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ERIK EKSTRÖM1 AND JOHAN TYSK1

Abstract. We study Dupire’s equation for local volatility models with
bubbles, i.e. for models in which the discounted underlying asset fol-
lows a strict local martingale. If option prices are given by risk-neutral
valuation, then the discounted option price process is a true martingale,
and we show that the Dupire equation for call options contains extra
terms compared to the usual equation. However, the Dupire equation
for put options takes the usual form. Moreover, uniqueness of solutions
to the Dupire equation is lost in general, and we show how to single out
the option price among all possible solutions. The Dupire equation for
models in which the discounted derivative price process is merely a local
martingale is also studied.

1. Introduction

Financial bubbles have been studied extensively over the last few years;
see for instance [5], [7], [8], [10], [12] and [13]. It has been suggested to
use models in which the underlying discounted price process is a strict local
martingale under the pricing measure. Such models are known to exhibit
several anomalies. For example, if option prices are given by risk-neutral
valuation, then a call option price is not necessarily convex as a function of
the spot price of the underlying, the put-call parity fails in its usual form,
and the uniqueness of solutions to the corresponding Black-Scholes equation
is lost.

The Dupire equation is a forward equation for the call option price C as
a function of the strike price K and the time to maturity T . It is argued in
[6] that if the underlying stock price process follows a local volatility model,
then the call option price satisfies

(1)

{
CT (K,T ) = LC(K,T ) for (K,T ) ∈ (0,∞)2

C(K, 0) = (x−K)+,

where L is the second order differential operator

L =
σ2(K,T )

2

∂2

∂K2
− (r − q)K ∂

∂K
− q.

Here r is the interest rate, q is the continuous dividend yield, x is the current
stock price and σ(K,T ) is a local volatility function that grows at most
linearly in the spatial variable. Since call prices for different strikes and
maturities are observable quantities, the Dupire equation is commonly used
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to recover the volatility from C and its derivatives with respect to K and
T .

If no linear bound is imposed on the volatility at spatial infinity, then the
discounted underlying asset is only guaranteed to be a local martingale, and,
as we will see in Section 2, it is easy to check that the Dupire equation fails
in its usual form described above. In the present paper we consider Dupire
type equations for such local volatility models with bubbles. In our main
result, Theorem 2.2, we show that if option prices are given by risk-neutral
valuation, then the Dupire equation for call options contains extra terms.
Surprisingly, the corresponding equation for put options does not contain
these extra terms, and is therefore perhaps better suited for calibration
issues. As is well known for the corresponding Black-Scholes equation for
bubbles, see [5], [8] or [10], special care is needed to ensure the uniqueness
of solutions. We show that the option price is the unique classical solution
of the Dupire equation with a bounded distance to the payoff function.

Note that in our general result Theorem 2.2, option prices are assumed to
be given by risk-neutral valuation so that discounted option prices processes
are true martingales. However, several alternative definitions of the price of
an option, for which the discounted option prices process is merely a local
martingale, have been suggested in the literature. Examples of such alterna-
tive prices motivated by intermediate collateral requirements (compare [5])
are treated in Theorem 2.3.

Even though the Dupire equation is of both theoretical interest and of
practical use, the academic literature is somewhat sparse. The original
derivation in [6] is rather sketchy, and the exact assumptions under which
the equation holds are not specified. In [14], the Dupire equation is derived
rigorously for processes that cannot reach the boundary and with exponen-
tial Lévy jumps. Although the main objective for us is to study the Dupire
equation for volatilities with a super-linear growth at spatial infinity, we
point out that our study also covers the case in which the underlying pro-
cess may reach zero with positive probability. Since knowing the distribution
of the stock price is equivalent to knowing all call option prices, this provides
insight in what boundary conditions to impose on the forward equation for
densities (compare [16]).

In Section 2 we present the local volatility model, and we state our main
results Theorems 2.2 and 2.3 about existence and uniqueness of solutions to
the Dupire equation. We also discuss how to use Theorems 2.2 and 2.3 for
calibration of models. Finally, Section 3 contains the proof of Theorem 2.2.

