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BUBBLES, CONVEXITY AND THE BLACK–SCHOLES EQUATION

BY ERIK EKSTRÖM1 AND JOHAN TYSK2

Uppsala University

A bubble is characterized by the presence of an underlying asset whose
discounted price process is a strict local martingale under the pricing mea-
sure. In such markets, many standard results from option pricing theory do
not hold, and in this paper we address some of these issues. In particular, we
derive existence and uniqueness results for the Black–Scholes equation, and
we provide convexity theory for option pricing and derive related ordering re-
sults with respect to volatility. We show that American options are convexity
preserving, whereas European options preserve concavity for general payoffs
and convexity only for bounded contracts.

1. Introduction. Recently, the issue of modeling financial bubbles has at-
tracted the attention of several authors; see, for example, [4, 11, 14, 15] and [21].
We will here adopt the setup of, for instance, [4] and consider markets where the
underlying asset, when discounted, follows a strict local martingale under the risk-
neutral probability measure. In [14] it is shown that such examples can only exist
in a complete market if the Merton no dominance hypothesis is not valid. We will
nevertheless use this framework to study the Black–Scholes equation partly be-
cause of the interest in its own right, and partly because the problems that arise
in this context also arise when one, for instance, considers stochastic volatility
models; compare [7, 11] and [13].

In [4] (compare also, for instance, [21]) it is shown that many standard re-
sults in option pricing theory fail. For example, put-call parity does not hold, the
Black–Scholes equation can have multiple solutions, the price of an American call
exceeds that of a European call and the European call price is not convex as a
function of the stock price. In the present article we provide further insight on
option pricing in markets with bubbles. First we study existence and uniqueness
theory for the corresponding Black–Scholes equation. It is shown that the option
price, given as a risk-neutral expected value, always solves the equation. In gen-
eral, however, there is an infinite-dimensional space of solutions of linear growth.
This is in stark contrast to the standard case when there is a unique solution of
polynomial growth. Nevertheless, uniqueness is recovered for contracts of strictly
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sublinear growth. Next we provide convexity results for markets with bubbles. As
mentioned above, and again unlike the case with no bubbles (see, e.g., [8, 12]
and [16]), the convexity of a payoff does not necessarily imply the convexity of a
European option price. However, we show that American options remain convex-
ity preserving also in the case of bubbles, whereas European options are convexity
preserving only for bounded payoffs and concavity preserving for general con-
tracts. Thus, in this respect, prices of American options are more robust then their
European counterparts. As a consequence of the convexity/concavity results, we
also provide monotonicity results of option prices with respect to volatility.

The paper is organized as follows. In Section 2 we specify the model, and we
discuss a motivating example. In Sections 3 and 4 we study existence and unique-
ness of solutions to the Black–Scholes equation. Finally, in Sections 5 and 6 we
provide convexity theory for the Black–Scholes equation in the presence of bub-
bles.

2. The model setup and a motivating example. We model the stock price
process under the risk-neutral probability measure as the solution to the stochastic
differential equation

dX(t) = α(X(t), t) dW,(1)

where α is some given function and W is a standard Brownian motion. For the
sake of simplicity we let the risk free rate be zero; the case of a deterministic short
rate can be treated analogously. We also assume that x = 0 is an absorbing state
for the price process, that is, if X(t) = 0 at some t then X remains at 0 for all times
after t as well.

HYPOTHESIS 2.1. The function α(x, t) is continuous and locally Hölder con-
tinuous in space with exponent 1/2 on (0,∞) × [0, T ]. Moreover, α(x, t) > 0 for
positive x.

