moving sensor was reached first, let V3

be the distance at time τ1 between this sensor and its closest
neighbor up (down). The next transmission and creation of
a third Brownian sensor occurs when one of the Brownian
sensors reaches for the first time the next dormant sensor,
either up or down. Let τ2 be the duration of the time interval
during which there are exactly two Brownian sensors. This
construction can be continued such that for each k ≥ 1, τk is
the length of time during which there are k Brownian sensors
in the system which move over an interval of length Rk+1,
where Rk = V1 + · · · + Vk has the gamma distribution with
parameters k and λ, Rk ∈ Γ(k, λ), compare Figure 1. Note
that mobile sensors are supposed to pass each other freely.
What triggers branch point k is that anyone of the k Brownian
sensors for the first time exits the corresponding interval of
length Rk+1.

Our first step towards analyzing the sequence {τk} is to
rescale the Brownian motions. Rather than an exit problem
for k Brownian motions on an interval of length Rk+1 this
yields an exit problem on the interval (0, 1). We begin with
the case k = 1. We may view the initial messenger node
as a Brownian motion which starts at the distance V1 from
the origin and which is stopped at the first time of exit from
the interval (0, R2). It is well-known that the relative starting
point X1 = V1/(V1+V2) is uniformly distributed on (0, 1) and
that X1 and R2 are independent. Let B(t) denote a standard
Brownian motion, that is, a driftless Brownian motion which
starts in zero at time t = 0 and has mobility parameter σ2 = 1.
Then

τ1 = inf{t > 0 : V1 + σB(t) /∈ (0, R2)}



d
= inf{t > 0 : X1 + B(σ2t)/R2 /∈ (0, 1)}
d
=

1

σ2
R2

2 inf{t > 0 : X1 + B̃(t) /∈ (0, 1)},

where B̃(t) = B(R2
2t)/R2 is again a standard Brownian

motion, which is independent of R2 by Brownian scaling. By
similar arguments we obtain for k ≥ 2 the representation

τk
d
=

1

σ2
R2

k+1 min
1≤i≤k

Tk,i,

where

Tk,i = inf{t > 0 : Xk,i + Bk,i(t) 6∈ (0, 1)}, 1 ≤ i ≤ k.

Here, (Xk,1, . . . , Xk,k) are the ordered relative positions in
(0, 1) obtained as initial positions when the k Brownian
sensors at time τ1 + · · · + τk−1 are scaled from the interval
of length Rk+1, and {Bk,i, 1 ≤ i ≤ k} are independent
standard Brownian motions which are also independent of
(Xk,1, . . . , Xk,k).

The time until n Brownian sensors have been activated is
given by Sn =

∑n
k=1 τk. Figure 2 shows a realization of the

growth process until time S50.
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Fig. 2. Simulation of Brownian sensor process until time S50. Initial message
at origin, λ = 1, σ = 1.

B. Exact results

We are now prepared to state our results for the distribution
of the location of the Brownian sensors at the message
transmission times, and for the expected time duration between
such transmissions.

Theorem 1: For each k ≥ 1, the locations of sensors at
the time when the kth sensor is activated is distributed on an
interval of length Rk+1 ∈ Γ(k + 1, λ), such that the relative
positions of the sensors are independent of Rk+1 and given

for k = 1 by the uniform distribution X1,1 ∈ U(0, 1), and for
k ≥ 2 in increasing order by the vector

(Xk,1, . . . , Xk,k)
d
=

{
(U(1), U(1), . . . , U(k−1)), pr. 1/2
(U(2), . . . , U(k), U(k)), pr. 1/2,

where (U(1), . . . , U(k)) is an ordered sample of k uniformly
distributed points on the unit interval. Moreover, the expected
time during which there are k active sensors is given by

Eτk =
1

σ2λ2
, k ≥ 1.