Remark. After the completion of the current article, we were informed
about the preprint [2] by Bentata and Yor. In Theorem 2.2 of that article,
the Dupire equation for put options written on local martingales is deter-
mined using stochastic methods. Furthermore, Bentata and Yor also allow
for non-Markovian processes. On the other hand, our PDE-based approach
includes a study of boundary conditions and uniqueness for the Dupire equa-
tion not performed in [2].
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2. Pricing equations for bubbles

We let the risk free rate be a constant r ≥ 0 and we assume that the stock
pays a continuous dividend yield q ≥ 0. Under the risk neutral measure, the
stock price process X is modeled by

(2)

{
dX(t) = (r − q)X(t) dt+ σ(X(t), t) dB(t)
X(0) = x,

where σ is a given local volatility function and B is a standard Brownian
motion. The current stock price x > 0 denotes throughout the paper a
given constant. If the boundary state zero can be reached in finite time,
then we assume that zero is an absorbing barrier for the process X. By Ito’s
formula, the process e−(r−q)tX(t) is a local martingale, but not necessarily a

martingale. Processes X for which e−(r−q)tX(t) is a strict local martingale
have been suggested to model financial bubbles (compare [5] and [10]).

We always assume that the volatility σ satisfies the following conditions.

Hypothesis 2.1. The volatility function σ : (0,∞) × [0,∞) → (0,∞) is
continuous. Moreover, it is locally Hölder(1/2) in the first variable, i.e. for
any compact set [D−1, D]×[0, D] there exists a constant C such that |σ(x, t)−
σ(y, t)| ≤ C|x−y|1/2 for all (x, y, t) ∈ [D−1, D]2× [0, D]. Furthermore, there
exists a constant A such that σ(x, t) ≤ A for x ≤ 1.

Remark. The assumptions about σ specified in Hypothesis 2.1 ensure the
existence and uniqueness of a strong solution of (2), see Chapter IX.3 in
[17]. Moreover, note that we do not require the volatility to be of at most
linear growth at spatial infinity. Thus we allow for example models in which
σ(x, t) grows at least like x1+η for large x, where η > 0. In fact, in any such

model, the process e−(r−q)tX(t) is a strict local martingale, see [3] and [8].
Also note that, regardless of the growth rate of σ at infinity, equation (2)
has a unique solution that exists for all t ≥ 0. Indeed, the linear bound at
infinity is usually used to avoid exploding solutions; however, in the present
context the process e−(r−q)tX(t) is a lower bounded local martingale, hence
a supermartingale, so it does not explode.

In the case of bubbles in the underlying asset price X, several different
definitions of the price of a derivative security written on X have been
proposed in the literature. We mainly study the discounted expected values

(3) C(K,T ) := e−rTE(X(T )−K)+

and

(4) P (K,T ) := e−rTE(K −X(T ))+

for different non-negative values of the strike price K and maturity dates T .
By construction, defining option prices as discounted expected values implies
that the corresponding discounted derivative price processes are martingales
(and not merely local martingales). These discounted expected values co-
incide with the smallest initial fortune needed to superreplicate the corre-
sponding option, see Theorem 3.3 in [5]. We will refer to these expected
values as the prices of call options and put options, respectively. However,
at the end of the present section we return to the issue of other possible
definitions of the price of a derivative.
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As mentioned in the introduction, there are some subtleties for the Dupire
equation in the presence of bubbles. For example, the call price C given by
risk-neutral valuation does not satisfy the classical version (1) of the equa-
tion. Indeed, assume for simplicity that r = q = 0. It follows from equation
(3) that C is convex in K, so CKK ≥ 0. On the other hand, it is well-known
that C can be smaller than (x−K)+ for some values of K and T , compare
for example [8], so there exist points where CT < 0. Therefore, equation
(1) clearly fails. Another issue is the failure of uniqueness of solutions for
the Dupire equation. A discussion of this is provided in the remark after
Theorem 2.2 below.