Hypothesis 2.1 ensures the existence of a unique strong solution absorbed
at 0. Note that since X is a nonnegative local martingale, it is a supermartin-
gale. Consequently, X(t) does not explode. Given a continuous payoff function
g : [0,∞) → [0,∞), the price at time t of a European option that at time T pays
the amount g(X(T )) is given by

u(x, t) = Ex,tg(X(T )),(2)

where the indices indicate that X(t) = x. We thus adhere to classical arbitrage
free pricing theory, and let the price be given by this risk neutral expected value
even if the corresponding Black–Scholes equation has multiple solutions. Note that
if g is of at most linear growth, then u is finite since X is a supermartingale. The
corresponding Black–Scholes equation is

ut (x, t) + 1
2α2(x, t)uxx(x, t) = 0(3)
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for (x, t) ∈ (0,∞) × (0, T ), with terminal condition

u(x,T ) = g(x).(4)

If the process X hits the boundary x = 0 with positive probability, then boundary
values need to be specified. On the other hand, also if the boundary is hit with prob-
ability zero, boundary values are beneficial for instance from a numerical point of
view. Recalling that the discount rate is 0 and that the stock price is absorbed at
the bankruptcy level x = 0, we find that the appropriate boundary condition is

u(0, t) = g(0).(5)

It is well known that if the diffusion coefficient α satisfies a linear growth condition
in x, that is,

|α(x, t)| ≤ C(1 + x)(6)

for some constant C, then u defined in (2) is the unique classical solution to (3)–(5)
of at most polynomial growth, provided that the payoff function g is of at most
polynomial growth (see [17] and the references therein).

In [4] and [11], models in which the underlying asset is a strict local martingale
(i.e., a local martingale which is not a martingale) are proposed as models for
bubbles. Typical examples include diffusion models in which the linear bound (6)
is violated. Another example is furnished by stochastic volatility models, compare
[1, 20] and [23]. In this paper we consider models in which (6) does not necessarily
hold. In a related article [7] we continue this study to stochastic volatility models.

The following example was studied in [4] and [5], and it shows that the Black–
Scholes equation may have multiple solutions. It also shows that convexity of Eu-
ropean options is not preserved in general.

EXAMPLE. Assume that X is given by

dX(t) = σX2(t) dW,

where σ > 0 is a constant. Then X is a strict local martingale; see [18] or Theo-
rem 4.1 below. Moreover, the density of X(T ) is

P
(
X(T ) ∈ dy

) = x

y3
√

2πσ 2(T − t)

×
(

exp
{
−(1/y − 1/x)2

2σ 2(T − t)

}
− exp

{
−(1/y + 1/x)2

2σ 2(T − t)

})
,

provided X(t) = x. It follows that

u(x, t) := Ex,tX(T ) = x

(
1 − 2�

( −1

xσ
√

T − t

))
(7)
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for t < T , where � is the distribution function of the standard normal distribution.
The corresponding Black–Scholes equation is

ut + 1
2σ 2x4uxx = 0

with boundary conditions {
u(x,T ) = x,

u(0, t) = 0.

It is straightforward to check that u defined in (7) solves the equation; alternatively,
this follows from Theorem 3.2 below. Clearly also v(x, t) ≡ x is a solution to
the equation; thus uniqueness of solutions to the Black–Scholes equation fails in
general. Moreover,

uxx(x, t) = −2

x4σ 3(T − t)3/2 ϕ

( −1

xσ
√

T − t

)
,

where ϕ is the density of the standard normal distribution. Thus u is strictly con-
cave in x for each fixed t < T , so convexity of the payoff function is not preserved.
Furthermore, u is decreasing in σ , which again is the opposite behavior of the stan-
dard case.

The above example shows that we are in the somewhat peculiar situation of
having a simple and explicit solution to the Black–Scholes equation which is not
representing the option price. This is of course a very serious problem if one uses
PDE methods to study option prices. A series of natural questions arise:

• Does the option price as given by the stochastic representation always solve the
Black–Scholes equation?

• Can one give a general description of models for which uniqueness to the Black–
Scholes equation fails, and does uniqueness hold for some restricted class of
payoff functions?

• For which contracts is convexity (or concavity) preserved?
• Is preservation of convexity and concavity related to option price monotonicity

with respect to volatility?

The first question is answered affirmatively in Section 3, the second one is
treated in Section 4 and the remaining questions are investigated in Sections
5 and 6.