Comments on the proof. For k = 1 we have τ1 = R2
2 T/σ2,

where R2 ∈ Γ(2, λ) is independent of T = inf{t > 0 : X +
B(t) 6∈ (0, 1)}, which is a stopping time with respect to the
filtration generated by {B(t)} and X ∈ U(0, 1). By optional
stopping,

ET = E(X + B(T ))2 − EX2

= E(02 · (1 − X) + 12 · X) − EX2 = 1/6.

Since ER2
2 = 6/λ2 we obtain Eτ1 = 1/(σλ)2.

At time τ1 the distance between the two possible candidates
for being the next, third, Brownian sensor extends from length
R2 to length R3. The two already activated Brownian sensors
are at this time both located in the same point, the relative
positions being with equal probabilities either X2,1 = V3/R3

or X2,2 = (V1 + V2)/R3 (this is the option realized in
Figure 1). The variables X2,1 and X2,2 have the same beta
distributions, β(1, 2) and β(2, 1), respectively, as the order
variables U(1), U(2) generated by k = 2 independent uniform
points in (0, 1). It can be shown that the resulting relative
positions at the next branch point, where the 3rd sensor
is activated, are with equal probabilities either of the form
(U(1), U(1), U(2)) or (U(2), U(3), U(3)). The general statement
is obtained by induction.

Given the successive distributions of all (Xk,1, . . . , Xk,k),
the expected value Eτk can be obtained by an application of
Ito’s formula to the function x → |x|2 in Rk and optional
stopping of the corresponding martingale.

C. Asymptotic results

We will show that Sn, the activation time of n sensors, sat-
isfies a strong law of large numbers. Indeed, Sn/n converges
to a constant almost surely as n → ∞. However, we have
been unable to verify that the limit equals the expected value
1/(λσ)2.

Our analysis is based on a corresponding strong law of
large numbers for the one-sided rate of growth in the system.
Enumerate the sensors arbitrarily . . . , m− 1, m, m+ 1, . . . in
order of their Poisson positions on the real line. Define for
arbitrary integers m 6= n, Tm,m = 0 and

Tm,n = the activation time of sensor n if initially a
message is injected in sensor m.

We may think of these variables modeling the required time
for a message to be carried from one node to a distant other



node with the help of Brownian sensors relaying the message
step by step.

Theorem 2: There exists a strictly positive constant η ∈
[1/(λσ)2,∞) such that

lim
n→∞

1

n
T0,n = η a.s.

lim
n→∞

1

n
Sn = η/2 a.s.

We conjecture that η = 2/(λσ)2. Simulations indicate that the
convergence is very slow.
Comments on the proof. The existence of a rate constant η,
0 ≤ η < ∞, is a consequence of Liggett’s subadditive ergodic
theorem, [9]. To recall the conditions for existence of such an
η, we first note that the basic subadditivity property for the
collection of random variables {Tm,n},

T0,n ≤ T0,m + Tm,n 0 ≤ m ≤ n,

is intuitively clear from Figure 3. The bold trajectories do not
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Fig. 3. Illustration of the inequality T0,n ≤ T0,m +Tm,n when n = 3,m =
1, the bold trajectories only affect T0,3.

affect T0,1 or T1,3 but they have impact on T0,3. In particular,
T0,3 will be less than T0,1+T1,3 if any of the bold trajectories
reach sensor 3 before any of the thin trajectories do. By
comparison with a simpler system and a coupling argument
it can be shown that ET0,n < ∞ for each n. Furthermore,
the distribution of {Tm,m+k, k ≥ 1} does not depend on m,
and for each k ≥ 1, the sequence {Tnk,(n+1)k, n ≥ 0} is both
stationary and ergodic. Based on these properties we obtain a
rate constant defined by η = infn≥1 ET0,n/n, for which holds
T0,n/n → η, a.s.

Next, we may consider {Tm,n} and {Sn} defined on the
same probability space, and observe the ordering T0,n ≥ Sn.
Thus, by Theorem 1, η ≥ 1/(λσ)2. Moreover,

min(T0,n, T0,−n) ≤ S2n ≤ max(T0,n, T0,−n).