Our main result Theorem 2.2 shows that the Dupire equation remains
valid for put options, but the uniqueness of solutions is lost in general. We
also show how to single out the put option price among all possible solutions.
For call options, extra terms involving the discounted expected value

m(T ) := e−rTEX(T )

appear in the equation, and the option price C is the unique bounded so-
lution. Note that if e−(r−q)tX(t) is a martingale, then m(T ) = xe−qT and
mT (T ) = −qm(T ). Consequently, the partial differential equation in (5)

then reduces to the usual Dupire equation (1). However, if e−(r−q)tX(t) is
merely a local martingale, then it is a supermartingale being bounded from
below, and eqTm(T ) decreases with T . In that case, qm(T ) + mT (T ) gives
a negative contribution in (5).

Theorem 2.2. Assume that Hypothesis 2.1 holds. Then the call price
C(K,T ) is the unique bounded classical solution of the equation

(5)

 CT = LC + qm+mT for (K,T ) ∈ (0,∞)2

C(K, 0) = (x−K)+

C(0, T ) = m(T ).

The put price P (K,T ) is a classical solution of

(6)

 PT = LP for (K,T ) ∈ (0,∞)2

P (K, 0) = (K − x)+

P (0, T ) = 0.

Moreover, P is the unique classical solution of (6) satisfying

(7) (e−rTK − e−qTx)+ ≤ P (K,T ) ≤ e−rTK

for all (K,T ) ∈ (0,∞)2.

Remark. Equation (6) can formally be viewed as a pricing (Black-Scholes)
equation for a call option if we regard K as the spot price of an underlying
asset. Consequently, one solution of (6) is given by the stochastic represen-
tation

P̃ (K,T ) = e−qTE(k(T )− x)+,

where k is the diffusion process

(8)

{
dk(t) = −(r − q)k(t) dt+ σ(k(t), T − t) dB(t)
k(0) = K
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absorbed at 0. Indeed, it follows from [8] that P̃ is a classical solution to
(6). In fact, it is the smallest non-negative solution, so

(9) P̃ (K,T ) ≤ P (K,T ).

In the case of bubbles, P̃ is typically not convex in the spatial variable,
compare [5] and [8]. However, it follows directly from (3) and (4) that
the functions C and P are convex in the strike price K. Accordingly, the
inequality (9) may be strict, and P̃ does not necessarily coincide with P for
models with bubbles. Thus there is no uniqueness of solutions to equation
(6) in the class of functions of at most linear growth. (If the volatility σ

satisfies a linear bound at infinity, then P and P̃ coincide.)

As mentioned above, Theorem 2.2 relies on the assumption that option
prices are given by risk-neutral valuation, compare (3) and (4). In [5] it is
suggested that the set of admissible portfolios is restricted so that the hedg-
ing portfolio satisfies a collateral requirement at all times before maturity.
In the present setting, this requirement means that the hedging portfolio
for a call option should be worth at least α(e−q(T−t)X(t) − K)+ at each
instant t ∈ [0, T ], where α ∈ [0, 1] is some given constant. Note that this
condition is automatically satisfied in the absence of bubbles, but not in
the present case. This illustrates that the notion of price of an option on
a bubble is more sensitive to natural restrictions on the set of admissible
hedging portfolios than is the case in the standard setting. According to
[5], the smallest initial value of a superreplicating portfolio satisfying this
collateral requirement is given by

(10) Cα(K,T ) = C(K,T ) + α(xe−qT −m(T )).

Since the payoff of a put option is bounded, it is not natural to impose
collateral conditions on the hedging portfolio in this case. We therefore
refrain from considering alternative prices for put options, as do the authors
of [5]. The proof of the next result directly follows from Theorem 2.2 and
(10).

Theorem 2.3. The smallest superreplicating price Cα(K,T ), in the pres-
ence of collateral requirements as described above, is the unique bounded
classical solution of the equation

(11)

 CαT = LCα + (1− α)(qm+mT ) for (K,T ) ∈ (0,∞)2

Cα(K, 0) = (x−K)+

Cα(0, T ) = (1− α)m(T ) + αxe−qT .

Remark. The price corresponding to α = 1 is the one that behaves most
like the price when there is no bubble in the underlying. For example, note
that in this case the usual Dupire equation is obtained.