3. Option prices are classical solutions to the Black–Scholes equation.
Since we do not impose any growth restrictions on α at spatial infinity, the Black–
Scholes equation (3) falls outside the standard theory for parabolic equations. In-
deed, the second-order coefficient α2/2 of the Black–Scholes equation is allowed
to grow more than quadratically in the underlying variable, thus violating a stan-
dard assumption; compare [9], Theorem 6.4.3. The main result of this section says
that the option price u(x, t) given by (2) is indeed a classical solution to (3)–(5);
compare [17] for the standard case.
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DEFINITION 3.1. A continuous function v : [0,∞)×[0, T ] → R is a classical
solution to the Black–Scholes equation if v ∈ C2,1((0,∞)×[0, T )) and (3)–(5) are
satisfied.

THEOREM 3.2. Assume that the payoff function g : [0,∞) → [0,∞) is con-
tinuous and of at most linear growth. Then the option price u defined in (2) is a
classical solution to the Black–Scholes equation. Moreover, it is of at most linear
growth.

PROOF. Assume that g satisfies g(x) ≤ C(1 + x). Then

u(x, t) = Ex,tg(X(T )) ≤ CEx,t

(
1 + X(T )

) ≤ C(1 + x)

since X is a supermartingale. Consequently, u is of at most linear growth.
It remains to show that u is a classical solution to the Black–Scholes equation.

To indicate the dependence on the starting point, let Xx,t (s) be the solution to (1),
starting at time t at the point x. Moreover, let

XM
x,t (s) = Xx,t (s ∧ γM),

where

γM = inf{s ≥ t :Xx,t (s) ≥ M}.
Then XM is a bounded local martingale, hence a martingale. Since the paths of
XM

x,t and XM
y,t , being driven by the same Brownian motion, do not cross each other

(see Theorem IX.3.7 in [22]), we have

E|XM
x,t (T ) − XM

y,t (T )| = |x − y|.(8)

For continuity in the initial time variable, let t1 ≤ t2 with t2 − t1 ≤ δ, and note that

E|XM
x,t1

(t2) − x|2 = E

∫ t2

t1

α2(XM
x,t1

(s), s)1{s≤τM } ds ≤ Cδ,(9)

where C = max{α2(x, t) : (x, t) ∈ [0,M] × [0, T ]}. Let ε > 0 and η > 0. Condi-
tioning on XM

x,t1
(t2), it follows from (8) that the conditional probability

P
(|XM

x,t2
(T ) − XM

x,t1
(T )| > ε; |XM

x,t1
(t2) − x| ≤ δ0

) ≤ η/2

for some δ0 > 0. Let δ = ηδ2
0/(2C). Chebyshev’s inequality applied to (9) yields

P
(|XM

x,t1
(t2) − x| > δ0

) ≤ Cδ

δ2
0

= η/2.

Consequently,

P
(|XM

x,t2
(T ) − XM

x,t1
(T )| > ε

) ≤ η(10)
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provided t2 − t1 ≤ δ. Now (8) and (10) show that XM
y,s(T ) tends to XM

x,t (T ) in
probability as (y, s) → (x, t).

Next, let g be a nonnegative concave function with g(0) = 0. We claim that the
function

uM(x, t) = Eg(Xx,t (T ))1{T <γM }
satisfies

uM
t + α2

2
uM

xx = 0 for (x, t) ∈ (0,M) × [0, T )

and

lim
(y,s)→(x,T )

uM(y, s) = g(x) for all x ∈ (0,M).

To see this, let gn : [0,M] → R be an increasing sequence of continuous functions
such that gn(M) = 0, and such that gn(x) ↑ g(x) for each x ∈ [0,M). Now, each gn

is bounded, so the family

{gn(X
M
y,s(T ))}(y,s)∈U,

where U is some small neighborhood of (x, t), is uniformly integrable. Conse-
quently, the functions

uM
n (x, t) = Egn(X

M
x,t (T ))

are continuous on [0,M] × [0, T ]. Since α(x, t) > 0 for positive x, a continuous
stochastic solution is a classical solution, so uM

n satisfies the Black–Scholes equa-
tion in (0,M) × [0, T ); compare, for example, Theorem 2.7 in [17]. By monotone
convergence,

uM
n (x, t) ↑ uM(x, t)(11)

as n → ∞, so it follows from interior Schauder estimates (see [3] or [19]) that also
the function uM solves the Black–Scholes equation on (0,M)×[0, T ). Moreover,
(11) yields that

lim inf
(y,s)→(x,T )

uM(y, s) ≥ g(x).

