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Abstract

There are two common methods for pricing European call options
on a stock with known dividends. The market practice is to use the
Black-Scholes formula with the stock price reduced by the present value
of the dividends. An alternative approach is to increase the strike price
with the dividends compounded to expiry at the risk-free rate. These
methods correspond to different stock price models and thus in general
give different option prices. In the present paper we genereralize these
methods to time and level dependent volatilities and to arbitrary con-
tract functions. We show, for convex contract functions and under very
general conditions on the volatility, that the method which is market
practice gives the lower option price. For call options and some other
common contracts we find bounds for the difference between the two
prices in the case of constant volatility.

1 Introduction

In this article we consider two common methods for pricing European call
options on a stock with known dividends. In both methods we follow the
approach of Heath and Jarrow, compare [4], that in modelling the stock price
we will separate the capital gains process from the impact of dividends. We
will here essentially follow the presentation of this material that can be found
in [7], pages 147-149. The capital gains process Gt is assumed to follow the
usual stochastic differential equation

dGt = µGt + σGt dW̃t, (1.1)

where W̃ is a Brownian motion. One then finds the equivalent measure
under which the discounted gains process GtB

−1
t is a martingale, where Bt

is a bank account. We will in this article assume that the interest rate is
deterministic and in this context we can then just as well assume that the
short rate is some constant r so that Bt = B0e

rt. Since it is the discounted
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gains process that follows a martingale and not the stock process, we can
use risk neutral valuation if we express the data of the Black-Scholes formula
in terms of Gt instead of the stock price process St. Of course, Gt is not
directly observable. Thus we have to express Gt in terms of St and the
dividends. The relationship between St andGt can be modelled in essentially
two different ways. Firstly, the process S, representing the price of a stock
which pays dividends κ1, ..., κm at times T1, ..., Tm before expiration T may
be introduced by setting

St = Gt +
m∑

j=1

κje
−r(Tj−t)I[0,Tj ](t), (1.2)

where I denotes the indicator function. Let D0 denote the sum above for
t = 0, i.e. the dividends discounted to time 0. In this model we notice
that GT = ST but G0 = S0 − D0. Thus, to price options in this model
we should subtract the present value of the dividends from the stock price
before using, for instance, Black-Scholes formula. This, in fact, is standard
market practice.

Another, perhaps more theoretically satisfying model, is to put

St = Gt −
m∑

j=1

κje
r(t−Tj)I[Tj ,T ](t). (1.3)

Letting CT denote the second term above for t = T , i.e. the dividends
compounded at the risk free rate to time T , we note that in this model
G0 = S0 but GT = ST + CT . Evaluating a call option we should thus
increase the strike price by CT .

In the next section we first extend these two methods to other contracts
and models for stock processes. We then show that for convex contract func-
tions and for very general volatilities, the method which is market practice
gives the lower option price, compare Theorem 2.3. When the gains process
Gt is modelled by geometric Brownian motion we estimate the difference
between the two prices, compare Theorem 2.6, in the case of call options.
Finally, in Section 3 we show that the inequality does not always hold for
options written on several underlying assets.

2 Comparisons of option prices

In this section we work with the bank account as a numeraire, primarily be-
cause in the notation of the introduction, D0/B0 = CT /BT . This quantity,
representing the discounted dividends, we call D. By abuse of notation,
we henceforth denote by Gt and St the discounted gains process and the
discounted stock price process, respectively. In the notation used in the in-
troduction these processes are given by B−1

t Gt and B−1
t St. We then choose

2



a risk-neutral measure under which

dGg
t = α(Gg

t , t) dWt, Gg
0 = g, (2.1)

where W is a Wiener process. The diffusion factor α(g, t) is given by
α(g, t) = σ(g, t)g, thus generalizing our study to the case of level- and time-
dependent volatilities.

Definition 2.1. A function α = α(g, t) defined on (0,∞) × [0, T ] is said
to be locally Hölder(1/2) in the g-variable if for every K > 1 there exists a
constant CK such that

|α(x, t)− α(y, t)| ≤ CK |x− y|1/2

for all x, y ∈ [K−1,K] and t ∈ [0, T ].

Definition 2.2. The function α = α(g, t) is said to be admissible if

• it is measurable and locally Hölder(1/2) on (0,∞)× [0, T ];

• α(g, t) = 0 for g ≤ 0;

• there is a constant C such that |α(g, t)| ≤ C(1 + g) for all g and
t ∈ [0, T ];

• for any fixed t ∈ [0, T ] the function |α(g, t)| is non-decreasing in g.