This yields,
1

2
min(

T0,n

n
,
T0,−n

n
) ≤ S2n

2n
≤ 1

2
max(

T0,n

n
,
T0,−n

n
),

where the expressions both on the left and the right side
converges almost surely to η/2, and hence Sn/n converges
almost surely to η/2. As an illustration, typical realizations of
Sn and Sn/n are shown in Figure 4.
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Fig. 4. Ten realization of Sn and Sn/n, 1 ≤ n ≤ 1000, λ = 1, σ = 1.

To conclude our presentation of the non-radio network
model, simulation results for the variance of Sn, V (Sn),
are shown in Figure 5. They provide evidence for the linear
behavior V (Sn) ≈ Cn, where C ≈ 8.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

0 10 20 30 40 50 60 70 80 90 100
7

7.5

8

8.5

9

9.5

PSfrag replacements
τ1

τ2

τ3

V1

V2

V3

R2

R3

time
1

V4

activation time (Sn)
activation time/number of active sensors (Sn/n)

distance
distance

estimated variance (V (Sn))

estimated variance/number of active sensors (V (Sn)/n)

estimated expected value (E(S10))
activation time/

√
number of active sensors (Sn/

√
n)

number of active sensors (n)

number of active sensors (n)

time
radius

0
1
2
3

-1
T0,1

T1,3

T0,3

activation time/(number of active sensors)1/3 (Sn/n1/3)

Fig. 5. Estimation of V (Sn) and V (Sn)/n in one-dimension, λ = 1,
σ = 1.



III. RADIO NETWORK

In this section we consider the situation when all nodes,
active or not, have the ability to pick up the signal of, and react
to, any other node within distance r > 0 of its own position.
The parameter r is the transmission radius in the model. In this
case, the critical intensity λc plays an important role: for λ <
λc the underlying Poisson Boolean model has only bounded
connected components almost surely and for λ > λc there is an
unbounded connected component (i.e. infinite cluster) almost
surely. These regimes are called subcritical and supercritical,
respectively. In one dimension the Poisson Boolean model is
always subcritical, whereas in higher dimensions both regimes
exist.

A. Supercritical case

In the supercritical case, propagation of a message between
two distant points usually consists of two steps. First the
message must reach the underlying infinite cluster. If the target
node belongs to the infinite cluster we are done. If not, one
of the infinitely many Brownian sensors must find the target
location. Only when the destination is very close to the origin,
activation of the infinite cluster is not needed.

Any given point is either part of the infinite cluster or inside
a hole of the infinite cluster. In two dimensions, the holes are
bounded sets, almost surely. Since the exit time of Brownian
motion from a bounded set has finite mean, the expected time
to activate the infinite cluster in 2D is also finite. In dimensions
three and higher, there are no bounded holes. Hence, Brownian
sensors could spend much time away from the infinite cluster.
Whether this implies that the time to activate the infinite cluster
has infinite mean or not is currently unknown to us.
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Fig. 6. Simulation of a 1-dimensional radio network until 100 active sensors,
λ = 1, σ = 1, r = 1.3.

The second step consisting of movements of infinitely
many Brownian sensors can possibly be analyzed using a
Boolean model where the marks are the Wiener sausages

Wt
.
= ∪s≤tS(Bs, r), where S(x, r) denotes a ball with center

x and radius r.

B. Subcritical case

The radio transmission version of the one-dimensional
model always performs better than the non-radio version,
regarding message propagation properties. In principle, the
speed of growth increases with the transmission radius, or put
differently with the mean cluster size. This is visualized in Fig-
ure 6, where step wise branch points are visible corresponding
to the simultaneous activation of a cluster of sensors within
transmission range of each other.
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Fig. 7. Estimation of E(S10) for different transmission radius in the one-
dimensional model, λ = 1, σ = 1.

To comment on the qualitative aspects of the gain in
propagation speed, our simulations suggest a nearly linear
increase in the growth rate of the tree of Brownian sensors
for small and medium transmission range. For larger values
of the transmission range of the order of magnitude of the
average distance between nodes the growth rate decreases. See
Figure 7.
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Fig. 8. Simulation of Brownian sensor process in two-dimensions λ = 1,
σ = 1, r = 0.6.