The reverse inequality also holds, since the concavity of g implies that uM(x, t) ≤
g(x) for all (x, t), thus finishing the proof of the claim.

Now, if u is defined as in (2), that is,

u(x, t) = Eg(Xx,t (T )),

then uM(x, t) ↑ u(x, t) as M → ∞ by monotone convergence. Thus interior
Schauder estimates show that u solves the Black–Scholes equation on (0,∞) ×
[0, T ). Moreover, the same technique as used above shows that u is continuous
up to t = T , and since u ≤ g we find that u is also continuous up to x = 0 with
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u(0, t) = g(0) = 0. This finishes the proof in the case when g is concave and
g(0) = 0. By linearity, the result also holds for payoffs that are linear combina-
tions of nonnegative concave functions. Note that each smooth function g with∫ ∞

0
|g′′(y)|dy < ∞(12)

can be written as a difference of two nonnegative concave functions. Therefore,
we approximate g by sequences of smooth functions gn and gn that satisfy (12)
such that

gn(x) ↑ g(x)

and

gn(x) ↓ g(x)

as n → ∞. Then the result for a general continuous payoff function g fol-
lows by an argument involving monotone convergence and Schauder estimates as
above. �

4. Uniqueness and nonuniqueness results for the Black–Scholes equation.
It follows from Theorem 3.2 that uniqueness of solutions of linear growth to the
Black–Scholes equation fails if X is a strict local martingale. Indeed, in that case
both u1(x, t) = Ex,tX(T ) and u2(x, t) = x solve the Black–Scholes equation with
the same boundary conditions; compare the example in Section 2. The following
result tells us when the stock price process is a strict local martingale, thus in par-
ticular implying that uniqueness to the Black–Scholes equation is lost. For neces-
sary and sufficient conditions for time-homogeneous exponential local martingales
to be martingales; see [2].

THEOREM 4.1. If the volatility coefficient α satisfies

α2(x, t) ≥ εxη

for all (x, t) ∈ [ε−1,∞) × [0, T ], where ε > 0 and η > 2 are constants, then the
price process X is a strict local martingale. Moreover, for any time bounded away
from expiry, the stock option price is o(xδ) for any positive δ, and if η > 3 then the
stock option price is bounded.

PROOF. Let

h(x, t) = eM(T −t) x

1 + xβ(T − t)m
,

where 0 < β < 1. We claim that m and M can be chosen so that h is a supersolution
to Black–Scholes equation, that is,

ht + α2

2
hxx ≤ 0.(13)
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To see this, first note that

e−M(T −t)(1 + xβ(T − t)m
)3

ht (x, t)

= −Mx
(
1 + xβ(T − t)m

)2 + mxβ+1(T − t)m−1(
1 + xβ(T − t)m

)
and

e−M(T −t)(1 + xβ(T − t)m
)3

hxx(x, t)

= −β(β + 1)xβ−1(T − t)m − β(1 − β)x2β−1(T − t)2m ≤ 0.

Thus, it suffices to choose m and M so that

Mx + 1
2(1 + β)βα2(x, t)xβ−1(T − t)m

+ 1
2β(1 − β)α2(x, t)x2β−1(T − t)2m(14)

≥ mxβ+1(T − t)m−1 + mx2β+1(T − t)2m−1

at all points (x, t) ∈ [0,∞) × [0, T ].
First we consider large values of x, for which by assumption α2 ≥ εxη. Then it

suffices to show

Mx + ε

2
(1 + β)βxβ−1+η(T − t)m + ε

2
β(1 − β)x2β−1+η(T − t)2m

(15)
≥ mxβ+1(T − t)m−1 + mx2β+1(T − t)2m−1

at all points (x, t) ∈ [ε−1,∞) × [0, T ]. Pick η′ ∈ (2, η). For x ≥ c1(m), where c1
is a large enough constant depending on m, and T − t ≥ x2−η′