Remark. The above results may be used for calibration of models from
given option prices. The existence of a local volatility consistent with ob-
served option data is closely related to the problem of finding a Markov
process with the same distributional properties as a given stochastic pro-
cess, compare [9] and [1]. Assume that prices C̃(K,T ) of call options are

given (or more realistically, that C̃(K,T ) is constructed from a discrete set
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of observed prices using some suitable method of interpolation). If α is
specified to be 1, then define

(12) σ(K,T ) =

√
2(C̃T (K,T ) + (r − q)KC̃K(K,T ) + qC̃(K,T ))

C̃KK(K,T )
.

Assuming that σ satisfies Hypothesis 2.1, the corresponding call option
prices C1(K,T ) can be calculated according to (10), or equivalently by

solving (11). If C̃(K,T ) is bounded and satisfies the boundary conditions

C̃(K, 0) = (x−K)+ and C̃(0, T ) = xe−qT , then by uniqueness of bounded so-

lutions to (11) we have C̃ ≡ C1. Thus we have found a local volatility model
which is consistent with the given market data and with the given collateral
requirement corresponding to α = 1. The case of a general α 6= 1 can be
treated similarly by inserting observed option prices (and their derivatives)
in (11), and then solving for σ.

3. Proof of Theorem 2.2

Below we prove Theorem 2.2 in several steps. First, however, we briefly
discuss why the proof of Dupire’s equation in a standard setting where the
underlying is a martingale is not directly applicable in the strict local mar-
tingale setting. To do this, assume for simplicity that r = q = 0, and let
p(y, t) = P (Xt ∈ dy)/dy denote the density of X (assuming that this density
exists). Then

C(K,T ) := E(X(T )−K)+ =

∫ ∞
K

(y −K)p(y, T ) dy(13)

=

∫ ∞
K

∫ ∞
y

p(z, T ) dzdy,

where the last equality is justified by integration by parts since XT has a
finite mean. Differentiating (13) with respect to T and using the forward
equation for p, we get

CT (K,T ) =

∫ ∞
K

∫ ∞
y

1

2
(σ2(z, T )p(z, T ))zz dzdy(14)

=
1

2
σ2(K,T )p(K,T ) =

1

2
σ2(K,T )CKK(K,T ),

provided that the out-integrated terms vanish. However, these terms do not
necessarily vanish if X is a strict local martingale since the density in such
a case does not necessarily decay rapidly at infinity, and thus the standard
argument fails to generalise. It turns out, however, that a similar argument
involving put options instead of call options does generalise since in this case
there are no out-integrated terms at infinity. This motivates the line of proof
we follow below starting with put options rather than with call options.

Step 1. First assume that σ satisfies the bounds

(15) D−1x ≤ σ(x, t) ≤ Dx
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for some constant D > 0 and has bounded derivatives of all orders. By Ito’s
formula, the process Y (t) := lnX(t) satisfies

dY (t) = βY (Y (t), t) dt+ σY (Y (t), t) dB(t),

where

βY (y, t) := −σ
2(ey, t)

2e2y
+ r − q

and

σY (y, t) :=
σ(ey, t)

ey
.

The process Y is a diffusion on the real line with the drift and the volatility
possessing bounded derivatives of all orders, and the volatility is bounded
from below. Consequently, Y has a smooth transition density

pY (z, T ) := P (Y (T ) ∈ dz)/dz
which satisfies the forward equation

(pY )T = (
σ2Y
2
pY )zz − (βY pY )z,

compare for example [18], and pY (y, T ) and its derivatives decay like o(e−|y|)
for large |y|. It follows that also the process X has a smooth density
p(y, T ) = P (X(T ) ∈ dy)/dy which satisfies

pT = (
σ2

2
p)yy − ((r − q)yp)y.