Turning to the two-dimensional model, the planar Poisson
radio model with subcritical intensity is illustrated in Figure
8. Here a message is initially placed in the origin and it
propagates through the system relayed via Brownian sensors.
The lines are the paths of the active sensors and the circles
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Fig. 9. Sn and Sn/
√

n for 20 realizations of the Brownian sensor process
in dimension 2, λ = 1, σ = 1, r = 0.8.

their positions at time S150 when a total of at least 150 sensors
have been activated. The small dots represents the positions
of dormant sensors.

Our simulations suggest in this case that

E(Sn) ≈ cr
√

n

(σλ)2

where cr is a constant that depends on the transmission
radius. Figure 9 shows Sn and Sn/

√
n for twenty independent

realizations when λ = 1, σ = 1, the transmission radius
r = 0.8, and the maximum n is slightly greater than 1000.
The thick lines are 0.06

√
n and 0.06, respectively. As can be

seen in Figure 9 the values of Sn for small n has big influence
on Sn for large values on n, which is consistent with the slow
convergence of Sn/

√
n we observe.

IV. FURTHER TOPICS

A. Brownian motion with drift

The modeling assumption that active sensors move accord-
ing to independent Brownian motions may seem unrealistic.
Possibly, a more realistic model is to let the active sensors
move as independent Brownian motions with drift. Consider
a Brownian motion with randomly signed drift

B̃t = σBt + Zµt, t ≥ 0

where Bt is a standard Brownian motion, Z is a random sign
of plus or minus one with equal probabilities, and µ is a
constant drift term. For each sensor, the sign of the random
drift is determined at the activation time of the sensor and
kept fixed during the evolution of the system. For µ = 0
we obtain the previous model where active sensors move as
independent Brownian motions. Figure 10 shows a realization
of a non-radio network in one dimension where active sensors
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Fig. 10. Simulation of Brownian sensor process until time S200 λ = 1,
σ = 1, µ = 3.

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

PSfrag replacements
τ1

τ2

τ3

V1

V2

V3

R2

R3

time
1

V4

activation time (Sn)

activation time/number of active sensors (Sn/n)

distance
distance

estimated variance (V (Sn))
estimated variance/number of active sensors (V (Sn)/n)

estimated expected value (E(S10))
activation time/

√
number of active sensors (Sn/

√
n)

number of active sensors (n)

number of active sensors (n)
time

radius
0
1
2
3

-1
T0,1

T1,3

T0,3

activation time/(number of active sensors)1/3 (Sn/n1/3)

Fig. 11. Twenty realizations of Sn and Sn/n when 1 ≤ n ≤ 500, λ = 1,
σ = 1, µ = 0.4.

move according to the above model of independent Brownian
motions with randomly signed drift parameter µ = 3. In this
case the distribution of sensor locations seem to have a higher
concentration near the ends of the interval of interest. This is
in contrast to the case µ = 0, where the Brownian sensors are
distributed almost uniformly on the interval. With this in mind
one can expect that the time to activate n sensors is smaller
for a network with µ > 0 than for a network with µ = 0.
Indeed, our simulations of Sn in Figure 11 verify that this is
the case. For a large value of µ, such as µ = 3 in Figure 10
where the ratio Sn/n seems to tend to a number between 0.12
and 0.13, the expected growth rate is substantially larger than
in the case µ = 0.



B. Higher dimensions

In three dimensions our simulations suggest that the time
to activation of n sensors grows as a constant times n1/3, see
Figure 12. In one and two dimensions simulations show that
the corresponding growth rate is a constant times n respective
a constant times n1/2. Thus we conjecture that Sn grows
as C(d)n1/d, where C(d) is a constant and d ≥ 1 is the
dimension under consideration.
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Fig. 12. Ten realizations of Sn and Sn/n1/3 in three dimensions when
1 ≤ n ≤ 3000, λ = 1, σ = 1, r = 0.4.
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