, the second and
third terms on the left-hand side dominate the right-hand side of (15). To see this,
we start from the last two terms on left-hand side of (15) and use the lower bound
on T − t to obtain

ε

2
(1 + β)βxβ−1+η(T − t)m + ε

2
β(1 − β)x2β−1+η(T − t)2m

≥ ε

2
(1 + β)βxβ+1+η−η′

(T − t)m−1 + ε

2
β(1 − β)x2β+1+η−η′

(T − t)2m−1,

which dominates the right-hand side of (15) for large x since η > η′.
Now, for small values of T − t , we use the first term on the left-hand side

of (15) to dominate the right-hand side, by choosing m suffiently large and again
comparing exponents of x. Specifically, for m > 1 + β/(η′ − 2), x dominates the
right-hand side for x ≥ c2(m) and T − t ≤ x2−η′

, where c2 is chosen sufficiently
large. Thus (14) is established for x ≥ c = max(c1, c2) and M ≥ 1.

Next, for the remaining values x < c, inequality (14) is established by choosing
M ≥ mcβT m−1 + mc2βT 2m−1. We note that to establish the inequality for small
values of x, the last two terms on the left-hand side are not needed. Thus we only
need to bound the volatility coefficients from below for large values of x as is done
in the statement of the theorem.
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Now, since h is nonnegative, it follows from Itô’s formula and (13) that the
process h(X(s), s) is a supermartingale. Hence, for t < T ,

x > h(x, t) ≥ Ex,th(X(T ), T ) = Ex,tX(T ),

which implies that X is a strict local martingale.
Finally, if η > 3, then β can be chosen to be 1, and m and M can be chosen so

that the two first terms on the left-hand side of (15) together dominate the terms
on the right. �

REMARK. We note that it is not enough to assume that α2(x,t)

x2 → ∞ for X to

be a strict local martingale. If α2(x) = x2 lnx, then the price of the stock option
is x, implying that X is a martingale. This can be seen by considering the super-
solution h(x, t) = eM(T −t)(1 + x lnx) and arguing as in the proof of Theorem 4.3
below.

REMARK. If X is a strict local martingale, then the space of classical solutions
to the Black–Scholes equation is infinite dimensional. Indeed, let T̃ ≤ T and define

v
T̃
(x, t) =

{
x − Et,xX(T̃ ), for t ≤ T̃ ≤ T ,
0, for T̃ ≤ t ≤ T .

(16)

Using boundary Schauder estimates (see [10]), it follows that v
T̃

is a classical so-
lution to the homogeneous equation on [0,∞) × [0, T ] (technically speaking, an
additional Hölder continuity of α in the time variable needs to be imposed to ap-
ply these estimates). The set {λv

T̃
:λ ∈ R and T̃ ∈ (0, T ]} is therefore an infinite-

dimensional space of solutions to the homogeneous equation.

To get uniqueness of solutions, one needs to narrow the class of considered
functions. It turns out that the appropriate class in which uniqueness holds is the
class of functions of strictly sublinear growth.

DEFINITION 4.2. A function f : [0,∞) → R is of strictly sublinear growth
if limx→∞ f (x)

x
= 0. A function v : [0,∞) × [0, T ] → R is of strictly sublin-

ear growth if |v(x, t)| ≤ f (x) for some f : [0,∞) → [0,∞) of strictly sublinear
growth.

THEOREM 4.3. Assume that the payoff function g is of strictly sublinear
growth. Then the option price u is the unique classical solution of strictly sub-
linear growth to the Black–Scholes equation.

PROOF. It follows from Theorem 3.2 that u is a classical solution to the Black–
Scholes equation. Moreover, if g is of strictly sublinear growth, then so is its small-
est concave majorant g. Consequently,

u(x, t) ≤ Ex,tg(X(T )) ≤ g(Ex,tX(T )) ≤ g(x),



1378 E. EKSTRÖM AND J. TYSK

where we use Jensen’s inequality and the monotonicity of g. Thus u is a solution
of strictly sublinear growth.