Now, since

P (K,T ) = e−rTE(K −X(T ))+ = e−rT
∫ K

0
(K − y)p(y, T ) dy

= e−rT
∫ K

0

∫ y

0
p(z, T ) dzdy

by integration by parts, the put price P (K,T ) is smooth on (0,∞)2. Straight-
forward differentiation shows that

PT (K,T ) = e−rT
∫ K

0

∫ y

0
pT (z, T ) dzdy − rP (K,T )

= e−rT
∫ K

0

∫ y

0
(
σ2(z, T )

2
p(z, T ))zz − (r − q)(zp(z, T ))z dzdy

−rP (K,T )

=
σ2(K,T )

2
e−rT p(K,T )− e−rT

∫ K

0
(r − q)yp(y, T ) dy − rP (K,T )

=
σ2(K,T )

2
e−rT p(K,T )− (r − q)Ke−rT

∫ K

0
p(y, T ) dy

+(r − q)e−rT
∫ K

0

∫ y

0
p(z, T ) dz − rP (K,T )

=
σ2(K,T )

2
e−rT p(K,T )− (r − q)Ke−rT

∫ K

0
p(y, T ) dy

−qP (K,T ).
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Since PK(K,T ) = e−rT
∫K
0 p(y, T ) dy and PKK(K,T ) = e−rT p(K,T ), we

find that

(16) PT (K,T ) =
σ2(K,T )

2
PKK(K,T )− (r − q)KPK(K,T )− qP (K,T ).

Step 2. Next we carry out an approximation argument to remove the
bound (15) for small values of the underlying. Thus we assume that σ, in
addition to Hypothesis 2.1, satisfies

(17) 0 < σ(x, t) ≤ D(1 + x)

for all (x, t) ∈ (0,∞) × [0,∞), and we assume that zero is an absorbing
boundary for the corresponding solution X of (2). Let {σn}∞n=1 be a se-
quence of volatilities such that

• σn(x, t)→ σ(x, t) as n→∞ for all (x, t),
• each σn satisfies the bound (15) for some constant Dn > 0 and has

bounded derivatives of all orders,
• σn satisfies the upper bound in (17) uniformly in n, and has a Hölder

norm (in the spatial variable) which is bounded on compact subsets
of (0,∞)2 uniformly in n.

Let Xn be the solution of (2) with σ replaced by σn, and let Pn be defined
by

Pn(K,T ) = e−rTE(K −Xn(T ))+.

By Theorem 6 in [11], it follows that Pn(K,T ) → P (K,T ) as n → ∞ for
each (K,T ) ∈ [0,∞)× [0, T ]. By Step 1 above, each Pn satisfies

PnT (K,T ) =
σ2n(K,T )

2
PnKK(K,T )− (r − q)KPnK(K,T )− qPn(K,T )

on (0,∞)2. Since the functions Pn(K,T ) are locally bounded uniformly in
n, interior Schauder estimates, see [4] or [15], imply that Pn has derivatives
PnK , PnKK and PnT that are locally bounded, uniformly in n. Moreover, these
derivatives are locally Hölder(1/2) continuous (with respect to the parabolic
distance) with Hölder norms that are bounded uniformly in n. By the
Arzela-Ascoli theorem, the sequence {Pn}∞n=1 has a subsequence {Pnk}∞k=1
such that Pn and its derivatives PnK , PnKK and PnT converge locally uniformly

to a function P̃ and its corresponding derivatives. Clearly, by uniqueness of
limits we have P̃ = P . Since σn converges to σ, the limit function P satisfies
(16).

Step 3. Now we consider the general case of a volatility σ that merely
satisfies the requirements in Hypothesis 2.1. Let {σn}∞n=1 be a sequence of
volatilities satisfying Hypothesis 2.1 with a Hölder norm that is bounded
on compacts uniformly in n. Moreover, we assume that σn(x, t) = σ(x, t)
for x ≤ n and that the growth assumption (17) holds for constants Dn.
Let Xn be the corresponding stock price process. Since σn coincides with
σ on (0, n) × [0,∞), the random variables Xn(T ) converge almost surely
to X(T ). Thus Pn(K,T ) converges to P (K,T ) by bounded convergence.
Another application of the interior Schauder estimates shows that P solves
(16).



DUPIRE’S EQUATION FOR BUBBLES 9

Remark. The boundedness of the payoff function y 7→ (K − y)+ of a put
option is essential in the argument for the convergence of Pn to P used in
Step 3. Note that the corresponding call prices Cn do not converge to C in
general. Indeed, Cn(K,T ) ≥ (x − K)+, whereas C(K,T ) may be strictly
smaller than (x−K)+ for certain values of K and T , compare [8]. Also note
that dominated convergence cannot be applied to prove Cn → C since the
random variable X∗T := supnX

n(T ) is not necessarily integrable.