The first three conditions ensure existence of a unique solution, absorbed
in 0, to equation (2.1). Note that we have no assumption of continuity at
g = 0. The non-decreasing property of α(g, t) is very natural from an
economical point of view. It allows the volatility σ(g, t) (or rather |σ(g, t)|)
to decrease in g, but the absolute fluctuations of Gt, measured by α(g, t),
are assumed to increase in g.

Now, consider the two different models for the value of an option written
on a dividend-paying stock considered in the introduction. For stock prices
s ≥ D, the price of an option with pay-off ψ(ST ) in the first model is, using
our new notation,

P1(s) = Eψ(Gs−D
T ) (2.2)

where we to avoid negative stock prices assume that 0 is an absorbing barrier
for Gs−D

t . In the second model the price is

P2(s) = Eψ(Gs
T −D), (2.3)

where, again to avoid negative stock prices, it is assumed that D is an
absorbing barrier for the process Gs

t .
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Theorem 2.3. Assume that α = α(g, t) is admissible in the sense of Defini-
tion 2.2 and that the contract function ψ is convex. Then the option prices
P1 and P2 defined above satisfy the inequality

P1(s) ≤ P2(s)

for all s ≥ D.

Proof. Let Gs−D be the solution to (2.1) starting at s − D, and let Gs be
the solution to the stochastic differential equation

dGs
t = α(Gs

t , t)1{Gs
t>D} dWt

starting at s. Observe that Gs−D is absorbed at 0 and Gs is absorbed at
D. Define the stochastic processes Xt := Gs−D

t and Yt := Gs
t −D, and let

β(g, t) := α(g +D, t)1{g>0}. Then, since α is admissible,

|β(g, t)| ≥ |α(g, t)| for all g ≥ 0 and for all t ∈ [0, T ]. (2.4)

Moreover,

dXt = dGs−D
t = α(Gs−D

t , t) dWt = α(Xt, t) dWt, X0 = s−D,

and

dYt = dGs
t = α(Gs

t , t)1{Gs
t>D} dWt = β(Yt, t) dWt, Y0 = s−D,

and 0 is an absorbing barrier both for Xt and for Yt. Since

P1(s) = Eψ(XT )

and
P2(s) = Eψ(YT ),

and since the price of an option with convex pay-off is increasing in the
volatility (Janson and Tysk (2002), Theorem 7, see also [1], [5] and [3]), it
follows that (2.4) implies that P1(s) ≤ P2(s).

Remark 2.4. Note that if the diffusion factor α = α(t) is a function of t
alone, then the two option prices are the same. Also note that we cannot
remove the condition that α should be non-decreasing as the next example
shows.

Example 2.5. Let M > 0 and σ > 0 and define the volatility function α
by

α(g, t) :=
{
M − g if g ≤M ;
0 if g > M.

Choose positive numbers s,K,D such that s > D and K < M < s < K+D,
and consider a call option with strike price K. Then

P2(s) = E(Gs
T −K −D)+ = 0 < E(Gs−D

T −K)+ = P1(s).
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Now that we know that P1(s) ≤ P2(s) it is natural to look for bounds on
the difference P2(s) − P1(s). The following result establishes such a bound
for the call option when the gains process follows a geometric Brownian
motion.

Theorem 2.6. Let Gt be a geometric Brownian motion and consider a call
option with strike price K. In other words,

Gt = g exp{−σ
2

2
t+ σWt}

and ψ(s) = (s−K)+ for some positive constants σ and K. Then

0 ≤ P2(s)− P1(s) ≤
Dσ

√
T√

2π
.

Proof. First we introduce the auxiliary process Ht := exp{−σ2

2 T + σWT }
and the stopping time

τD := inf{t ≥ 0; sHt ≤ D}.

Then the inequality a+ − b+ ≤ (a− b)+ yields that

0 ≤ P2(s)− P1(s)
= E(sHT∧τD

−D −K)+ − E((s−D)HT −K)+

≤ E(sHT∧τD
−D − (s−D)HT )+

= E1{τD<T}(−(s−D)HT )+ +DE1{τD≥T}(HT − 1)+

≤ DE(HT − 1)+

=
D√
2π

∫ ∞

σ
√

T/2
(exp{−σ

2T

2
+ σ

√
Ty} − 1) exp{−y

2

2
} dy

=
D√
2π

∫ ∞

σ
√

T/2
exp{−(y − σ

√
T )2

2
} dy − D√

2π

∫ ∞

σ
√

T/2
exp{−y

2

2
} dy

=
D√
2π

∫ σ
√

T/2

−σ
√

T/2
exp{−y

2

2
} dy ≤ Dσ

√
T√

2π
.