To prove uniqueness, assume that v is a classical solution to⎧⎨
⎩

vt = 1
2α2vxx,

v(x,0) = 0,

v(0, t) = 0

of strictly sublinear growth (for simplicity, we have performed a standard change
of variables t → T − t , and the terminal condition is then replaced by an initial
condition). Define

h(x, t) = et (1 + x)

and let vε(x, t) = v(x, t) + εh(x, t). Then

vε
t − 1

2α2vε
xx = εht − ε 1

2α2hxx = εet (1 + x) > 0.(17)

Next, define

� = {(x, t) ∈ [0,∞) × [0, T ] :vε(x, t) < 0}.
Assuming that � = ∅, let

t0 = inf{t ∈ [0, T ] : (x, t) ∈ � for some x ∈ [0,∞)}.(18)

Since vε is of linear growth, the set � is contained in [0,M] × [0, T ] for some
constant M . Consequently, � is compact, and the infimum in (18) is attained for
some point (x0, t0) with vε(x0, t0) = 0. Since vε(0, t) = εet > 0 and vε(x,0) =
1 + x > 0, we have x0 > 0 and t0 > 0. Now, by the definition of t0, the function
x �→ vε(x, t0) has a minimum at x = x0. Thus vε

xx ≥ 0. Similarly, vε
t ≤ 0, so

vε
t − 1

2α2vε
xx ≤ 0,

which contradicts (17). This contradiction shows that � is empty, so vε ≥ 0.
Since ε is arbitrary, v ≥ 0 follows. Finally, the same argument applied to −v shows
the reverse inequality, so v ≡ 0, which proves uniqueness. �

In the case of multiple solutions of the Black–Scholes equation, the solution u

in (2) can be characterized as the smallest nonnegative supersolution; see [11]. In-
deed, it follows from the Itô formula that the process v(X(t), t) is a supermartin-
gale, provided v is a nonnegative supersolution. Consequently,

v(x, t) ≥ Ex,tv(X(T ), T ) ≥ Ex,tg(X(T )) = u(x, t).

In addition to this characterization, we can identify u as the limit of a sequence of
solutions to the Black–Scholes equation with bounded payoffs.

PROPOSITION 4.4. Let the payoff function g be of at most linear growth. Then
the option price u in (2) is the limit of the (unique) classical solution to the Black–
Scholes equation with terminal value min(g,M) as M tends to infinity.
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PROOF. By dominated convergence,

u(x, t) = Ex,t

[
lim

M→∞g(X(T )) ∧ M
]
= lim

M→∞Ex,t [g(X(T )) ∧ M]. �

5. Convexity theory for European options. In standard Black–Scholes the-
ory, it is well known that prices of options with convex payoffs are convex in the
stock price; compare [8, 12] and [16]. However, this result is not true for markets
with bubbles. Indeed, as noted in Section 2, the function u defined in (7) is strictly
concave in x.

In this section we show that models for bubbles are convexity preserving for
bounded contracts, and concavity preserving for all contracts. The lack of symme-
try is due to the fact that we consider only nonnegative payoffs. As in the standard
case, preservation of convexity or concavity implies monotonicity properties with
respect to volatility. To formulate this, assume that α1 and α2 are two nonnegative
volatility functions satisfying

α1(x, t) ≤ α2(x, t)

for all (x, t) ∈ [0,∞) × [0, T ], and let u1(x, t) and u2(x, t) be the corresponding
option prices.

THEOREM 5.1. Assume that g is concave. Then u(x, t) is concave in x for
any t ∈ [0, T ]. Moreover, the option price is decreasing in the volatility, that is,
u1(x, t) ≥ u2(x, t) for all (x, t) ∈ [0,∞) × [0, T ].

Similarly, if g is convex and bounded, then u(x, t) is convex in x for any t ∈
[0, T ]. Moreover, the option price is increasing in the volatility, that is, u1(x, t) ≤
u2(x, t) for all (x, t) ∈ [0,∞) × [0, T ].