Step 4. Since e−(r−q)tX(t) is a supermartingale, it follows from Jensen’s
inequality that

P (K,T ) = e−rTE(K −X(T ))+ ≥ e−rT (K − EX(T ))+

≥ (e−rTK − xe−qT )+.

On the other hand, we clearly have P (K,T ) ≤ e−rTK. It follows that P
is continuous up to the boundary K = 0 and that P (0, T ) = 0. Moreover,
since the paths of X are continuous, we have that X(T ) → x as T ↓ 0.
Therefore, another application of bounded convergence shows that P (K,T )
is continuous up to the initial boundary T = 0, and P (K, 0) = (K − x)+.
This finishes the proof that the put option price P is a classical solution of
(6) that satisfies (7).

Step 5. Next we apply maximum principle techniques to prove that P is
the unique classical solution of (6) that satisfies (7). To do that, assume that
P 1 and P 2 both satisfy (6) and (7). Then F (K,T ) := P 1(K,T )−P 2(K,T )
is a bounded classical solution of FT (K,T ) = LF (K,T ) for (K,T ) ∈ (0,∞)2

F (0, T ) = 0
F (K, 0) = 0.

Define

h(K) = 1 +K,

and note that

hT − Lh = rK + q > 0.

For ε > 0, define

F ε(K,T ) = F (K,T ) + εh(K),

let Γ := {(K,T ) ∈ [0,∞) × [0, T ] : F ε < 0} for some T > 0, and assume
that Γ 6= ∅. Since F is bounded and F (0, T ) = 0, the set Γ is contained
in (D−1, D) × [0, T ] for some constant D > 0. Thus, by compactness, the
infimum

T0 := inf{T ≥ 0 : (K,T ) ∈ Γ for some K ∈ (0,∞)}

is attained at some point (K0, T0), and F ε(K0, T0) = 0 by continuity. Since
F ε(K, 0) = εh(K) > 0, we have T0 > 0. Therefore, at the point (K0, T0) we
have

F εT (K0, T0)− LF ε(K0, T0) = ε(hT − Lh)(K0, T0) > 0.

On the other hand, by the definition of T0 and K0, the function K 7→
F ε(K,T0) has a local minimum at K = K0. Consequently, the function
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F ε satisfies F ε = 0, F εK = 0, F εKK ≥ 0 and F εT ≤ 0 at the point (K0, T0).
Consequently,

F εT (K0, T0)− LF ε(K0, T0) ≤ 0.

This contradiction shows that Γ = ∅, so F ε ≥ 0 on (0,∞) × [0, T ]. Since
ε > 0 and T are arbitrary, it follows that 0 ≤ F = P 1 − P 2. Interchanging
the role of P 1 and P 2 yields the reverse inequality, i.e. P 1 = P 2.

Step 6. Finally, we treat the call option price C using a put-call parity
relation. Taking expected values in the equality

(X(T )−K)+ = (K −X(T ))+ −K +X(T )

we find that

(18) C(K,T ) = P (K,T )− e−rTK +m(T ).

Therefore,

CT (K,T ) = PT (K,T ) + re−rTK +mT (T )

=
σ2(K,T )

2
PKK(K,T )− (r − q)KPK(K,T )− qP (K,T )

+re−rTK +mT (T )

=
σ2(K,T )

2
CKK(K,T )− (r − q)KCK(K,T )− qC(K,T )

+qm(T ) +mT (T ),

where we used (18), PK = CK + e−rT and PKK = CKK . The fact that C
satisfies the given boundary conditions also follows from the put-call parity
(18) and the boundary behaviour of P . Finally, the proof of the uniqueness
of the solutions to equation (6) within the given class also shows uniqueness
of solutions with a bounded difference to e−rTK. This translates directly to
uniqueness for equation (5) for bounded functions. This finishes the proof
of Theorem 2.2.
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