3 Options on several underlying assets

We now consider options written on several underlying assets. Thus we
consider a market with an n-dimensional gains process which follows the
dynamics

dGg
t = α(Gg

t , t) dWt, Gg
0 = g (3.1)
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where W is an n-dimensional Brownian motion and α = (αij(g, t))n
i,j=1 is

an n × n-matrix which is non-singular for all g and t. If D = (D1, .., Dn)
is the vector of dividends, s = (s1, .., sn) is the vector of initial stock prices
and ψ = ψ(s1, ..sn) is the contract function, then the two option prices are
given by

P1(s) = Eψ(Gs−D
T )

and
P2(s) = Eψ(Gs

T −D),

respectively. In this section we show that if the ith asset only depends on
the ith component of W , then the same conclusion as in Theorem 2.3 can
be drawn. However, if we allow the assets to be dependent, then counter-
examples can be constructed.

Theorem 3.1. Assume that the volatility matrix is diagonal with diagonal
elements αii(g, t) = αii(gi, t), i.e. the volatility of the i:th asset only depends
upon the current value of that asset and time, where αii is admissible. Also
assume that the contract function ψ is convex. Then

P1(s) ≤ P2(s).

Proof. Let the gains process G be as in (3.1) where W is an n-dimensional
Brownian motion. Define βii(gi, t) := αii(gi +Di, t)1{gi>0}, where Di is the
dividends of the ith asset, and let Xt := Gs−D

t and Yt := Gs
t −D, where the

ith component of Gs
t is assumed to be absorbed at Di. Then

dXt = α(Xt, t) dWt, X0 = s−D,

and
dYt = β(Yt, t) dWt, Y0 = s−D.

Since
P1(s) = Eψ(XT ),

and
P2(s) = Eψ(YT ),

and since |βii(gi, t)| ≤ |αii(gi, t)| for all gi and t, it follows from Proposition
4.9 in [2] that

P1(s) ≤ P2(s).

Example 3.2. (Dependent assets.) Consider an option written on two
stocks, the first of which has a gains process modelled by the process Y 1

and pays known dividends D = D1 > 0. Let

dY 1
t = α(Y 1

t , t) dWt, Y 1
0 = s,
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with D as an absorbing barrier and W is a (one-dimensional) Brownian mo-
tion. Next, let Y 2

t := Y 1
t −D model the price of a stock paying no dividends.

Then the volatility matrix is singular (which is usually not permitted), but
this does not make a significant difference in this example; to get a non-
singular volatility matrix we can slightly modify the system by adding a
small disturbance εVt to Y 2. Let ψ = ψ(s1, s2) be convex and such that
ψ(s1, s2) ≥ 0 and ψ(s, s) = 0. Then

P2(s, s−D) = Eψ(Y 1
T −D,Y 2

T ) = Eψ(Y 2
T , Y

2
T ) = 0.

However, defining the gains processes X1 and X2 by

dX1
t = α(X1

t , t) dWt, X1
0 = s−D,

and X2
t = Y 2

t , we get

P1(s, s−D) = Eψ(X1
T , X

2
T ) ≥ 0.

It is easy to see that the last inequality can be made strict if ψ and α are
chosen properly.

As in the previous section, in certain cases it is easy to find bounds on
the difference of the prices in the two different models.

Theorem 3.3. Consider the call option on the maximum of n assets. As-
sume that the gains processes follow independent geometric Brownian mo-
tions, i.e. Gi

t = Gi
0H

i
t where

H i
t := exp{−σ

2
i

2
+ σiW

i
t }.

Then the option prices satisfy the following inequalities:

0 ≤ P2(s1, .., sn)− P1(s1, .., sn) ≤
√
T√
2π

(D1σ1 + ...+Dnσn).

Proof. The left inequality is a direct consequence of Theorem 3.1. As for
the second one, introducing

τi := inf{t ≥ 0; siH
i
t ≤ Di}

and using the inequality

( max
1≤i≤n

{ai} −K)+ − ( max
1≤i≤n

{bi} −K)+ ≤ Σn
i=1(ai − bi)+

we get

P2(s)− P1(s) = E( max
1≤i≤n

{siH
i
T∧τi

−Di} −K)+

−E( max
1≤i≤n

{(si −Di)H i
T } −K)+

≤ Σn
i=1DiE(H i

T − 1)+,

and so the result follows in the same way as in the proof of Theorem 2.6.
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