REMARK. In fact, the result holds for concave payoff functions that are
bounded from below, and convex functions bounded from above, respectively. The
asymmetry between the conditions on the payoff functions in the statement of the
theorem is due to our assumption that g is nonnegative.

PROOF OF THEOREM 5.1. Assume first that g is bounded and concave. With-
out loss of generality we also assume that g(0) = 0. Let uK be the corresponding
option price where the volatility is given by α(x, t) ∧ K . It is well known that
uK is concave; see, for instance, [16]. It also follows from this reference that this
sequence of functions is decreasing in K . We let

u(x, t) = lim
K→∞uK(x, t)

denote its limit. By interior Schauder estimates (see [3] and [19]), u solves the
Black–Scholes equation at all points in (0,∞)×[0, T ). Also u(0, t) = 0 since this
holds for each function in the decreasing sequence uK of nonnegative functions.
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Now, for any positive number b, consider a continuous function ψ ≤ 1 that is iden-
tically 1 in a neighborhood of b and with support in the interval [b

2 ,2b]. Let vK,b be
the solution of the pricing equation with volatility α(x, t) ∧ K and contract func-
tion gψ , but with vanishing Dirichlet data at x = b

2 and x = 2b. We note that vK,b

does not depend on K if K is large enough. Let vb(x, t) = limK→∞ vK,b(x, t).
By the maximum principle, vK,b ≤ uK and thus vb ≤ u. Hence vb ≤ u ≤ uK for
any K . But vb is known to be continuous up to the boundary t = T by classical
theory and uK by [17]. Hence u is continuous up to the boundary with boundary
values given by g in a neighborhood of b. Carrying out the same approximation
argument we conclude that this holds at any point. Hence u is a classical solution
to the Black–Scholes equation with g as terminal value. By the uniqueness result
Theorem 4.3 it follows that u = u. Since u is the limit of a sequence of concave
functions, it is concave itself, so the concavity of u follows.

Next, if g is concave but not bounded, then let gM = g ∧ M , and let uM be
the corresponding option price. It follows from above that uM is concave in x.
Consequently, it follows from Proposition 4.4 that u is concave.

Finally, the monotonicity in volatility stated in the theorem follows from the
approximation argument above and the corresponding monotonicity in the bubble-
free case; see for instance [16]. The second part of the theorem follows by a similar
argument. �

REMARK. The crucial ingredient in the above proof is the uniqueness result
Theorem 4.3. In the absence of this result, for instance for general convex func-
tions of linear growth, the limiting function u will still be a solution to the Black–
Scholes equation, but it will no longer be the solution given by the stochastic rep-
resentation.

6. Convexity theory for American options. We have seen above that Euro-
pean options in general do not preserve convexity. In this section we show that
American option prices are more well behaved in this respect.

When pricing American options one cannot without loss of generality assume
that the short rate is 0. Therefore, let X be the solution to

dX = rX(t) dt + α(X(t), t) dW,

and define the American option price U : [0,∞) × [0, T ] by

U(x, t) = sup
t≤τ≤T

Ex,t e
−r(τ−t)g(X(τ)).

Here the supremum is over random times τ that are stopping times with respect to
the completion of the filtration generated by W .

THEOREM 6.1. Assume that the payoff function g is convex and of at most
linear growth. Then the American option price U(x, t) is convex in x. Moreover,
U is increasing in the volatility.
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PROOF. For notational simplicity we let t = 0. Since g is convex, nonnegative
and of at most linear growth, it is either decreasing to a limit limx→∞ g(x) =
constant ≥ 0 or it satisfies limx→∞(g(x)/x) = constant > 0.

First we treat the case limx→∞(g(x)/x) = γ > 0. For simplicity, assume that
γ = 1, so that g satisfies

g(x) ≤ C + x(19)

for some C > 0. For M > 0, let XM be the solution to

dXM(t) = rXM(t) dt + αM(XM(t), t) dW,

where αM(x, t) = α(x, t) ∧ M . For ε > 0, define

UM
ε (x, t) = sup

t≤τ≤T

Ex,t e
−r(τ−t)gε(X

M(τ)),

where gε(x) = (1 − ε)g(x). It follows from (19) that

UM
ε (x,0) ≤ (1 − ε)(C + x).

Consequently, for each fixed ε > 0, there exists x0 such that

UM
ε (x, t) ≤ g(x) ≤ U(x, t)

for all x ≥ x0 and all t ∈ [0, T ]. If M is large enough, then XM(t) and X(t) coin-
cide for t ≤ τ0 = inf{s :X(s) ≥ x0}, so it follows from the strong Markov property
that UM

ε (x, t) ≤ U(x, t) for x ≤ x0. Consequently,

lim
ε→0

lim
M→∞UM

ε ≤ U(20)

(both limits exist since UM
ε is increasing in M—see [6, 8] and [12]—and decreas-

ing in ε). To demonstrate the reverse inequality, let τ ∗ be a δ-optimal stopping time
for U , that is,

U(x,0) ≤ Ex,0e
−rτ∗

g(X(τ ∗)) + δ.

Then

lim
M→∞UM

ε (x,0) ≥ lim inf
M→∞ Ex,0e

−rτ∗
gε(X

M(τ ∗))

≥ (1 − ε)Ex,0e
−rτ∗

lim inf
M→∞ g(XM(τ ∗))

= (1 − ε)Ex,0e
−rτ∗

g(X(τ ∗))
≥ (1 − ε)

(
U(x,0) − δ

)
,

where we used Fatou’s lemma and the fact that XM(τ ∗) → X(τ ∗) almost surely
as M → ∞. Since δ is arbitrary, we find that

lim
ε→0

lim
M→∞UM

ε ≥ U.
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Now, recall that UM
ε is convex in x; see [6] or [8]. Since the pointwise limit of a

sequence of convex functions is convex, it follows that U is convex in x. Similarly,
UM

ε is increasing in the volatility (see [6] or [8]), so U is also increasing in the
volatility.

Next, consider the case of a decreasing payoff function satisfying

lim
x→∞g(x) = γ ≥ 0.

In this case, define

UM(x,0) = sup
τ≤τM∧T

Ex,0e
−rτ g(X(τ)),

where

τM = inf{t :X(t) ≥ M}
is the first passage time of X over the level M . Clearly, UM ≤ U and UM is
increasing in M , so

lim
M→∞UM(x,0) ≤ U(x,0).

The reverse inequality follows by the following argument. Take δ > 0, and let τ ∗
be a δ-optimal stopping time for U , that is,

U(x,0) ≤ Ex,0e
−rτ∗

g(X(τ ∗)) + δ.

Then

lim
M→∞UM(x,0) ≥ lim inf

M→∞ Ex,0e
−r(τ∗∧τM)g

(
X(τ ∗ ∧ τM)

)

≥ lim inf
M→∞ Ex,0e

−rτ∗
g(X(τ ∗))1{τ∗≤τM }

≥ Ex,0e
−rτ∗

g(X(τ ∗))
≥ U(x,0) − δ,

where the third inequality follows from Fatou’s lemma and the fact that γM → ∞
as M → ∞. Since δ > 0 is arbitrary, this finishes the proof of limM→∞ UM = U .

It is straightforward to check that UM(x, t) is convex in x and increasing in
the volatility. Indeed, this can be shown by approximating UM with Bermudan
options, all of which are convex in x and increasing in the volatility (compare [6]).
Both these properties are therefore inherited by U , which finishes the proof. �

REMARK. The above proof in the case of a decreasing convex payoff function
does not carry over to the general case since

UM(x,0) = sup
τ≤τM

Ex,0e
−rτ g(X(τ))

is not convex in general.
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REMARK. One may note that American options are trivially concavity pre-
serving. Indeed, if g is concave, then e−rtg(X(t)) is a supermartingale, thus im-
plying that V (x, t) = g(x) (see [6] for the case when α satisfies (6)).
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